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Why does an elastomer layer confined between two rigid blocks 
grow numerous cavities? 
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A B S T R A C T   

For a thin layer of elastomer sandwiched between two rigid blocks, when the blocks are pulled, 
numerous cavities grow in the elastomer like cracks. Why does the elastomer grow numerous 
small cracks instead of a single large crack? Here we answer this question by analyzing an 
idealized model, in which the elastomer is an incompressible neoHookean material and contains a 
penny-shaped crack. To simulate one representative crack among many, the model is axisym-
metric with zero radial displacement at the edge. When the rigid blocks are pulled by a pair of 
forces, a hydrostatic tension develops in the elastomer. At a critical hydrostatic tension, a small 
crack deforms substantially, as predicted by an elastic instability, resulting in an unbounded 
energy release rate. Consequently, the small crack initiates its growth, regardless of the toughness 
of the elastomer. As the crack grows, the energy release rate decreases, so that the crack arrests. 
Meanwhile, the rigid blocks constrain deformation of the elastomer far away from the crack, 
where hydrostatic tension remains high, allowing other cracks to grow. For an elastomer of 
thickness H, shear modulus μ, and toughness Gc, the crack radius and spacing decrease as the 
normalized toughness Gc/(μH) increases. Therefore, a tough elastomer of small modulus and 
thickness will grow numerous small cracks when confined by two rigid blocks and pulled beyond 
a critical force.   

1. Introduction 

Consider a layer of elastomer bonded between two blocks of metal, with the thickness of the elastomer being much smaller than its 
diameter, H << D (Fig. 1a). When the two metal blocks are pulled by a pair of sufficiently large forces, F, the elastomer forms numerous 
cavities (Fig. 1b) (Gent and Lindley, 1959). The metal is much stiffer than the elastomer, and is regarded as a rigid material. The metal 
blocks adhere well to the elastomer, and constrain deformation of the elastomer in transverse directions. Consequently, the longi-
tudinal force F induces a field of triaxial stress in the elastomer. Gent and Lindley (1959) modeled the elastomer as an incompressible 
neoHookean material of shear modulus μ, subject to a hydrostatic tensile stress σ. They identified an elastic instability: a pre-existing 
defect in the elastomer deforms into a cavity of arbitrarily large radius at a critical hydrostatic stress, σc = 2.5μ. They used this elastic 
instability to interpret the onset of cavitation in their experiments. Postmortem examination showed no visible damage in the elas-
tomer below a critical force, but numerous cracks above. In experiments using a transparent elastomer, they observed that the elas-
tomer formed many small spherical cavities. Upon unloading, the cavities became crack-like. In their thinnest specimen (D/H ~ 35), 
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many small cracks distributed throughout the mid-plane of the specimen, with the crack size and spacing comparable to the elastomer 
thickness. 

Why does the elastomer grow numerous small cracks instead of a single large crack? Here we seek to answer this question using an 
idealized model (Fig. 2). We represent the elastomer as an incompressible neoHookean material, containing pre-existing penny-shaped 
cracks much smaller than the thickness of the elastomer. Picture that the cracks form a hexagonal array, so that the deformation of the 
elastomer can be analyzed by a hexagonal unit cell with periodic boundary conditions. To further idealize the model, we approximate 
the hexagonal unit cell by a circular cell of radius B in an axisymmetric model with a single crack of radius C, in an elastomer disk of 
thickness H, bonded between two rigid blocks. Both radii, C and B, are measured in the undeformed state. The diameter of the cell, 2B, 
approximately represents the spacing between adjacent cracks. The radial displacement at the edge of the elastomer disk (R = B) is set 
to zero, mimicking a symmetry boundary condition between adjacent cracks, so that the axisymmetric model approximately accounts 
for the interactions between the neighboring cracks. The rigid blocks are pulled by prescribing a displacement Δ, and we calculate the 
applied force F, the energy release rate G of the crack, and the hydrostatic stress σedge at the edge of the elastomer disk. We find that G 
becomes unbounded at a critical force, so that the crack grows, regardless of the toughness of the elastomer. As the crack radius in-
creases, G decreases, so that the crack arrests. Because the rigid blocks constrain the deformation of the elastomer far away from the 
crack, σedge can be large enough for other cracks to grow. For an elastomer of thickness H, shear modulus μ, and toughness Gc, a 
dimensionless group, Gc/(μH), is identified. A specimen with a large value of Gc/(μH) ruptures by forming numerous small cracks. In 
contrast, a specimen with a small value of Gc/(μH) ruptures by forming a single large crack. 

Previous studies on cavitation in elastomers have been reviewed in several recent papers (Lefevre et al., 2015; Raayai-Ardakani 
et al., 2019a, 2019b; Barney et al., 2020; Kim et al., 2020; Morelle et al., 2021; Kumar and Lopez-Pamies, 2021). The classical 
cavitation theory based on elastic instability predicts that a spherical cavity in an elastomer expands unstably at a critical hydrostatic 
stress proportional to the shear modulus of the elastomer (Gent and Lindley, 1959). This prediction neglects the nucleation stage of 
cavitation and assumes pre-existing defects in the elastomer. In a later paper, Gent (1990) offered a cautionary tale about interpreting 
the observed cavitation purely on the basis of the elastic instability. Because the observed cavities are large compared to typical initial 
defects, some polymer chains must be broken during cavitation. It has long been suggested that cavities grow like cracks in an elas-
tomer (Gent, 1990; Kundu and Crosby, 2009; Lefevre et al., 2015; Poulain et al., 2017; Hutchens et al., 2016; Kang et al., 2017; 
Raayai-Ardakani et al., 2019b). 

More recently, it has been suggested that a cavity grows in an elastomer by distributed scission of polymer chains (Kim et al., 2020; 
Morelle et al., 2021). Here we assume that a cavity grows like a penny-shaped crack, and study the consequence of this assumption. 
Several previous works considered a penny-shaped crack in an infinite body subject to hydrostatic tension (Williams and Schapery, 
1965; Gent and Wang, 1991; Lin and Hui, 2004; Long and Hui, 2010). Because the radius of the crack is the only length in such a model, 
the energy release rate is linear in the radius. For an incompressible neoHookean material, this model predicts that the energy release 
rate of the crack becomes unbounded when the hydrostatic tension approaches a critical value, σc = 2.5μ, which coincides with the 
critical stress for the elastic instability of a spherical cavity. Assuming a constant toughness for the elastomer, the model therefore 
predicts that a pre-existing defect of any size would grow unstably in an infinite body at the critical hydrostatic tension. However, 
experimental observations suggest that the crack growth is stabilized in a thin layer of elastomer constrained between two rigid blocks, 
provided that the ratio D/H is large (Fig. 1) (Gent and Lindley, 1959). The constraint by the two rigid blocks introduces another length 
scale, H, the thickness of the elastomer layer. As noted earlier, this constraint arrests the crack, but still permits high hydrostatic 
tension in the elastomer far away from the crack, causing numerous cracks to grow. Such stable growth of numerous cracks has been 
simulated by a phase field model (Kumar and Lopez-Pamies, 2021). Here we study the phenomenon using a nonlinear elastic fracture 
mechanics approach. 

2. An axisymmetric crack model 

Fig. 2 illustrates the axisymmetric model with a penny-shaped crack. The upper and lower surfaces of the elastomer are tied to the 
rigid blocks that are pulled away from each other, by prescribing a displacement Δ. The elastomer is modeled as an incompressible 
neoHookean material, and geometric nonlinearity is considered for large deformation. For each model with selected values of B/H and 
C/H, a quasi-static finite element analysis is performed using ABAQUS, and the energy release rate of the crack is calculated using the 

Fig. 1. (a) Schematics of an experiment, in which a layer of elastomer of thickness H and diameter D (D >> H) is sandwiched between two rigid 
blocks, pulled by a pair of forces F. (b) Numerous cavities grow like cracks in the elastomer. The spacing between adjacent cavities is approximately 
2B, and one of the cavities is circled as a representative cell for analysis. 
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J-integral method. Axisymmetric second-order elements are used, with quarter-point singular elements at the crack front to mitigate 
the stress singularity. Once Δ/H, B/H, and C/H are specified, the finite element model calculates the normalized applied force F 
/(πB2μ), the normalized energy release rate G/(μH), and the normalized hydrostatic stress at the edge σedge/μ. 

In experiments, even before cavitation, the elastomer deforms inhomogeneously due to the free edge (R = D/2) (Fig. 1). For a thin 
specimen (H << D) and an incompressible neoHookean material, the stress field is nearly uniform in the center region, with the 
magnitude of the hydrostatic stress being twice of the applied force divided by the area of the specimen (Gent and Lindley, 1959). Here, 
the idealized axisymmetric model simulates one representative cavity in the center region, far away from the free edge (B << D). 
Therefore, the normalized force in the axisymmetric model, F/(πB2μ), is approximately twice of the normalized force applied to the 
specimen in corresponding experiments. Moveover, we have chosen to focus on the cases when many small cavities were observed in 
experiments, typically for thin specimens (H << D). In such specimens, the small cavities appeared to be penny-shaped cracks growing 
in the horizontal direction. More complicated crack growth may occur in relatively thick specimens, which cannot be treated in the 
present model. 

3. Initiation of crack growth 

We first study the initiation of crack growth from a pre-existing crack, which is taken to be small compared to the layer thickness, C/ 
H = 0.01. For such a small crack, the normalized force-displacement curve is nearly a step function (Fig. 3). When the normalized force 
is below the critical value for elastic instability, F/(πB2μ) < 2.5, the deformation is small everywhere except for the neighborhood 
around the small crack, as shown by the inset at F/(πB2μ) = 2. Since the elastomer is modeled as an incompressible material, the 
normalized displacement Δ/H is nearly zero when F/(πB2μ) < 2.5. As F/(πB2μ) approaches 2.5, the elastomer around the crack de-
forms substantially, as predicted by the elastic instability, so that the normalized displacement Δ/H increases rapidly at F 
/(πB2μ) ≈ 2.5. As shown by the inset at F/(πB2μ) = 2.5, even with a small applied displacement, Δ/H~0.004, the initially small crack 

Fig. 2. Schematic of an axisymmetric model in the undeformed state, with a penny-shaped crack lying on the middle plane of a layer of elastomer 
sandwiched between two rigid blocks. The two rigid blocks are pulled to a separation displacement Δ. The radial displacement at the edge of the 
elastomer is set to zero, mimicking a symmetry boundary condition between adjacent cracks. In the finite element analysis, only the upper half of 
the elastomer layer is meshed, assuming symmetry for the lower half. 

Fig. 3. Deformation of an elastomer layer containing a small crack (C/H = 0.01). The force-displacement curve is nearly a step function. The insets 
show two states of deformation with contours of displacement amplitude. At F/(πB2μ) = 2, the deformation around the crack is relatively small. At F 
/(πB2μ) = 2.5, the initially small crack deforms into a large cavity. 
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deforms into a large cavity. This large deformation involves no crack growth in the finite element calculation. 
Corresponding to the elastic deformation in Fig. 3, the normalized energy release rate, G/(μH), increases significantly with a small 

increase in the displacement Δ/H (Fig. 4a). We also plot G/(μH) versus the normalized force, F/(πB2μ) (Fig. 4b). The energy release 
rate remains small when F/(πB2μ) < 2.5, but increases dramatically at F/(πB2μ) → 2.5. This result is similar to the energy release rate 
of a penny-shaped crack in an infinite elastomer subject to hydrostatic tension (Lin and Hui, 2004; Kang et al., 2017). As the 
normalized force exceeds 2.5, the finite element calculation is terminated due to numerical divergence, indicative of a singular, un-
bounded energy release rate. By the Griffith criterion for fracture, the crack grows when the energy release rate reaches the material 
toughness, G = Gc. So long as the pre-existing crack is small compared to the elastomer thickness, C/H << 1, the G-F relation is nearly 
a step function. Consequently, the small crack starts to grow when F/(πB2μ) ≈ 2.5. This critical force is dictated by the elastic 
instability of a small defect, and is independent of the toughness Gc. 

4. Crack arrest 

We repeat the finite element calculations for several values of the normalized crack radius C/H, with a fixed value of B/H = 1.5. 
Again, for each C/H, we prescribe the normalized displacement Δ/H, and calculate the normalized force F/(πB2μ), and the normalized 
energy release rate G/(μH). We plot the results as normalized force-displacement curves (Fig. 5a). The solid curves are the force- 
displacement curves when the radius of the crack is fixed at various values. For a small crack, C/H = 0.01, the calculation diverges 
beyond a small displacement, and the force-displacement curve appears like a vertical line, which terminates approximately at the 
critical force of elastic instability, F/(πB2μ) = 2.5. For a larger crack, say C/H = 0.1, the force-displacement curve becomes smooth and 
readily continues beyond the critical force of elastic instability. For a given displacement, the larger the crack radius, the lower the 
force. 

We next consider the growth of the crack. Assume that the crack grows when the energy release rate exceeds a constant value of 
toughness, G ≥ Gc. For a prescribed B/H, we vary C/H and Δ/H to calculate the applied force and energy release rate as functions, 
F(Δ /H,C /H) and G(Δ /H,C /H). Given a toughness Gc, the critical condition for crack growth, G(Δ /H,C /H) = Gc, gives the crack 
radius C/H as a function of Δ/H (Fig. 5b), and a dashed curve on the force-displacement plane (Fig. 5a). This dashed curve is the 
normalized force-displacement curve when the crack grows under the condition G = Gc. For a tough elastomer, Gc /(μH) = 2, as the 
displacement increases, initially the crack grows slightly and the force increases, and then the crack grows more significantly and the 
force decreases. For a brittle elastomer, Gc/(μH) = 0.3, as the displacement increases, the crack grows rapidly upon initiation, and the 
force decreases sharply. The two types of force-displacement curves roughly correspond to the behaviors of brittle and tough elas-
tomers, such as the single-network and double/triple-network elastomers considered by Morelle et al. (2021). 

Recall that the finite element method calculates the function G(Δ /H,C /H) using a model of fixed displacement and crack radius. 
This function is plotted as G-C curves on the plane of energy release rate and crack radius for several values of Δ /H (Fig. 6). Examine a 
G-C curve at a fixed displacement in the two limits of the crack radius. In one limit, C → 0, as noted before, due to the elastic instability, 
any finite displacement leads to an unbounded energy release rate, G → ∞. In the other limit, C → B, the width of elastomer ligament 
ahead of the crack, B − C, is the only relevant length scale in the boundary value problem, so that the energy release rate is linear in B −
C, and thus G → 0. At a fixed displacement, the G-C curve is a monotonically decreasing curve between the two limits. For a small 
displacement, Δ/H = 0.001, the G-C curve is nearly L-shaped: The energy release rate approaches infinity as C/H → 0, and drops 
sharply to almost zero as C/H increases. For a larger displacement, the G-C curve decreases more gently. 

At a fixed displacement, the monotonically decreasing G-C curve ensures the arrest of the crack. For a given toughness, which is 

Fig. 4. Energy release rate of a small crack (C/H = 0.01) in an elastomer layer. (a) The normalized energy release rate increases with the applied 
displacement. (b) The energy release rate is nearly a step function of the applied force, and becomes unbounded at F/(πB2μ) ≈ 2.5. 
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marked as a horizontal dashed line in Fig. 6, the critical condition of crack growth, G = Gc, is met at the intersections between the 
horizontal line and the G-C curves. Each intersection gives the radius C/H of an arrested crack at a fixed displacement Δ /H. The crack 
cannot grow any further because the energy release rate would drop below Gc unless Δ/H increases. The radius of the arrested crack 
increases with Δ/H (Fig. 5b). 

The deformation of the elastomer depends on the radius of the crack and applied displacement (Fig. 7). Snapshots of the deformed 
elastomer are presented at four crack radii and two energy release rates. Marked in each snapshot is the corresponding applied 
displacement. We interpret each column as the snapshots of a crack growing in an elastomer of a constant toughness Gc. At a small 
applied displacement, the crack is small, C/H → 0, and the elastomer is mostly undeformed, except for the highly localized defor-
mation around the crack. As the applied displacement increases, the crack grows, and the entire elastomer deforms substantially. As 
C → B, the ligament ahead of the crack is highly stretched. Because the computational model is axisymmetric, the ligament ahead of 
the crack is stretched into a thin sheet, where the radial stress is nearly zero due to the traction-free crack face. The deformation of the 
ligament is constrained in the circumferential direction, and stretched in the vertical direction. That is, the thin sheet is stretched under 
a plane strain condition, similar to that in a pure shear test. 

Fig. 5. (a) Normalized force-displacement curves. Each solid curve is a force-displacement curve for a crack of a fixed radius. Each dashed curve is a 
force-displacement curve as the crack grows under the condition G = Gc. (b) Normalized radius of an arrested crack for two different values 
of toughness. 

Fig. 6. Normalized G-C curves. For a fixed displacement, the energy release rate decreases monotonically as the crack radius increases. The hor-
izontal dashed line represents a constant toughness. At a given displacement, each G-C curve intersects with the horizontal dashed line at one point, 
which gives the radius of an arrested crack. 
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We compare elastomers of different values of toughness. In a brittle elastomer, Gc/(μH) = 0.3 (Fig. 7, the left column), the crack 
opening profile is close to a parabola, similar to that predicted by linear elasticity. By contrast, in a tough elastomer, Gc /(μH) = 2 
(Fig. 7, the right column), the crack blunts significantly. For a crack arrested at a certain radius, the applied displacement is much 
larger for the tough elastomer than for the brittle elastomer. Correspondingly, the applied force is also higher (see the two dashed 
curves in Fig. 5a for the force-displacement curves). 

Fig. 7. Deformation of elastomer layers containing cracks of various radii. The energy release rate is G/(μH) = 0.3 in the left column, and is G /
(μH) = 2 in the right column. Marked in each snapshot is the corresponding applied displacement. Color contours are for the amplitude of the 
displacement vector. 

Fig. 8. A material bubble chart in the plane of shear modulus and toughness. Each type of material corresponds to a bubble on this plane. The 
dashed lines represent constant values of the material length Gc/μ, varying from ~0.1 nm (brittle, hard materials) to ~10 mm (tough, 
soft materials). 
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The normalized toughness, Gc/(μH), is a ratio between two lengths: a material length Gc/μ and the elastomer thickness H. Similar 
material lengths have been identified before (e.g., Creton and Ciccotti, 2016). We show various materials on a plane of shear modulus 
and toughness (Fig. 8). On this plane, a constant value of the material length Gc/μ corresponds to a dashed line with a constant slope of 
1. Depending on the materials, the length Gc/μ vary by many orders of magnitude, from 10− 10 to 10− 2 m. The material length is small 
for a brittle and stiff material, but large for a tough and soft material. For example, the material length Gc/μ is ~10 mm for natural 
rubber, and is ~0.1 mm for silicone. In comparison, the material length Gc/μ is less than 1 nm for silica glass, and is ~1 μm for a steel. 

Due to the presence of the material length Gc/μ, which is fairly large for elastomers, the behavior of the elastomer layer is size 
dependent. Here we focus on situations in which the diameter of the specimen is much larger than the thickness, D >> H, so that the 
thickness of the elastomer, H, is the only relevant length other than the material length. If the thickness is small compared to the 
material length, H < Gc/μ, the thin elastomer layer behaves like a tough material, for which the applied force can exceed the critical 
value for elastic instability, F/(πB2μ) = 2.5. However, if the thickness is larger than the material length, H > Gc/μ, the elastomer layer 
behaves like a brittle material, with a peak force close to the critical value for elastic instability followed by a sharp drop of the force 
upon crack growth. The two types of force-displacement responses are illustrated by the two dashed lines in Fig. 5a for Gc /(μH) = 2 
and 0.3, respectively. 

In the experiments of Gent and Lindley (1959), a natural rubber was used. Assuming representative values for the rubber, μ ∼ 0.5 
MPa and Gc ∼ 104 J/m2, the material length is Gc/μ ~ 2 cm, which is much larger than the thickness of the thin specimens (< 1 mm) in 
their experiments. In a recent work by Guo and Ravi-Chandar (2022), a silicone was used in similar cavitation experiments. Assuming 
the shear modulus of the silicone is similar (~0.5 MPa), but the toughness is lower (~100 J/m2), the material length in this case is Gc /μ 
~ 0.2 mm, which is smaller than the specimen thickness (~0.6 mm). The two sets of experiments reported apparently different 
force-displacement curves, resembling the tough and brittle responses, respectively. 

Fig. 9. Normalized hydrostatic stress at the edge of the axisymmetric model with different values of B/H. (a-d): B/H = 1, 1.5, 2.5, and 5. The solid 
lines are for fixed crack radii C/H, and the dashed lines are for constant energy release rates (G = Gc). 
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5. Crack spacing 

The arrest of cracks makes it possible to have numerous small cracks in a thin elastomer layer (D >> H). Each crack relaxes the 
hydrostatic tension in a region around it, where other cracks cannot grow. When an existing crack arrests, far away from the crack, the 
hydrostatic tension is unrelaxed, so that new cracks can grow. In the axisymmetric model (Fig. 2), the spacing between adjacent cracks 
is represented approximately by the diameter 2B. If B/H is large, the hydrostatic stress at the edge (R = B) may exceed the critical stress 
(σc = 2.5μ), so that additional cracks may grow, reducing the crack spacing until the hydrostatic stress between the adjacent cracks is 
below the critical stress. Note that the value of B/H has negligible effect on the initiation of crack growth as long as the pre-existing 
crack is small (C << H, B). 

The hydrostatic stress at the edge maximizes at the midplane, where we assume that new cracks will form if the critical hydrostatic 
stress is reached. The intersection between the edge and the midplane is in a state of triaxial stress of unequal components. Here, we 
assume that the critical condition for the formation of a new cavity is that the hydrostatic stress reaches 2.5μ. We will not consider the 
effect of triaxiality due to the unequal stress components (Long and Hui, 2010). We calculate the hydrostatic stress at the edge of the 
axisymmetric model as a function of the applied displacement Δ/H, for various values of C/H and four values of B/H (Fig. 9). For each 
pair of C/H and B/H, the hydrostatic stress σedge increases with the applied displacement and reaches the critical stress (σc = 2.5μ) at a 
particular displacement Δ/H. At a constant displacement, the edge stress decreases with increasing crack radius. Also plotted on the 
same diagrams are contours of constant energy release rate (dashed curves), each corresponding to the case of a growing crack with a 
constant toughness (G = Gc). The dashed curve is generally not monotonic with the applied displacement, due to the simultaneously 
increasing crack radius that tends to decrease the edge stress. An intersection between a solid curve and a dashed curve represents an 
arrested crack. When the crack arrests, if the edge stress exceeds the critical stress, σedge > σc, we assume that a new crack will nucleate 
and grow in between of the existing cracks. For example, consider the two dashed contours for the model of B/H = 1.5 (Fig. 9b). The 
contour of Gc/(μH) = 0.3 intersects with the solid curves of various crack radii, all with the edge stress below the critical stress, σedge 

< σc, so that no new crack can form, and the spacing between the arrested cracks can be larger but not smaller than 2B/H = 3. By 
contrast, the contour of Gc/(μH) = 2 intersects with the solid curves of various crack radii, with some intersections above the critical 
stress, σedge > σc, so that new cracks can form, and the spacing between the arrested cracks can be smaller but not larger than 2B/H = 3. 

Now consider all four panels in Fig. 9, corresponding to four values of B/H. For Gc/(μH) = 0.3, the edge stress drops below the 
critical stress (σc = 2.5μ) upon crack growth for B/H = 1, 1.5 and 2.5, but rises up to above the critical stress for B/H = 5. In this case, 
the spacing between arrested cracks should be 5 < 2B/H < 10. For Gc/(μH) = 2, the edge stress exceeds the critical stress for B/H =
1.5, 2.5 and 5, but remains below the critical stress for B/H = 1. In this case, the spacing between arrested cracks should be 2 < 2B/H <
3. Therefore, the crack spacing (~2B/H) decreases as the normalized toughness Gc/(μH) increases, and a specimen with a large value of 
Gc/(μH) ruptures by forming numerous small cracks with small spacing in between. 

Moreover, the crack spacing depends on the applied displacement. As illustrated in Fig. 9(d) for B/H = 5 and Gc /(μH) = 0.3, the edge 
stress is below the critical stress when the applied displacement is small, but exceeds the critical stress when the applied displacement is 
large. Thus, the spacing between arrested cracks, 2B/H, can be greater than 10 at a small displacement, but becomes less than 10 as the 
applied displacement increases, with additional crack formation between the existing cracks. For B/H = 1 and Gc/(μH) = 0.3 or 2 
(Fig. 9a), the edge stress remains below the critical stress for much larger applied displacements, Δ/H up to 0.5. Further increasing the 
displacement would lead to even larger crack radius, with the crack front approaching the edge (C → B), but the hydrostatic stress at the 
edge would remain below the critical stress. Consequently, the spacing between arrested cracks would not decrease further. 

6. Concluding remarks 

This paper studies why a thin layer of elastomer pulled by two rigid blocks grows numerous cracks using an idealized model. The 
model qualitatively answers the question, but quantitative comparison with experiments is challenging. The idealized model neglects 
several effects. First, the strain stiffening of the elastomer could suppress the elastic instability and thus delay the initiation of crack 
growth. Second, the surface energy γ introduces a material-specific length, γ/μ, which influences the nucleation and growth of small 
cavities (Gent and Tompkins, 1969; Kundu and Crosby, 2009). Third, the resistance to crack growth is typically not a constant, but 
increases with the crack growth (Thomas, 1958). The crack resistance curve (i.e., the energy release rate as a function of crack growth) 
defines yet another material-specific length. Fourth, the ratio between the toughness and the work of fracture, Gc /Wf , also defines a 
material-specific length (Yang et al., 2019; Kim et al., 2020). Thus, the idealized model in this study is valid in the limit when the 
elastomer deviates from the neoHookean material only at a large stretch, and when the initial crack radius is larger than the three 
material-specific lengths identified above. Moreover, the idealized model does not take into account the effect of loading rate, which 
could be important in experiments because many elastomers are viscoelastic. 

In summary, we analyze an axisymmetric model of a finite radius, in which the elastomer contains a penny-shaped crack. The 
elastomer is taken to be an incompressible, neoHookean material. For a given applied displacement, we calculate the applied force, the 
energy release rate, and the hydrostatic stress at the edge of the elastomer. These results allow us to discuss initiation, growth, and 
arrest of the crack. The arrest of the crack makes it possible to have numerous cracks in a thin elastomer layer. The model also estimates 
the spacing between the cracks, which depends on the fracture toughness of the elastomer and the applied displacement. New cracks 
initiate if the hydrostatic stress at the edge of the elastomer exceeds a critical stress dictated by elastic instability. For an elastomer of 
thickness H, shear modulus μ, and toughness Gc, the elastomer layer grows numerous small cracks when the dimensionless parameter 
Gc/(μH) is large. This prediction is qualitatively consistent with experiments. 
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