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a b s t r a c t

Twisted bilayer graphene (TBG) exhibits a wide range of intriguing physical properties, such as
superconductivity, ferromagnetism, and superlubricity. Depending on the twist angle, periodic moiré
superlattices form in twisted bilayer graphene, with inhomogeneous interlayer coupling and lattice
deformation. For a small twist angle (typically < 2◦), each moiré supercell contains a large number of
atoms (>10,000), making it computationally expensive for first-principles and atomistic modeling. In
this work, a finite element method based on a continuum model is used to simulate the inhomoge-
neous interlayer and intralayer deformations of twisted graphene flakes on a rigid graphene substrate.
The van der Waals interactions between the graphene layers are described by a periodic potential
energy function, whereas the graphene flake is treated as a continuum membrane with effective elastic
properties. Our simulations show that structural relaxation and the induced strain localization are most
significant in a relatively large graphene flake at small twist angles, where the strain distribution
is highly localized as shear strain solitons along the boundaries between neighboring domains of
commensurate AB stacking. Moreover, it is found that there exist many metastable equilibrium
configurations at particular twist angles, depending on the flake size. The nonlinear mechanics of
twisted bilayer graphene is thus expected to be essential for understanding the strain distributions
in the moiré superlattices and the strain effects on other physical properties.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The successful isolation of monolayer graphene by microme-
hanical exfoliation of bulk graphite opened up the research
ield of two-dimensional (2D) materials [1]. More recently, a
ew paradigm for material design has emerged by stacking 2D
aterials on top of one another [2,3]. The resulting multilayered
tructures, often called van der Waals (vdW) materials or het-
rostructures, feature strong intralayer covalent bonds and rela-
ively weak interlayer vdW interactions. These highly anisotropic
nteractions provide the vdW materials with tunable collective
roperties via the stacking sequence and the relative twisting
r straining between the atomic layers [4–7]. Such an unprece-
ented level of tunability makes the vdW materials attractive
or a wide range of technological applications (e.g., photode-
ectors, photovoltaics and light-emitting devices) [8]. In order
o fulfill the promising applications of the multilayered vdW
aterials and heterostructures, it is critically important to un-
erstand the mechanics at the interfaces between various 2D
aterials [9], where the interlayer mechanical interactions such
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as adhesion/separation and friction are coupled intimately with
the intralayer lattice deformations of the 2D materials. In par-
ticular, a number of intriguing phenomena have been observed
in twisted bilayer graphene, such as strain solitons [10] and
2D moiré superlattices [11,12], along with extraordinary phys-
ical properties, such as unconventional superconductivity [6],
emergent ferromagnetism [13], and superlubricity [14].

For bilayer graphene, the commensurate Bernal stacking
(i.e., AB and BA) is most stable with the minimum interlayer
potential energy. When two graphene layers are not stacked
perfectly in the commensurate state, such as twisted bilayer
graphene, the interlayer potential energy is higher and can be
reduced by forming periodic domains with alternating AB and
BA stacking, separated by strain solitons (or domain walls). As
a result, a periodic 2D moiré superlattice is formed with a pe-
riod depending on the relative twist angle [15,16]. For a small
twist angle (typically < 2◦), the moiré period (λM ) ranges from
tens to hundreds of nanometers. Although the characteristic
moiré length scale λM has been well established by assuming
the graphene lattices to be rigid, it remains unclear how the
mechanics of the highly deformable graphene with interlayer
coupling could lead to commensurate–incommensurate phase

transitions and various domain structures [17–23].
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A variety of modeling and simulation approaches have been
developed to understand the mechanics of 2D moiré superlat-
tices. Fully atomistic simulations (DFT and MD) are typically
limited to periodic moiré supercells of relatively small sizes
[21,24–26]. To overcome this limitation, a multiscale approach
was proposed by combining DFT calculations of the interlayer
potential function (also called generalized stacking fault energy or
GSFE) with a continuum elastic plate model [18,27,28]. Similarly,
a discrete–continuum model was developed by including full
atomistic interactions in the short range (using empirical inter-
atomic potentials) along with a continuum model for long-range
interactions [20,29]. Alternatively, a continuum dislocation model
of 2D moiré superlattices was proposed, in which the strain
solitons (or domain walls) are treated as interlayer dislocations
or van der Waals dislocations [30–33]. While these modeling and
simulations have provided significant insights into the mechanics
of structural relaxation in 2D moiré superlattices, the compu-
tational cost remains high even with the multiscale approach,
which limits the model size (typically < 100 nm) and thus cannot
simulate 2D moiré superlattices at small twist angles. In this
work, we present a finite element method based on a continuum
model to simulate the interlayer and intralayer deformations
of twisted graphene flakes on a rigid graphene substrate. The
continuum model is atomistically informed and complements
the first-principles based atomistic models with the potential of
scaling up for larger systems.

The remainder of this paper is organized as follows. Section 2
describes the continuum model with a periodic interlayer poten-
tial function for the van der Waals interactions between graphene
layers. In Section 3, we consider twisting of a rigid graphene
flake, without intralayer lattice deformation of the flake. Section 4
presents numerical results for twisted elastic graphene flakes, and
discusses the strain distributions and stability. We conclude in
Section 5 with a summary of the findings.

2. An interlayer potential function for van der Waals interac-
tions

It has been shown that the interaction potential energy be-
tween two graphene layers can be written as a function of the
relative displacements [27,28,34], namely

U
(
ux, uy, uz

)
= U0 (uz) + U1 (uz) f

(
ux, uy

)
, (1)

where ux and uy are relative in-plane displacements, and uz is
the relative normal displacement. Start from an equilibrium AB
stacking with ux = uy = uz = 0 (see Fig. 1a). The first term U0 (uz)
describes the dependence of the interaction potential energy on
the normal separation (uz) in the commensurate AB stacking
(ux = uy = 0), and the second term describes the periodic
corrugation of the potential energy with respect to the in-plane
displacements through a function, f

(
ux, uy

)
, with a corrugation

amplitude depending on the normal separation through U1 (uz).
Following a previous work [34], we write

U0 (uz) = Γ0

[
−

5
3

(
1 +

uz

z0

)−4

+
2
3

(
1 +

uz

z0

)−10
]

, (2)

U1 (uz) = ηΓ0

[
−

(
1 +

uz

z0

)−4

+ β

(
1 +

uz

z0

)−10
]

, (3)

f
(
ux, uy

)
=

3
2

+ cos
(
G1

(uy

a
− 1

))
+ 2 cos

(
G1

2

(uy

a
− 1

))
cos

(√
3G1

2
ux

a

)
,

(4)

where z0 is the equilibrium interlayer separation for the commen-
surate AB stacking, Γ is the adhesion energy, a is the equilibrium
0

2

carbon–carbon bond length in the graphene lattice, G1 =
4π
3 ,

and β are two dimensionless parameters. Here, the in-plane
oordinates are set up such that the x-axis is parallel to a zigzag
irection of the graphene lattice and the y-axis is parallel to an
rmchair direction (see Fig. 1a). As in [34], we use the following
alues for the model parameters in numerical calculations: a =

.142 nm, z0 = 0.334 nm, Γ0 = 0.25 J/m2, η = 0.0032 and
β = 28.7; these parameters were obtained previously based
on atomistic calculations. We note that different forms of the
interlayer potential energy function have been used by others for
bilayer graphene and other 2D materials [18,35–37].

Fig. 1(b–c) show the periodic corrugation of the interlayer
potential energy along the armchair and zigzag directions, where
the graphene lattice is assumed to be rigid and the interlayer
separation is fixed with uz = 0. With respect to the displacement
n the armchair direction (uy), the interlayer energy corrugation
epeats with a period of 3a, with a minimum for AB stacking
ux = uy = 0) and a maximum for AA stacking at uy = a (see
ig. 1b). The energy difference between the AB and AA stacking
s about 0.1 J/m2, although the interlayer potential energy for AA
tacking can be reduced (from −0.15 to −0.184 J/m2) by slightly
ncreasing the interlayer separation. In addition, there is a local
aximum at uy = 2.5a for the saddle point (SP) stacking. As
oted by Alden et al. [10], the energy difference between the SP
nd AB stacking is around a factor of 10 lower than the energy
ifference between AA and AB stacking. With respect to the
isplacement in the zigzag direction (ux), the interlayer energy
s sinusoidal with a period of

√
3a and a maximum lower than

that for AA stacking but higher than for SP stacking (Fig. 1c).
We note that, while the potential function in Eq. (1) is suffi-

cient to describe the interlayer energy corrugation with respect
to the relative displacement between two rigid graphene layers,
it ignores the effect of relative rotation between the two layers.
In general, when twisting a graphene layer on top of another
graphene layer, the relative motion at an arbitrary location con-
sists of both translation and rotation. However, if the relative
rotation is small (e.g., less than a few degrees), the effect is
negligible. Thus, with the small-rotation assumption, we consider
only the effect of translation by Eq. (1) in the present study for
small-twist-angle graphene flakes.

3. Twisting of a rigid graphene flake

First consider a rigid graphene flake on top of a rigid graphene
layer (Fig. 2a). Twisting the upper layer by an angle of rota-
tion φ while holding the lower layer fixed, the relative in-plane
displacements between the two layers are:

ux(r, θ ) = r (cos(θ + φ) − cos(θ )) , (5)

uy(r, θ ) = r (sin(θ + φ) − sin(θ )) , (6)

where (r, θ ) are the polar coordinates with respect to the center
f the flake. In addition, a relative normal displacement between
he two rigid layers may be induced so that the interlayer sep-
ration changes to z0 + uz , where uz is to be determined as a
unction of the twist angle φ. For the moment we assume that
oth graphene layers are rigid, whereas any deformation due to
tructural relaxation will be considered in Section 4.
Start with an infinitesimal twist angle (i.e., rφ ≪ a), so that

he relative displacements are small everywhere in the graphene
lake. In this case, we expand the interlayer potential function
q. (1) into a Taylor series and retain the leading order terms only,
ielding(
ux, uy, uz

)
≈ U0(0) +

1
U ′′

0 (0)u
2
z +

3
U1(0)

(
G1

rφ
)2

, (7)

2 8 a
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Fig. 1. (a) Schematic illustration of a hexagonal cell of graphene on top of another graphene monolayer, with a relative in-plane displacement u from a commensurate
B stacking (blue) to an incommensurate stacking (red). (b–c) Periodic corrugations of the interlayer potential energy with respect to the relative in-plane
isplacements in the armchair (uy) and zigzag (ux) directions. The interlayer separation is fixed at z0 = 0.334 nm (uz = 0) for this calculation.. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
w

here U ′′

0 (0) is the second derivative of the function U0 (uz) at
z = 0. The average interlayer potential energy per unit area of a
ircular graphene flake with a radius R can be calculated as

U =
1
A

∫∫
UdA ≈ U0(0) +

1
2
U ′′

0 (0)u
2
z +

3
16

U1(0)
(
G1

Rφ
a

)2

, (8)

here A = πR2.
Given a twist angle φ, the average interlayer potential energy

n Eq. (8) is minimized for uz = 0, indicating no normal dis-
lacement for the case of an infinitesimal twist angle (Rφ ≪ a).
aking the derivative of the average potential energy with respect
o the twist angle, we obtain the twisting moment applied to the
raphene flake as

z = A
dU
dφ

=
2π3

3a2
R4U1(0)φ. (9)

The linear relation between the twisting moment and the angle of
rotation defines a torsional rigidity of the graphene bilayer that is
proportional to the polar moment of the circular area, Ip =

1
2πR4.

ollowing the classical mechanics of pure torsion, an interlayer
hear modulus can be determined as

=
Mzz0
φIp

=
4π2z0
3a2

U1(0), (10)

hich yields a value of 4.9 GPa by the present model, in close
greement with the values reported previously for single-crystal
raphite from experiments [38–40] and atomistic calculations
41–44]. Eq. (10) indicates that the interlayer shear modulus is
roportional to the amplitude of energy corrugation, U (0) =
1 v

3

(β − 1) ηΓ0. Thus, a measurement of the interlayer shear mod-
ulus (by twisting or sliding) could be used to determine the
energy corrugation amplitude. In experiments, a twisting mo-
ment may be applied by an atomic force microscopy (AFM) tip
to rotate the graphene flake [45]. The interlayer shear modulus
may also be measured by inelastic X-ray scattering [39] or Raman
spectroscopy [40].

Even with a small twist angle, however, the relative in-plane
displacements as given in Eqs. (5)–(6) can be large (relative to a)
in a large flake so that the corrugation of the interlayer potential
energy in Eq. (1) must be fully accounted for. In this case, we
calculate the average interlayer potential energy of a circular
graphene flake as

U =
1
A

∫∫
U
(
ux, uy, uz

)
dA = U0 (uz) + U1 (uz) F (R, φ), (11)

with

F (R, φ) =
3
2

−
3a

2G1R sin
(

φ

2

) J1 (2G1
R
a
sin
(

φ

2

))
≈

3
2

−
9a

4πRφ
J1

(
4π
3

Rφ
a

)
,

(12)

here Jα(·) is the Bessel function of the first kind. Note that

F (R, φ) ≈
1
3

(
πRφ
a

)2
when Rφ ≪ a, which recovers Eq. (8) for an

infinitesimal twist angle. With the assumption of a small twist
angle but relatively large in-plane displacements, the function
F (R, φ) can be written approximately as a function of a single
ariable, Rφ/a. Alternatively, with the moiré length scale [16,46],
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Fig. 2. (a) Schematic of relative displacements between two rigid graphene layers subject to a twisting moment. (b) Change of the interlayer separation as a function
of the twist angle. (c) Average interlayer potential energy (normalized by the adhesion energy) as a function of the twist angle. (d) Normalized twisting moment as
a function of the twist angle.
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λM =

√
3a

2 sin(φ/2) , we may re-write F as a function of the ratio
R = R/λM , namely

F
(
R
)

=
3
2

−
3
√
3

4πR
J1

(
4π
√
3
R
)

. (13)

For a small twist angle, we have Rφ/a ≈
√
3R.

Given a twist angle φ, the average interlayer potential energy
n Eq. (11) is minimized by setting ∂U

∂uz
= 0, which predicts a

ormal displacement as

z = z0

[(
2.5βα + 1

α + 1

) 1
6

− 1

]
, (14)

here α =
3
5ηF (Rφ/a). The non-zero relative normal displace-

ment leads to a change in the interlayer separation as a function
of the twist angle (Fig. 2b). Such a dimensional change in the
normal direction due to twisting is known as the Poynting ef-
fect commonly observed in finite deformation of elastomeric
materials [47]. It is noted that the leading order of the normal
displacement is quadratic in terms of Rφ/a, which vanishes in
he linear analysis for an infinitesimal twist angle (Rφ ≪ a).
For relatively large values of Rφ/a, the interlayer separation ap-
roaches a constant of 1.032z0 = 0.344 nm, about 3% larger than
he equilibrium separation for the commensurate AB stacking of
graphene bilayer. Such a larger interlayer separation is expected
or incommensurate stacking after twist. For comparison, the
4

equilibrium separation is found to be 0.362 nm for AA stacking
and 0.338 nm for SP stacking by the present model, both in good
agreement with previously reported values [19,48].

With the normal displacement (uz) determined in Eq. (14) as
a function of Rφ/a, the average interlayer potential energy (U)
in Eq. (11) is obtained also as a function of Rφ/a for small twist
ngles, as shown in Fig. 2c. For Rφ ≪ a, the interlayer energy
ensity is quadratic with Rφ/a, as predicted by Eq. (8). For rela-
ively large values of Rφ/a, the interlayer energy density changes
on-monotonically, with multiple local maxima and minima, due
o the nonlinear, periodic interlayer potential energy function. In
articular, the first three local minima of the interlayer potential
nergy correspond to Rφ

a = 2.04, 3.54, and 5.06, whereas the
corresponding twist angles depend on the graphene flake size (R).
It is also interesting to note that the maximum interlayer poten-
tial energy is around −0.87Γ0 (∼13% higher than the minimum
at the commensurate AB stacking), which is reached at a twist
angle, Rφ

a = 1.23. This angle may be considered as a critical twist
angle. When the twist angle is smaller than the critical angle,
the graphene flake would rotate back to the commensurate AB
stacking (φ = 0) once the applied moment is released. When
the twist angle is greater than the critical angle, however, the
graphene flake would remain twisted as the interlayer potential
energy approaches a local minimum after the applied moment is
released. The critical twist angle is thus inversely proportional to
the flake size (R). A similar behavior was observed for twisted bi-
layer graphene and MoS in MD simulations [25,49]. For relatively
2
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arge values of Rφ
a , the interlayer potential energy approaches a

onstant, which is around −0.885Γ0. As expected, the incommen-
urate stacking (due to twist) increases the interlayer potential
nergy and hence reduces the adhesion energy compared to the
ommensurate AB stacking.
By taking derivative of the total interlayer potential energy

ith respect to the twist angle, we obtain the twisting moment
or torque) as

z = A
dU
dφ

= U1 (uz)

(
3πR2

2φ

)[
2a

G1Rφ
J1

(
G1Rφ
a

)
− J0

(
G1Rφ
a

)
+ J2

(
G1Rφ
a

)]
.

(15)

Normalizing the twisting moment by µIpa/(z0R), we obtain

Mz =
Mzz0R
µIpa

=
U1 (uz)

Γ0η (β − 1)

(
9a

4π2φR

)[
2a

G1Rφ
J1

(
G1Rφ
a

)
− J0

(
G1Rφ
a

)
+ J2

(
G1Rφ
a

)]
,

(16)

hich is a function of Rφ
a . As shown in Fig. 2d, the twisting

oment is linear with respect to the twist angle for Rφ
a ≪ 1, as

predicted by Eq. (9). For relatively large values of Rφ
a , the twist-

ng moment depends on the twist angle nonlinearly and non-
onotonically. A maximum moment is predicted, after which the

wisting moment decays and oscillates around zero. Correspond-
ng to the local maxima and minima in the interlayer potential
nergy (Fig. 2c), the twisting moment becomes zero, meaning
hat the twisted graphene flake is in mechanical equilibrium with
ero moment applied. However, only those equilibrium states
orresponding to the local energy minima are stable (against
mall perturbations). Again, the corresponding twist angles for
he stable equilibrium states depend on the graphene flake size
R). The maximum twisting moment is found to be: Mmax =

0.29µIpa
z0R

, which is linearly proportional to the interlayer shear
odulus and scales with the flake size as: Mmax ∼ µR3. The
aximum twisting moment may be considered as a critical mo-
ent (or twisting strength), corresponding to a twist angle at

Rφ
a = 0.49. The presence of a maximum interlayer potential
energy (Fig. 2c) and a maximum twisting moment (Fig. 2d) sug-
gests that the transition from the commensurate AB stacking
to an incommensurate twisted state or vice versa has a finite
energy barrier and requires external stimuli, which may result
in size-dependent thermal stability of the twisted flakes [14,26].
Moreover, both the maximum energy and maximum moment
would change considerably due to structural relaxation in the
twisted graphene flake, as discussed in the next section.

4. Twisting of an elastic graphene flake

A graphene monolayer is highly flexible and thus the twisted
raphene flake is expected to deform. Due to the interlayer cou-
ling with inhomogeneous vdW interactions, the deformation
f a twisted graphene flake is generally inhomogeneous, with
oth in-plane and out-of-plane components. Consequently, the
raphene flake is no longer flat as assumed for a rigid flake, and
he strain of the graphene lattice is inhomogeneous. To determine
he inhomogeneous deformation of a twisted graphene flake,
e employ a finite element method using the commercial soft-
are ABAQUS, similar to a previous study on sliding of graphene
anoribbons [34]. The circular graphene flake is modeled by
inearly elastic shell elements (S4R, element size ∼0.1 nm), with
n effective in-plane Young modulus Et = 345 N/m, Poisson’s
atio ν = 0.16, and a bending modulus D = 1.5 eV. In this study,

e assume that the bottom graphene monolayer is attached to a

5

igid substrate so that it does not deform. The vdW interactions
etween the graphene flake and the bottom layer are simulated
y the normal and shear tractions derived from the potential
nergy function in Eq. (1), which has been implemented as a
ser-defined subroutine (UINTER) in ABAQUS [34]. Start with
n equilibrium configuration where a circular graphene flake of
adius R is perfectly flat on top of a large graphene monolayer,
ith an interlayer separation of z0 = 0.334 nm for the commen-
urate AB stacking. To twist the graphene flake, a circumferential
isplacement (uθ = Rφ) is imposed along its edge. At each twist
ngle, the elastic deformation of the graphene flake is deter-
ined by solving the boundary value problem. Due to the highly
onlinear and non-monotonic variation of the potential energy
ith respect to the displacements (see Fig. 1b–c), the problem

s numerically challenging. To mitigate numerical stability issues,
e conduct nonlinear dynamic implicit simulations with a mass
caling method similar to the previous study [34]. To minimize
he rate effect, we apply sufficiently low rates for the twisting
isplacement so that the results are quasistatic with negligible
inetic energy (see Fig. A.1 in Appendix). This computational
pproach allows increasing the twist angle continuously in one
imulation.
The interlayer potential energy and the elastic strain energy of

twisted graphene flake (R = 50 nm) are calculated as functions
f the twist angle shown in Fig. 3a. Compared to twisting a rigid
lake of the same size, the interlayer potential energy is much
ower for the elastic flake, but the elastic strain energy is higher.
he total energy including both the interlayer and intralayer
train energy is lower than that for a rigid flake. Thus, by the
lastic deformation of the graphene flake, the interlayer potential
nergy is reduced and the total energy is relaxed. Such a struc-
ural relaxation is thermodynamically favored and mechanically
equired to satisfy the local equilibrium everywhere in the elastic
raphene flake. Interestingly, similar to the rigid flake, the total
nergy varies with the twist angle non-monotonically, with local
inima and maxima corresponding to stable and unstable equi-

ibrium states, respectively. Such an energy variation is similar to
hose obtained by atomistic calculations using a climbing-image
udged elastic band method for untwisting graphene flakes from
relatively large twist angle [26]. Moreover, the elastic strain
nergy first increases and reaches its maximum at twist angles in
he range of 0.2–0.5 degrees, after which the elastic strain energy
ecays and approaches zero at relatively large twist angles. This
rend suggests that structural relaxation by elastic deformation
s most significant at relatively small twist angles. For relatively
arge twist angles, the interlayer coupling becomes too weak to
eform the elastic flake, so that the flake behaves like a rigid flake
ith negligible deformation. The similar trend was noted recently

or twisted MoS2 bilayers [50].
The derivative of the total energy with respect to the twist

ngle yields the twisting moment applied along the edge of the
ircular flake, shown as a function of the twist angle in Fig. 3b.
ompared to twisting a rigid graphene flake of the same size, the
wisting moment is much lower for the elastic flake. Remarkably,
ven for an infinitesimal twist angle (φ < 0.1◦), the elastic defor-
ation of the flake reduces the twisting moment considerably,
ielding a lower torsional rigidity in the linear regime (see inset
f Fig. 3b). The effective interlayer shear modulus deduced from
he torsional rigidity by the classical relation (Mz

φ
= µIp/z0) is

about 1.13 GPa, much lower than that predicted by Eq. (10) for
a rigid flake. It is found that, unlike the rigid flake, twisting the
elastic flake by a very small angle (e.g., φ = 0.05◦) leads to
an inhomogeneous deformation of the elastic flake, where the
center region is locked in the AB stacking with no rotation and the
interlayer shear occurs only in an annular region near the edge
of the flake (see Fig. A.2 in Appendix). As a result, the classical
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oth and is lower than the interlayer potential energy for a twisted rigid flake of the same radius. (b) Twisting moment as a function of the twist angle. Inset shows
he linear regime for infinitesimal twist angles with different values of the interlayer shear modulus for the rigid and elastic flakes.
t
(

t
d
t

ssumption of the torsional deformation with a constant rotation
f the entire flake is inapplicable for the elastic graphene flake.
he initially localized deformation near the edge is similar to that
or pulling a graphene nanoribbon [34], with an effective stiffness
f the linear response depending on the flake size (Fig. A.3). As
he flake size decreases, the response approaches that of a rigid
lake, while the effective interlayer shear modulus decreases as
he flake size increases. Interestingly, an early experimental study
51] reported interlayer shear modulus of single-crystal graphite
anging from 0.13 to 1.4 GPa and attributed the relatively low
alues to basal-plane dislocations. Moreover, compared to the
igid flake, the maximum twisting moment is also much lower
or the elastic graphene flake (Fig. 3b). The first three twist angles
orresponding to the stable equilibrium states (with zero twisting
oment) are slightly different from those predicted for a rigid

lake. The effect of elastic deformation diminishes as the twist
ngle increases (e.g., φ > 2◦).
To further understand the elastic deformation and structural

elaxation of the twisted graphene flake, we show in Fig. 4 a se-
uence of contours for the evolving distributions of the interlayer
otential energy and the elastic strain energy as the twist angle
ncreases. The interlayer energy contours reflect the local stacking
rder, with the minimum energy (blue) for AB stacking and the
aximum energy (yellow) for AA stacking, whereas the regions of
P stacking with an intermediate energy connect the AA domains
nd separate neighboring AB domains. The elastic strain energy
ontours show that the elastic deformation is localized in the
P domains with nearly zero strain energy in both the AB and
A domains. It is found that the strain state in the SP domains
or domain walls between AB domains) is nearly pure shear, and
hus the SP domains form a network of shear strain solitons, as
oted previously [10]. At the first stable twist angle (φ = 0.274◦),
hree AA domains emerge as the vertices of an equilateral triangle
oiré pattern at the center region of the graphene flake (Fig. 4a–
). This is the largest stable moiré pattern that can form in the
ircular graphene flake with a radius of 50 nm, with the moiré
ength λM ≈ R (λM =

√
3a

2 sin(φ/2) = 51.4 nm). At this twist angle,
oth the interlayer potential energy and the elastic strain energy
rop from their maxima (Fig. 3a), yielding a local minimum for
he total energy. Due to structural relaxation, a significant part
f the graphene flake stays in the AB stacking, thus lowering the
6

interlayer potential energy compared to the case of a rigid flake
with no structural relaxation.

In addition, the contours for the out-of-plane displacement
(uz) and the effective shear strain (γeff =

√
2eijeij, where eij is

he deviatoric strain components in 2D) are shown in Appendix
Fig. A.4). The out-of-plane displacement is nearly zero (uz ≈ 0)
in the AB domains and is the maximum (uz = 0.0277 nm)
in the AA domains, consistent with the different equilibrium
separations for the two commensurate stacking orders. While the
out-of-plane displacement is generally small, its effect on the
interlayer coupling may not be negligible. As noted earlier, for
AA stacking the interlayer energy is reduced by over 20% (from
−0.15 to −0.184 J/m2) due to the out-of-plane displacement. The
effective shear strain is localized along the boundaries between
the AB domains. The variation of the effective shear strain across
a domain wall (strain soliton) is shown in Fig. A.5(b), with a
maximum of 0.8% and a FWHM (full width at half maximum) of
10 nm for the twist angle φ = 0.274◦.

At the second stable twist angle (φ = 0.534◦), more AA
domains emerge to form a moiré pattern with a smaller length
scale (λM =

√
3a

2 sin(φ/2) = 26.4 nm) as shown in Fig. 4(c–d). As a
result, the total interlayer potential energy is higher than Fig. 4a,
while the total strain energy is similar (Fig. 3a). The maximum
shear strain in the domain boundaries is higher (∼1.3%), but the
FWHM is narrower (∼7.5 nm) as shown in Fig. A.5(d). As the
wist angle increases further, the moiré length scale continues to
ecrease, whereas the interlayer potential energy increases and
he elastic strain energy decreases. At φ = 1.02◦, a dense array
of AA domains has formed with λM = 13.8 nm. This angle is
close to the magic angle for twisted bilayer graphene [21,52],
where a series of extraordinary phenomena have been discovered
recently, including correlated insulating states, unconventional
superconductivity, and emergent ferromagnetism with anoma-
lous Hall effect [53]. At this twist angle, the maximum shear strain
in the domain boundaries is ∼1.1% and the FWHM is ∼5 nm as
shown in Fig. A.5(f). The maximum shear strain decays as the
twist angle increases further (Fig. A.6).

Kazmierczak et al. [22] recently measured atomic displace-
ment fields in twisted bilayer graphene using Bragg interferom-
etry for small twist angles (< 2◦), based on which they obtained
shear strain distributions similar to those in Fig. A.4. They showed
the average shear strain in the SP domain as a function of the
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Fig. 4. Contours of the interlayer potential energy (left) and elastic strain energy (right) of a twisted graphene flake (R = 50 nm). (a–b) At the first stable twist
ngle (φ = 0.274◦); (c–d) at the second stable angle (φ = 0.534◦); (e–f) at φ = 1.02◦ . (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)
t
t

c
t

wist angle, with a trend similar to Fig. A.6, although their shear
train amplitudes are roughly half of the maximum shear strain
n Fig. A.6. We note that the experimentally measurable quantity
as actually the relative interlayer displacement. To calculate
train in a single layer of graphene, they assumed equal-and-
pposite displacements in the two graphene layers, so that the
isplacement of each layer is half of the measured relative dis-
lacement. In the present model, however, the bottom layer is
ixed so that the displacement of the graphene flake is same as
7

he relative displacement, and hence the shear strain is larger
han twisted bilayer graphene in [22].

Besides the in-plane strain, we can also calculate the lo-
al in-plane rotation from the displacement field as: φlocal =

an−1
(

∂uy
∂x −

∂ux
∂y

)
. In the case of a rigid flake, the local rotation

is identical to the applied twist angle (φlocal = φ). For an elastic
graphene flake, however, structural relaxation leads to inhomo-
geneous rotation, with a distribution of the locally differential
angle of rotation, defined as the difference between the local and
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l

Fig. 5. (a) Contour of locally differential angle of rotation in a circular graphene flake (R = 50 nm) at a twist angle (φ = 0.534◦), and (b) a close-up view of the
ocal rotation in a moiré supercell. (c) Local rotation at the centers of the AA and AB domains versus the twist angle.
Fig. 6. (a) Comparison of the moiré length scale in a twisted graphene flake (R = 50 nm) calculated from FE simulations and the theoretical prediction; (b) Width
of strain soliton determined from the FWHM of the interlayer potential energy and the effective shear strain profiles.
applied rotation angles, φd = φlocal − φ, as shown in Fig. 5a
for a circular graphene flake (R = 50 nm) at the second stable
twist angle (φ = 0.534◦). Interestingly, the AB domains all have
a negative differential rotation (φd < 0) and nearly zero local
rotation (φAB

local ≈ 0), whereas the AA domains all have a positive
differential rotation (φ > 0) and thus a local rotation greater
d

8

than the applied twist angle (φAA
local > φ). In other words, com-

pared to a constant rigid-body rotation, the AB domains rotate
back and the AA domains rotate further, maintaining the same
average rotation over the area of the graphene flake. As a result of
the inhomogeneous local rotations, the direction of the in-plane
displacement flips across the boundary between two neighboring
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Fig. 7. (a) The critical twist angle, and (b) the stable twist angles of circular graphene flakes, depending on the radius. The inset in (a) shows schematically a circular
graphene flake on a graphene monolayer.
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AB domains, leading to a nearly pure shear deformation, as shown
more clearly in Fig. 5b. The AA domains at the intersections of the
shear strain solitons have been recognized as topological point
defects, analogous to vortices in a superconductor [10]. The local
rotation angles (φlocal) at the centers of the AB and AA domains
depend on the applied twist angle as shown in Fig. 5c. The
rotation of the AB domains remains nearly zero for small twist
angles (up to ∼0.8◦), whereas the rotation of the AA domains
emains nearly a constant (∼1.36◦) for twist angles from 0.27◦

o 0.8◦. For smaller twist angles (φ < 0.27◦), the AA domains
re not fully developed in the flake, and the partially developed
A domains are located near the edge of the flake with a smaller
ocal rotation. For larger twist angles (φ > 0.8◦), the local rotation
ncreases in both the AB and AA domains, and they converge
oward the applied twist angle, approaching uniform rotation of
rigid flake. Therefore, the locally inhomogeneous rotation as a
esult of structural relaxation is most significant for small twist
ngles up to ∼2◦. We note qualitatively similar results in [20] but
wo quantitative differences: (1) The relative rotation of the AB
omains was larger for small twist angles (up to ∼0.8◦), and (2)
he local rotation of the AA domains was also larger (∼1.8◦) for
wist angles from 0.2◦ to 0.8◦. These differences may be partly due
o the finite flake size considered in the present work as opposed
o the periodic boundary conditions in [20].

Based on the measured atomic displacement fields, Kazmier-
zak et al. [22] obtained local rotations in twisted bilayer graphene
imilar to Fig. 5. In particular, they reported that the AB domains
ompletely rotate back in small twist angles up to 0.2◦, while the
ifferential rotation φd first increases and then decreases as the
wist angle increases, similar to Fig. 5c (recall that φd = φlocal−φ).
oreover, the rotation of the AA domains by Kazmierczak et al.

22] was nearly a constant (∼1.25◦) for the twist angles smaller
han 0.8◦, similar to those in Fig. 5c, with a constant rotation of
1.36◦ for φ < 0.8◦ (except for the case of φ < 0.27◦, because

he AA domains are not fully developed in the finite-sized flake
ith R = 50 nm). The different local rotations in the AA and AB
omains were also observed by Zhang et al. [54], who reported a
attice orientation difference of about 1◦ to 2◦ between AA- and
B-stacked regions in twisted bilayer graphene with a twist angle
f 1.1◦.
There are two fundamental length scales in the present model,

he carbon–carbon bond length of the graphene lattice (a =

.142 nm) and the equilibrium interlayer separation
z = 0.334 nm), both atomistic scales. With a small twist
0

9

ngle, the moiré length scale, defined as the distance between
eighboring AA domains as shown in Fig. 4a, is much larger
λM =

√
3a

2 sin(φ/2) ≫ a) and thus can be resolved by the continuum
model of graphene and the finite element method. As shown in
Fig. 6a, the moiré length scale obtained from the finite element
model is in excellent agreement with the theoretical prediction.
The moiré length is unaffected by the elastic lattice deformation
and structural relaxation within each moiré supercell. For a fi-
nite graphene flake size (R), the largest stable moiré length is
pproximately equal to the flake radius (Fig. 4a). Another length
cale of interest is the width of the strain soliton or domain
all between the neighboring AB domains. A previous study
10] found that the width of a shear strain soliton in bilayer
raphene was around 6 nm based on atomic-resolution STEM
easurements. Theoretically, the width of a shear strain soliton
as predicted by a two-chain Frenkel–Kontorova model [10,17]
s

sh =
a
2

√
Et

2(1 + ν)Vsp
(17)

here Vsp is the saddle-point energy per unit area (relative
o the AB stacking). In the present model, Vsp = 0.011 J/m2

(∼1.6 meV/atom), and by Eq. (17) we obtain wsh = 8.25 nm. In
ur numerical simulations, the width of the shear strain soliton
an be determined based on the profiles of the interlayer poten-
ial energy or the effective shear strain across the soliton between
wo neighboring AB domains. A few such profiles are shown in
Appendix (Fig. A.4) for three twist angles. Note that the width
f the strain soliton determined by the FWHM of the interlayer
otential energy profile is slightly smaller than that determined
y the FWHM of the shear strain profile. Both decrease as the
wist angle increases (Fig. 6b). In contrast, for a rigid graphene
lake, the FWHM of the interlayer potential energy profile is
roportional to the moiré length, wsh,rigid ∼ 0.3λM . Fig. 6b shows
hat the width of strain soliton (by the interlayer energy profile)
s considerably smaller after structural relaxation for small twist
ngles (φ < 1◦), whereas the effect of structural relaxation

diminishes for larger twist angles. Similarly, the width of the
AA domain can be determined from the FWHM of the interlayer
potential energy profile, which is ∼ 0.54λM for a rigid flake but
again much smaller after elastic relaxation for small twist angles
(φ < 1◦) (see Fig. A.7a). The normalized FWHM widths of the SP
and AA domains shown in Fig. A.7b are similar to a plot (Fig. 8b)
in [33], but the AA domain width appears to differ by a factor of
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3 at relatively large twist angles (φ > 1.5◦), approaching the
nalytical prediction (∼ 0.54λM ) for a rigid flake. Therefore, the
idth of the strain soliton sets the minimum length scale that
hould be numerically resolved in the finite element model with
ufficiently fine meshes.
Based on the measured atomic displacement fields, Kazmier-

zak et al. [22] calculated the AA domain radii and the SP domain
idths in twisted bilayer graphene. Their AA domain radii com-
are closely with half of the domain width in Fig. A.7a, but their
P widths are smaller than those in Fig. 6b. The difference may
esult from the different definitions of the SP domain width.

The finite size of the graphene flake considered in the present
tudy introduces several size effects. First, there exists a critical
wist angle, below which the graphene flake would rotate back
o fully commensurate AB stacking once the twisting moment is
eleased. The total energy reaches the first peak at the critical
ngle (Fig. 3a). For a rigid graphene flake, the critical angle is
nversely proportional to the radius, φcritical = 1.23a/R (Fig. 7a),
orresponding to the first peak of the interlayer energy in Fig. 2c.
or an elastic graphene flake, the critical angle is similar but
lightly larger. Second, there exist a set of metastable twist angles,
orresponding to the local minima in the total energy (Fig. 3a)
nd zero twisting moment (Fig. 3b). As discussed in Section 3, for
rigid graphene flake, the metastable twist angles are inversely
roportional to the radius (Fig. 7b), similar to the geometrical
caling relations obtained for triangular and hexagonal flakes by
hu et al. [49]. For an elastic graphene flake, the metastable
wist angles are slightly smaller. The difference results from the
lastic deformation of the graphene lattice, which is most notable
or small twist angles and relatively large graphene flakes (R >
0 nm). Moreover, passivation or reconstruction of the graphene
dges [55,56] could introduce an additional size effect, which is,
owever, not considered in the present study.

. Summary

In this work, we present a continuum model for small-twist-
ngle graphene flakes on a rigid graphene substrate. The van der
aals interactions between the graphene layers are described
y a periodic potential energy function. If the graphene flake is
reated as rigid, the interlayer coupling leads to non-monotonic
hanges in the interlayer potential energy with a series of lo-
al minima. When the graphene flake is treated as an elastic
embrane, the interlayer potential energy is reduced by inho-
ogeneous deformation of the graphene lattice with localized
hear strain along the boundaries between neighboring domains
f commensurate AB stacking. The structural relaxation and in-
uced strain localization are most significant in a relatively large
raphene flake at small twist angles. It is found that there are
any metastable equilibrium configurations at particular twist
ngles, depending on the flake size.
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ppendix. Supplementary figures

See Figs. A.1–A.7.

Fig. A.1. (a) The total energy (interlayer potential energy + elastic strain energy)
in a circular graphene flake (R = 50 nm) versus the twist angle, simulated at
different rates of twisting. (b) The kinetic energy is much smaller for the two low
rates of twisting, but becomes more significant at the higher rate (not shown).
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Fig. A.2. Contours at a small twist angle (φ = 0.05◦) showing interlayer shear and elastic deformation localized near the outer edge of a graphene flake (R = 50
nm), with no rotation or deformation in the center region. (a) Interlayer energy; (b) Elastic strain energy; (c) Displacement magnitude; (d) Effective shear strain.

Fig. A.3. Effect of flake size: (a) Total energy (per unit area) as a function of the twist angle for circular graphene flakes of different radii. (b) Twisting moment as
a function of the twist angle, showing the linear regime with size-dependent stiffness due to the localized deformation in the elastic flakes.
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Fig. A.4. Contours of the out-of-plane displacement (left) and effective shear strain (right) of a twisted graphene flake (R = 50 nm). (a–b) At the first stable twist
angle (φ = 0.274◦); (c–d) at the second stable angle (φ = 0.534◦); (e–f) at φ = 1.02◦ .
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Fig. A.5. Profiles of the interlayer potential energy (left) and effective shear strain (right) along a horizontal line (y = 0) for a twisted graphene flake (R = 50 nm).
(a–b) At the first stable twist angle (φ = 0.274◦); (c–d) at the second stable angle (φ = 0.534◦); (e–f) at φ = 1.02◦ .

Fig. A.6. Maximum shear strain in the strain soliton (domain wall) between neighboring AB domains, calculated for a twisted graphene flake (R = 50 nm).

13
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f

R

Fig. A.7. (a) FWHM width of the AA domain vs the twist angle; (b) Normalized FWHM width of the AA and SP domains. For a rigid graphene flake, the domain
sizes can be calculated exactly based on the interlayer potential energy, which are proportional to the moiré length, 0.3λM for the SP domain (soliton) and 0.54λM
or the AA domain. Both domain sizes are reduced by elastic deformation of the graphene flake, especially for small twist angles.
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