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A B S T R A C T   

Cohesive zone models are often used in analyses of interfacial fracture where the damage process zones are 
relatively large and can be described by proper traction-separation relations. Successful implementation of the 
cohesive zone modeling depends upon the veracity of the interfacial traction-separation relations used to 
represent the interactions across the interface. To extract the generally mixed-mode traction-separation relations 
experimentally, we compare various loading conditions for simultaneous extraction of the normal and shear 
interactions using laminated beam specimens subjected to asymmetric end loading. We develop a mixed-mode 
double cantilever beam model with linear normal and shear interactions between the contact surfaces of the 
beams. Four different loading conditions are considered by controlling the end forces, end displacements, end 
moments, or end rotations. The model is validated by finite element simulations. Rotation control is found to be 
the optimal loading configuration, based on a condition number that reflects desirable experimental charac-
teristics for extracting the traction-separation relations. By applying uneven end rotations, the whole range of 
mode-mix with combined normal and shear interactions can be extracted, while ensuring stable crack growth.   

1. Introduction 

The idea of cohesive zone modelling was first introduced by Bare-
nblatt (1959, 1962) and Dugdale (1960) to overcome the well-known 
crack tip singularity in linear elastic fracture mechanics. Later, various 
phenomena such as van der Waals interactions, capillary forces, crazing, 
delamination of fiber reinforced composites, and adhesion were 
modelled by this approach, effectively smearing all micromechanical 
effects into a constitutive relation for interfaces (Sørensen and Jacobsen, 
1998). All these phenomena provide a mechanism for increasing the 
resistance to fracture prior to steady state crack growth, when the 
cohesive zone is fully developed. If the cohesive zone is small compared 
to other length scales (beam height, crack length, etc.), so-called small- 
scale bridging applies, the concepts of linearly elastic fracture mechanics 
then pertain and fracture toughness as a material property is suitable for 
reliability predictions of cracked structural elements. Conversely, large- 
scale bridging (Bao & Suo, 1992) requires the form of the interaction to 
be known, and characterizing the traction-separation response becomes 
critical, which can explain the variance of the fracture resistance curves 
with geometry (Hutchinson & Suo, 1991) and does not require the 
presence of a pre-existing flaw (Mohammed and Liechti, 2000). 

Application of such a cohesive zone-based approach for modeling the 
response of structures is only as good as the input traction-separation 
relations. Double cantilever beam specimens are an effective tool to 
measure mode I (Sørensen and Jacobsen, 1998; Gowrishankar et al., 
2012) as well as mixed-mode traction separation relations (Sorensen and 
Kirkegaard, 2006; Sørensen and Jacobsen, 2009; Yang et al., 2022). The 
double cantilever beam specimen, when loaded symmetrically, pro-
duces mode I fracture, while mixed-mode fracture may be realized by 
either applying uneven bending moments (Sørensen et al., 1996; Sor-
ensen and Jacobsen, 2003; Sørensen and Jacobsen, 2009; Sorensen and 
Kirkegaard, 2006; Pappas and Botsis, 2020), uneven end loads (Singh 
et al., 2010) or by using a geometric asymmetry (Wu et al. 2019). In 
general, the cohesive relations are coupled, i.e.σ = σ(δn, δt) and τ = τ(δn,

δt), where σ, τ are the normal and shear cohesive tractions, respectively, 
in the process zone, and δn, δt are the relative normal and shear dis-
placements between the crack faces (Sørensen and Jacobsen, 2009). In a 
recent work (Wu et al., 2019), it was shown that the extraction of 
traction-separation relations can be decoupled if the arms of the lami-
nated beam followed what was termed a ‘balance condition’. If the arms 
are made of the same material, the geometry of the arms should be the 
same in order to follow this balance condition. Following the 
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developments by Kanninen (1973), such a process zone has been clas-
sically represented by a beam on elastic foundation model. Williams and 
Hadavinia (2002) have obtained implicit analytical results for various 
commonly used traction-separation relations. In more recent work (Wu 
et al., 2019; Yang et al., 2022), the beam on elastic foundation model 
was extended to include an effective elastic foundation in the shear di-
rection as well, which is essential if one is interested in studying mixed- 
mode interactions. The price to pay for explicit expressions was that the 
authors could only consider a simple cohesive law, i.e., a linear response 
to complete separation without damage evolution, and we will adopt a 
similar approach. 

Another issue regarding the use of double cantilever beam tests to 
extract the traction-separation relations is the proper choice of the mode 
of loading and its control. For example, in any delamination experiment, 
a decision has to be made as to prescribing the moment or end rotation 
(or load vs. end displacement). In experiments where rate effects are 
being considered, the rate of change of moment or end rotation is usu-
ally prescribed for moment or rotation control. Consider a ramp loading, 
where the end rotation of both beams varies linearly with time (possibly 
with different proportionality constants). In this case until the crack 
grows, moments in both arms will also vary linearly. When the crack 
starts growing, the moments will start varying non linearly (may in-
crease or decrease depending on the mode-mix). A moment-controlled 
ramp loading elicits the same response as a rotation-controlled loading 
up to the crack growth phase. However, once the crack growth initiates, 
the prescribed moments continue to vary linearly with time and the 
rotation will vary nonlinearly (again may increase or decrease 
depending on the mode-mix). 

Moment control is known to provide self-similar profiles of the 
cohesive zone as the crack propagates, and the energy release rates are 
independent of the form of the cohesive law at the interface (Bao & Suo, 
1992; Suo et al., 1992). While this might seem very attractive, this 
configuration is more difficult to realize experimentally as moment ac-
tuators are generally rotation-controlled devices and a feedback system 
must be added for moment control (Saseendran et al., 2015). Another 
potential problem with the moment-controlled loading is that, at best, it 
provides neutral crack stability, as the energy release rates do not 
depend on the crack length. However, if the moments are being 
increased linearly, crack growth in a brittle system will be unstable as 
the energy release rate exceeds the toughness. Interfaces with some 
resistance to fracture may initially engage in stable crack growth but will 
become unstable when the loading curve becomes tangential to the 
resistance cure. Most of the traction-separation relation data that has 
been obtained from experiments conducted under rotation control 
(Pappas and Botsis, 2020), which is an inherently stable loading 
configuration under ramp loading. In the case of the uneven moment 
control device developed and used by Sorensen’s group (Sørensen et al., 
1996; Sorensen and Jacobsen, 2003; Sørensen and Jacobsen, 2009; 
Sorensen and Kirkegaard, 2006), the wire and pulley arrangement that is 
used to ensure equal forces in each loading arm are quite compliant, 
bringing the loading closer to moment controlled loading while retain-
ing sufficient rotation control to ensure crack growth stability. 

From a stability standpoint, displacement-controlled loading (Wu 
et al., 2019; Yang et al., 2022) has recently been explored. However, 
some crack growth must be allowed in order to capture the full extent of 
the traction-separation relations in normal and shear directions, if both 
are to be extracted simultaneously. It was noted (Yang et al., 2022) that 
when a crack is allowed to propagate under uneven end displacements, 
the mode-mix phase angle changes rapidly as the resistance behavior 
develops. Therefore, the extracted properties beyond stiffness and 
strength may not be a reliable indicator of the mode-mix at which the 
experiment was initiated. By contrast, the mode-mix under load-control 
does not vary with crack length, but crack stability is a concern. 

The aim of this paper is to use a beam on elastic foundation model 
that incorporates linear normal and shear interactions with finite 
strengths, in the absence of any damage development in order to 

compare responses of different loading conditions (Section 3). At this 
point it should be noted that the aim of the current paper is not to 
propose a novel predictive method, as the cohesive laws employed are 
rather simple. We do, however, aim to derive some simple and explicit 
relations that can be used in order to ascertain the best loading method 
to simultaneously extract mixed-mode cohesive laws experimentally. In 
essence, this paper addresses the design of experiments for simulta-
neously extracting the normal and tangential components of traction- 
separation relations required for cohesive zone modeling. However, 
we shall see that the current model gives reasonable predictive capa-
bility when compared to a finite element implementation of a more 
practical cohesive law. Since stable crack propagation is preferred, we 
will focus mostly on the displacement and rotation-controlled loading 
configurations. The elastic foundation model provides (mostly) explicit 
expressions, from which some of the features we have just discussed can 
be quantified. By implementing a mixed-mode failure criterion, crack 
growth has also been accounted for (Section 4) and features of the 
different loading conditions are contrasted. We then show that our 
model, which is based on Euler-Bernoulli beam theory, provides results 
that are very close to those produced by finite element simulations that 
do incorporate damage. The extent of applicability of our model, which 
has no damage, is then explored by comparison with numerical simu-
lations. Some other, more practical aspects of the various loading con-
ditions are also discussed (Section 5), where we propose a unifying 
parameter for ranking different loading configurations. This parameter 
allows for an optimum selection of loading configuration for a given 
requirement. In particular, knowing an expected order of magnitude of 
the interface strength, initial crack length and required mode-mix, one 
can ascertain if an end displacement loading condition would suffice, or 
if end rotation control is required. This result is valid as long as the 
mentioned quantities are readily available. Conclusions are drawn in 
Section 6 and we now begin (Section 2) by establishing some baselines 
from linearly elastic fracture mechanics concepts. 

2. Problem statement 

This section sets up the problem of the analysis of isotropic laminated 
beams under various loading conditions. The interacting beams can 
either be considered to be perfectly bonded (Appendix 1), or joined 
through a traction-separation law (Section 3). 

As shown in Fig. 1, the laminated beam specimen consists of two 
beams of identical length (L) and thickness (h), interacting over a length 
L − a, with a crack of length a. The specimen is clamped at the left end 
and subjected to one of the following asymmetric loadings on the right 
end:  

(a) Load control: lateral forces (P1 and P2) 

Fig. 1. Laminated beam specimens subjected to asymmetric end loading: (a) 
end forces or displacements; (b) end moments or rotation. The yellow region is 
where interactions between beams occur. 
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(b) Displacement control: lateral displacements (Δ1 and Δ2)  
(c) Moment control: bending moments (M 1 and M 2)  
(d) Rotation control: angles of rotation (Θ1 and Θ2) 

For convenience, we set x = 0 at the crack tip. The beams are not 
interacting in the cracked region, x ∈ (0, a), while for x ∈ ( − (L − a),0 ), 
the beams are assumed to be perfectly bonded in the linearly elastic 
fracture mechanics analyses, but they interact with traction-separation 
relations in the cohesive zone model (Section 3). For convenience, let 
s = L − a hereafter. 

3. Mixed-mode interactions 

Assuming perfect bonding between the beams in the non-cracked 
region leads to the realm of LEFM, where standard results have been 
found (Appendix 1). We relax this and introduce the possibility of linear 
interactions in tension and shear in the bonded region, 
x ∈ ( − (L − a),0 ). For the time being, we assume that the crack does not 
grow. Crack growth is considered in Section 4 after introducing a mixed- 
mode fracture criterion. 

3.1. Governing equations 

A beam on elastic foundation model was presented previously 
(Gowrishankar et al., 2012) for normal interactions only, which was 
then extended to include both the normal and shear interactions at the 
interface (Yang et al., 2022). The results from the latter are included in 
the Appendix for convenience and reference. The previous analyses 
focused on the cases of load/displacement-controlled conditions, up to 
the point of crack growth initiation. Here we extend the model to 
consider the cases of moment/rotation control including crack growth. 

As shown in Fig. 2, we assume that the tractions at the interface 
between the two beams are linearly related to the respective separations, 
namely 

σ = knδn, (1)  

τ = ktδt, (2)  

where δn and δt are the relative normal and shear displacements across 
the interface, kn and kt are the corresponding spring constants for the 
normal and shear interactions, respectively. 

We assume that the two beams are made of the same material so that 

the axial force and bending moments are 

Ni = A
dui0

dx
, Mi = D

d2wi

dx2 , (3)  

where, for each beam (i = 1,2), Ni and ui0 are the axial force and axial 
centerline displacement, Mi and wi are the bending moment and 
deflection, A = Ebh and D = Ebh3

12 are the axial and bending stiffness, 
respectively. Considering an infinitesimal element for each beam as 
shown in Fig. 2, force and moment equilibrium requires that 

dN1

dx
= bτ, dN2

dx
= − bτ, (4)  

dQ1

dx
= − bσ, dQ2

dx
= bσ, (5)  

dM1

dx
= Q1 +

1
2

hbτ, dM2

dx
= Q2 +

1
2

hbτ, (6)  

where Qi is the shear force acting on each beam element. 
Following Wu et al. (2019), the relative normal and shear displace-

ments across the interface are: δn = w1 − w2 and δt = u1b − u2t, where u1b 
and u2t represent the tangential displacements at the bottom surface of 
the upper beam and at the top surface of the lower beam, respectively. 
Assuming the deformation kinematics of the classical Euler beam theory, 
we have 

δt = u10 − u20 +
h
2

dw1

dx
+

h
2

dw2

dx
. (7) 

When end forces/displacements are applied (Fig. 1a), the governing 
equations for the relative displacements are obtained (Yang et al., 2022) 
as: 

Eh3

24
d4δn

dx4 = − σ, (8)  

Eh
8

d2δt

dx2 = τ − 3(P1 + P2)

4bh
. (9)  

When end moments or rotations are applied (Fig. 1b), the governing 
equations for the relative displacements are the same except that P1 =

P2 = 0 on the right-hand side of Eq. (9). 

3.2. Moment and rotation control 

Consider the case with applied end moments (Fig. 1b). By the prin-
ciple of superposition (Fig. 3), we solve the governing equations for the 
two parts separately. First, for the case of symmetric loading (mode I), 
τ = 0 and δt = 0 along the interface, and we solve Eq. (8) for the normal 
traction and separation. For the bonded part with x ∈ ( − s, 0), Eq. (8) 
becomes 

d4δn

dx4 − 4λ4
nδn = 0, (10)  

where λn =
(

6kn
Eh3

)1/4 
due to the normal interactions. For the fractured 

part, x ∈ (0, a) and d
4δn

dx4 = 0. In this paper, we assume αd = α1 − α2
2 and αs =

α1+α2
2 , where α is any loading parameter, such that Md = M1 − M2

2 and Ms =
M1+M2

2 . 
The boundary conditions include: (1) δ′′′n (a) = 0 and Dδ′′n(a) = 2Md at 

the loading end; (2) δn( − s) = 0 and δ′

n( − s) = 0 at the clamped end; (3) 
the continuity conditions at the crack tip (x = 0). For simplicity, we 
assume that exp(− λns)→0. We are thus able to obtain δn as a function of x 
along both parts of the interface, and the complete solution is provided 
in Appendix 2. The rotation and opening deflection at the loading end 
(x = a) are Fig. 2. Free body diagrams of differential beam elements (Wu et al., 2019).  
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Θd =
12a

Ebh3

(

1 +
1

λna

)

Md, (11)  

Δd =
12a2

Ebh3

(

1 +
1

λna

)2

Md. (12) 

The opening displacement at the crack tip (x = 0) is obtained as 

δ*
n =

12
Ebh3λ2

n
Md. (13) 

For the case of pure Mode II loading, σ = 0 and δn = 0 along the 
interface, and we solve Eq. (9) for the shear traction and tangential 
separation. For the bonded part, x ∈ ( − s, 0), Eq. (9) becomes 

δ’’
t − λ2

t δt = 0, (14)  

where λt =
̅̅̅̅̅
8kt
Eh

√
due to the shear interaction. For the fractured part, x ∈

(0, a) and δ′′t = 0. 
The boundary conditions include: (1) δt

′(a) = h
DMs at the loading end; 

(2) δt( − s) = 0 at the clamped end; (3) the continuity conditions at the 
crack tip (x = 0). The first boundary condition is derived from Eq. (7) by 
taking the derivative with respect to x, evaluating at x = a, and noting 
that there is no axial force at the free end (Eq. (3). Again, we assume that 
exp(− λts)→0 and obtain δt in both parts of the interface. The tangential 
separation at the crack tip (x = 0) is: 

δ*
t =

12
Ebh2λt

Ms (15)  

and the tangential separation at the loading end is: 

Δs =
12aMs

Ebh2

(

1+
1

λta

)

. (16) 

It can also be shown (Appendix 2) that the end rotations can be 
expressed as 

Θs =
3a

Ebh3

(

3+
3

λta
+

L
a

)

Ms. (17) 

With the crack-tip displacements in Eq. (13) and Eq. (15), we obtain 
the two components of the J-integral from the corresponding areas 
under the assumed traction-separation curves as 

J1 =
1
2
knδ*

n
2
=

12M2
d

Eb2h3
, (18)  

J2 =
1
2
ktδ*

t
2
=

9M2
s

Eb2h3
, (19)  

which are identical to the LEFM solutions in Eqs. (A9) and (A10). 
Interestingly, unlike the end force/displacement loading case, the 
components of the J-integrals are independent of the interaction stiff-
ness (kn,kt). This is true in general for a double cantilever beam under 
moment loading (Suo et al. 1992). Moreover, the J-integral does not 
depend on the crack length, a, and the mode-mix as given by Eq. (A11) 
does not change as the crack grows when the beams are loaded under 
pure moments. However, for rotation control, the moments (Md, Ms) 
have to be related to the end rotations (Θd,Θs), and the relations as in 
Eqs. (11) and (17) depend on the crack length and the interaction 
stiffness (kn,kt). Accordingly, the J-integral components in Eqs. (18) and 

(19) can be written as functions of the applied end rotations for the case 
of rotation control, which depends on the crack length and (kn, kt). 
Correspondingly, the nominal phase angle (distinguished from the local 

one introduced in Section 4.1) of mode-mix, ψ =
̅̅̅̅
J2
J1

√
is: 

ψΘ = tan− 1

⎛

⎜
⎜
⎝

2
̅̅̅
3

√ (
1 + 1

λna

)

(
3 + 3

λt a
+ L

a

)
Θ1 + Θ2

Θ1 − Θ2

⎞

⎟
⎟
⎠, (20)  

which recovers Eq. (A14) for infinitely stiff interactions (λna,λta≫1) and 
the absence of the overbar (Appendix 1) distinguishes the linear inter-
action result from the rigid one. 

3.3. Force and displacement control 

In a recent study (Yang et al., 2022), mixed-mode fracture experi-
ments were conducted using the laminated beam specimens with a dual 
actuator loading device for the displacement control. We can use the 
same governing equations as we used for the moment control case, albeit 
with different boundary conditions to obtain the reaction forces at the 
loading end as a function of the applied displacements (Yang et al., 
2022) as: 

Pd =
Ebh3

4a3

(

1 +
3

λna
+

3
(λna)2 +

3
2(λna)3

)− 1

Δd, (21)  

Ps =
Ebh3λ3

t

λ3
t

(
L3 + 3a3

)
+ 9λ2

t a2 + 9λtL + 9λta − 9
Δs, (22)  

where Pd = P1 − P2
2 , Ps = P1+P2

2 , Δd = Δ1 − Δ2
2 , Δs = Δ1+Δ2

2 . It can be shown 
that Eqs. (21) and (22) recover Eqs. (A5) and (A6) at the limiting case 
when kn,kt→∞. 

Correspondingly, the normal and tangential separations at the crack 
tip are obtained as: 

δ*
n =

Pd

Dλ3
n
(λna + 1), (23)  

δ*
t =

hPs

Dλ2
t
(λta + 1). (24) 

The normal and shear tractions at the crack tip are linearly propor-
tional to the respective crack-tip displacement components. Then, the 
normal and shear components of J-integral are obtained as: 

J1 =
P2

d

bDλ2
n
(1 + λna)2

, (25)  

J2 =
3P2

s

4bDλ2
t
(1 + λta)2

. (26) 

With Eqs. (25–26), the phase angle of the mode-mix can be defined 
based on the components of the J-integral as 

ψΔ = tan− 1

(
Δs

Δd

( ̅̅̅
3

√
λ2

t a2(λta + 1)
3(λta + 1)3

+ λ3
t L3 + 9λtL − 12

)(
2(λna + 1)3

+ 1
(λna)2

(λna + 1)

))

.

(27) 

Fig. 3. Principle of superposition.  
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Again, it can be shown that, in the limiting case when kn,kt→∞, Eqs. 
(25–26) recover the energy release rates in Eqs. (A2-A3), and Eq. (27) 
recovers the phase angle in Eq. (A7) under the displacement control. 

4. Crack growth analysis 

In this section, we consider the strength and toughness of the in-
teractions between the beams. This is first accomplished by extending 
the Griffith criterion to mixed-mode fracture and to account for the 
linear traction-separation relations. In order to maintain the analytical 
nature of the analysis, the normal and shear interactions are assumed to 
be linear up to the onset of crack growth, with no softening due to 
damage evolution. The effect of damage evolution is examined later via 
a finite element analysis with bilinear traction separation relations. 

4.1. Toughness and strength 

In LEFM, the onset of crack growth can be predicted by the Griffith 
criterion, namely, when the energy release rate reaches the fracture 
toughness. For mixed-mode fracture of an interface, the fracture 
toughness depends on mode-mix (Cao and Evans, 1989; Chai and 
Liechti, 1992; Wang and Suo, 1990). In terms of the normal and shear 
components of the J-integral, the critical condition for mixed-mode 
fracture can be written as 
(

J1

Γ1

)m

+

(
J2

Γ2

)n

= 1, (28)  

where Γ1 and Γ2 are the fracture toughness under purely mode I and 
mode II conditions, respectively. For simplicity, we take m = n = 1 so 
that the critical energy release rate can be obtained as a function of the 
phase angle of mode-mix as: 

Jc = J1c + J2c = Γ1

⎛

⎝ 1 + (tanψ)2

1 + Γ1
Γ2
(tanψ)2

⎞

⎠, (29)  

which is shown in Fig. 4. Similar expressions for the mixed-mode frac-
ture toughness have been suggested by others (see Hutchinson and Suo, 
1991). Typically, the fracture toughness increases with the phase angle 
of mode-mix. 

Assuming linear traction-separation relations for the mixed-mode 
interactions, the strength of the interface can be defined as the 
maximum normal and shear tractions, which are related to the normal 
and shear components of the J-integral as follows: 

σc =
̅̅̅̅̅̅̅̅̅̅̅̅
2knJ1c

√
=

σc0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + Γ1
Γ2
(tanψ)2

√ , (30)  

τc =
̅̅̅̅̅̅̅̅̅̅̅̅
2ktJ2c

√
=

τc0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + Γ2
Γ1
(cotψ)2

√ , (31)  

where σc0 =
̅̅̅̅̅̅̅̅̅̅̅̅̅
2knΓ1

√
is the normal/tensile strength under the pure 

mode-I condition and τc0 =
̅̅̅̅̅̅̅̅̅̅̅̅
2ktΓ2

√
is the shear strength under the pure 

mode-II condition. Under generally mixed-mode conditions, both the 
tensile and shear strengths, σc and τc, depend on the mode-mix (Fig. 5). 
Alternatively, we write 

σ2
c

σ2
c0
+

τ2
c

τ2
c0
= 1, (32)  

which may be represented by an elliptical failure envelope in a panel 
spanning the tensile and shear tractions. A local mode-mix may be 
defined by the ratio between the shear and tensile tractions, ψ local =

tan− 1(τ/σ), which may vary along the interface. The local mode-mix at 
the crack tip is related to the mode-mix defined by the components of the 
energy release rate or J-integral as: 

tanψlocal =

̅̅̅̅̅̅̅̅̅

ktJ2

knJ1

√

=

̅̅̅̅̅

kt

kn

√

tanψ . (33) 

If kt = kn, the local mode-mix at the crack tip is identical to the global 
mode-mix defined by the components of the energy release rate or J- 
integral. We will use the global definition of the mode-mix angle in this 
manuscript, unless otherwise stated. With these preliminaries, the 
growth of cracks under rotation and displacement control are now 
predicted based on the crack growth criterion in Eq. (28) with m = n =

1. 

4.2. Crack growth under rotation control 

It has been mentioned that, in the moment-controlled case, the J- 
integral and its components are independent of the crack length. This 
means that the fracture criterion (Eq. (28) is satisfied when the applied 
moments reach the critical values, and it remains satisfied as the crack 
grows. Consequently, the crack growth continues under the same 
applied moments. In contrast, under rotation control, the J-integral and 
its components decrease as the crack grows. As a result, the crack growth 
initiates when the applied end rotations reach the critical values, but the 
crack arrests and continues to grow stably as the applied end rotations 
increase. 

Combining Eqs. (11), (17)–(19), (28), we obtain that 

Θ2
d

Γ1

(
a + 1

λn

)2 +
3Θ2

s

4Γ2

(
3a
4 + 3

4λt
+ L

4

)2 =
12

Eh3
. (34) 

Let us assume a radial loading path, such that Θ2 = pΘ1. In this case, 
Eq. (34) can be re-written as 

Θ2
1(1 − p)2

4Γ1

(
a + 1

λn

)2 +
3Θ2

1(1 + p)2

16Γ2

(
3a
4 + 3

4λt
+ L

4

)2 =
12

Eh3
. (35) 

Under these conventions, p = − 1 corresponds to pure mode I, 
whereas p =+1 corresponds to pure mode II loading. The critical angle 
applied to the upper beam at any given crack length is then 

Θ1c =

(

a +
1
λn

) ̅̅̅̅̅̅̅̅̅̅
12Γ1

Eh3

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4
/
(1 − p)2

1 + kp

√

, (36)  

where k = 3
4

Γ1
Γ2

(a+ 1
λn)

2

(
3a
4 +

3
4λt

+L
4

)2
(1+p)2

(1− p)2 and the critical angle clearly increases 

Fig. 4. Variation of toughness with mode-mix.  
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with the crack length a. Thus, the applied end rotations required for 
further crack growth increase with the crack length, and the corre-
sponding moment-rotation response becomes nonlinear. 

With equation (36), we can solve for the crack length as a function of 
the applied end rotation angles. As the crack length increases, the mode- 
mix changes slightly (Eq. (20), and the changing reactive moments can 
be determined from Eqs. (11) and (17). 

4.3. Crack growth under displacement control 

Given the end displacements or forces, the change in crack length can 
be determined with the same fracture criterion along with Eqs. (21), 
(22), (25) and (26). For the case of load-controlled loading, we obtain 

12(Pda)2

Eb2h3Γ1

(

1 +
1

λna

)2

+
9(Psa)2

Eb2h3Γ2

(

1 +
1

λta

)2

= 1, (37)  

which leads to a decreasing crack length as the applied forces increase. 
This is a consequence of unstable crack growth under load control, 
where the J-integral increases as the crack length increases. 

For the case of displacement-controlled loading, we obtain 

(Δ1 − Δ2)
2 3Eh3

4a4Γ1

(
(λna)2

(1 + λna)
2(λna + 1)3

+ 1

)2

+ (Δ1 + Δ2)
2 9Eh3

4a4Γ2

(
λ2

t a2(1 + λta)
λ3

t

(
L3 + 3a3

)
+ 9λ2

t a2 + 9λtL + 9λta − 9

)2

= 1, (38)  

which can be solved to find the crack length as a function of the applied 
end displacements. In this case the crack growth is also stable, as the 
crack length increases with increasing end displacements. 

Once the crack length is determined, the responses at the loading 
ends as well as the J-integral components can be determined in the same 
manner as for the linear responses. Note that in the displacement- 
controlled case, an explicit expression for the critical displacement as 
a function of the crack length is very cumbersome, but possible. 

4.4. Finite element analysis 

A finite element analysis of mixed-mode crack growth was conducted 
using ABAQUS. In this case, damage evolution was included in the 
mixed-mode interactions between the beams using bilinear traction- 
separation relations. In order to allow for comparison with the analyt-
ical results obtained from the linear traction-separation relations, we use 
the same initial stiffness values (both normal and tangential) of the 
linear (TSR1) and bilinear traction-separation relations (TSR2), (kn,kt), 
and the same toughness values of the mode I and mode II interactions, 
(Γ1, Γ2). As a result, the strengths were reduced in the bilinear in-

teractions and the ranges of separation were extended with softening 
(Fig. 6). For this comparison, TSR1 is fixed while the effect of softening is 
studied by varying TSR2. Let δc be the range of the interaction for TSR2 
and δ0 be its separation at the maximum traction, σ0 = kδ0. The corre-
sponding fracture toughness is Γ = 1

2σ0δc. For TSR2 the effect of soft-
ening is studied by varying the ratio δ0

δc 
. TSR 1 can be thought of as a 

special case of TSR2 with δ0 = δc. 
To incorporate the cohesive model in ABAQUS, cohesive surfaces 

from the interaction property module are used. The initial stiffnesses for 
both the normal and tangential directions can be input for the cohesive 
behavior. We then must define a proper damage initiation criterion. For 
this, we use quadratic separations, and use values of δ0/δc (Fig. 6) for 
both normal and shear directions to study the effect of damage evolu-
tion. Note that since the stiffnesses are imposed, we may also use 
quadratic tractions for the damage initiation criterion, which produces 
the same results. For the damage evolution, we use linear softening, and 
the mixed-mode fracture condition is defined as a power law behavior 
with exponent 1 in Eq. (28). Choosing the proper normal and shear 
fracture energies completes the definition of the cohesive law. While the 
value of δ0/δc is varied (proportionally for both directions), the normal 
and shear fracture energies are kept fixed. 

Fig. 5. Variation of normal and shear strength with mode-mix.  

Fig. 6. Comparison between the linear traction-separation relation without 
damage evolution and the bilinear form that was used in the finite element 
analysis. A similar variation is assumed for the shear direction. 
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A fine mesh, with about 20 linear quadrilateral elements through the 
height of each beam was used to obtain converged solutions under the 
plane strain condition. Two sets of bilinear interactions were considered 
in order to contrast the extent of damage zones. In case (a), we assume a 
long softening tail with δ0

δc
= 1

16 for both normal and shear directions. For 
case (b), a stronger interaction (in terms of maximum strength) was 
considered by taking δ0

δc
= 9

16. Since we enforce the same initial stiffness 
and fracture toughness, the maximum tractions for both bilinear cases 
(TSR2) are lower than that of TSR1. 

A schematic showing the beam meshed with linear quadrilaterals is 
shown in Fig. 7, however quadrilaterals would also produce the same 
converged results. The schematic also shows the rigid blocks to which 
end rotations were applied to each beam. The fixed end is completely 
clamped to represent the support condition. 

5. Results and discussion 

We now present various results to contrast the different loading 
conditions discussed above. For this, we use the silicon/epoxy specimen 
configuration used by Yang et al. (2022), in which E = 130GPa, ν =

0.22, a = 12mm, h = 1mm, L = 38mm, b = 5mm, kn = 5 × 1012 N/

m3, and kt = 1.6 × 1013N/m3. The mode I and II toughness values are 
chosen arbitrarily as 10 and 50 J/m2, respectively. Initially, as the load 
begins to be applied, a linear response is expected and the components of 
the J-integral are tracked in order to determine when the fracture cri-
terion Eq. (28) is met (m = n = 1). Once the failure envelope is 
breached, a load increment is applied and the corresponding crack 
length determined, subject to the same fracture criterion (Eq. (28)). 
After the new crack length is obtained, the origin of the x-axis is relo-
cated at the new tip of the traction-free portion of the crack and the 
elastic foundation analysis is re-applied under the new coordinate sys-
tem. This step requires stable crack growth scenarios and therefore only 
the rotation and displacement control cases could be analyzed. To bring 
out the direct contrast between the loading modes, we observe them at 
the same loading ratio p. Note that this means that the mode-mix would 

be different, but p is chosen since it is the experimentally controlled 
parameter and ψ is dependent on p. Except for Section 5.7, the following 
results are obtained exclusively from the beam theory analysis presented 
in this paper. 

5.1. Variation of mode-mix with crack growth 

One of the primary reasons for exploring rotation-controlled loading 
was its lower (cf. displacement-control) sensitivity towards changes in 
mode-mix upon crack growth. The effect is illustrated in Fig. 8 for p =

±0.5, using Eq. (20) & (27). For p = − 0.5, under displacement control 
(Fig. 8a), for 0.2 ≤ a

L ≤ 0.5, the change of ψ is about 5◦ , as opposed to 
about 40◦ for the case of p = 0.5. This suggests that, for a range of 
mixed-mode conditions, larger variations in mode-mix can occur as the 
crack propagates when the nominal mode-mix is directed towards pure 
mode II. This trend must have a limit as we recall that the mode-mix 
under pure mode II is independent of the crack length. 

For rotation control (Fig. 8b), while the trend of a larger variation in 
mode-mix still holds true for p = 0.5 as compared to p = − 0.5, the 
mode-mix change is much smaller for both p values. Fig. 8 also depicts 
the corresponding LEFM solution (with rigid bonding kn, kt→∞). For 
both loading conditions, we see that the Mode I dominant case is closer 
to the beam on elastic foundation solution. 

That the change of mode-mix angle is important for extraction of 
complete traction-separation relations, that can be understood as fol-
lows: The traction separation relations observed in practice often have a 
linear portion (traction increases linearly with the opening displace-
ment) and a damage portion (progressive softening). As we shall see, the 
damage zone results in a relaxation of the reaction force (moment) vs. 
applied displacement (rotation) response. The apparent softening re-
duces the stiffness of the interface. This reduction of the stiffness can be 
captured theoretically by imagining a fictitious increase in the crack 
length a, since such an increase would have the same effect on the 
stiffness (Barenblatt, 1959, 1962; Dugdale, 1960). Therefore, while the 
actual crack has not propagated (there are various definitions of the 
crack length, here we mean that tractions have not yet fallen to zero), 

Fig. 7. The meshing used for the finite element computation in ABAQUS. Note the rigid end plates, where the rotations are applied to the center of each one. The 
center acts as the reference point (RP), which is required for the definition of rigid elements in ABAQUS. 
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the response in the damage region may be thought of as an apparent 
increase in crack length. Therefore, if the cohesive zone is large, there 
would be an appreciable change in ψ . Meaningful extractions can only 
be obtained if the mode-mix remains constant or any variations in it are 
limited during propagation. We reiterate that while any loading 
configuration will theoretically give the correct cohesive laws in the 
linear regime, it is the damage portion that will present problems. The 
rotation control case provides a minimal change in mode-mix during 
crack growth (Fig. 8) and is therefore best suited for experiments where 
crack stability is required and an accurate extraction of the entire 
traction-separation response beyond the strength is desired. This anal-
ysis also demonstrates that, if displacement-controlled loading is used, 
the results for lower mode-mix angles will be more reliable than those 
obtained at higher mode-mix angles. As already noted, moment control 
mode will not produce any change of mode-mix whatsoever, but it is 
more difficult to realize experimentally. 

5.2. Sensitivity of mode-mix angle to loading ratio 

Proportional ramp loading is one of the most common ways of 
varying the applied loads on laminated beam specimens. Controlling the 
proportion of the loads applied to each end of the specimen provides a 
full range of mode-mix phase angles (Yang et al., 2022). We plot this 
variation in Fig. 9 for three different crack lengths. We see that, for the 
displacement control loading condition, there is a sharp rise in the 
mode-mix with load ratio, meaning that there are limited range of 
loading ratios available to provide mode II dominant conditions. On the 
other hand, under rotation control, mode II dominant conditions are 
provided by a wider range of loading ratios. If one were to extract the 
cohesive laws for a large mode-mix angle, then displacement control 
would be hypersensitive to the choice of p, i.e., a small error in the value 
of p would cause a large error in the mode-mix angle. This problem is 

comparatively much milder for rotation control. 

5.3. Force (moment)-displacement (rotation) response 

Fig. 10 shows the reaction force and reaction moment for the 
displacement control and rotation control cases, respectively. As already 
established, prior to any crack propagation, the response is linear. Once 
the crack starts propagating, the compliance increases as the crack 
length increases, thereby resulting in the nonlinear response. Note that 
we do not see any softening prior to crack growth here as our model does 
not account for damage evolution. There is another interesting obser-
vation to be made for the p = 0.5 case under displacement control. 
Clearly, p = − 0.5 means that one of the arms is being pulled up and the 
other being pulled down, while p = 0.5 means that both arms are being 
pulled up. Even in this case, P2 is negative and can be understood as 
follows: the two beam arms are still attached (Fig. 1) in the region 
(L − a). Even if p = 0, i.e., only the top beam is displaced upwards, the 
bottom beam will also be displaced upward. It so happens that, for this 
configuration, the ‘natural state’ (for p = 0) is such that the end trans-
verse displacement of the lower beam is more than what it should have 
been to maintain p = 0.5. 

Therefore, a negative force is needed to maintain the displacement 
ratio. This is clearly not the case for the rotation control, for which a 
positive moment M2 is produced when p = 0.5, but depending upon the 
values of the experimental parameters, there will be some p > 0 for 
which M2 will also become negative. 

5.4. J-integral response 

The J-integrals for the rotation control case can be found from Eq. 
(11), (17)–(19) and those for the displacement control can be similarly 
obtained from Eq. (21), (22), (25), (26). These have been plotted 

Fig. 8. Variations in mode-mix angle with crack growth for (a) displacement and (b) rotation control for both our beam on elastic foundation model (BEF) and 
perfectly bonded elastic beams (LEFM). 

Fig. 9. Variation of mode-mix angle with varying loading parameters for (a) displacement and (b) rotation control.  
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(Fig. 11) for the same two values of loading ratios (p = ±0.5) as in 
Fig. 10. 

In all cases, the J-integral components increase quadratically in 

keeping with the linear portions of the load–displacement and moment- 
rotation responses. Under mode I dominant conditions (p = − 0.5), the 
normal component of the J-integral response is nearly flat as the crack 

Fig. 10. (a, b) Load-displacement and (c, d) moment-rotation responses for two different loading paths.  

Fig. 11. J-integral responses for (a, b) displacement- and (c, d) rotation-controlled loading conditions.  
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grows for both displacement and rotation control. Under p = ±1 (pure 
Mode I or II) the J integral response is completely flat because there is no 
change in mode-mix as the crack propagates. 

The shear component rises slightly more under rotation control. 
Under the condition p = + 0.5, the normal component of the J-integral 
decreases with crack growth, whereas the shear component rises more 
quickly than it was rising before crack growth. The same is true for both 
displacement and rotation control, except that the rate of increase in the 
shear component decreases following crack initiation for rotation con-
trol. As noted earlier (Fig. 8), the mode-mix increases as the crack grows 
in both cases, but the change is less for rotation control than for 
displacement control. Note that under displacement control at p = +

0.5, the mode-mix is initially mode I dominant. However, it quickly rises 
to become mode II dominant. The total J-integral increases with crack 
growth (Eq. (28)) due to the increase in toughness with mode-mix. 

5.5. Resistance curves 

For interfaces with significant bridging zones, resistance curves 
allow the energy that is required for any crack growth beyond initiation 
to be tracked as a function of crack growth. Since the original crack 
length is chosen to be 12mm for all simulations, the x-axis (Fig. 12) 
essentially represents the change of crack length Δa. Because the 
interaction laws being considered do not include a softening response, 
the resistance curves all rise vertically to the initiation toughness. Under 
mode I dominant conditions (p = − 0.5), the shear contribution is very 
small, especially for displacement control, and the J-integral, driven by 
its mode I component, remains approximately at the steady state 
toughness during crack growth because the mode-mix remains near- 
zero. At higher mode-mixes, the rotation control case generally in-
duces higher values of both components of the J-integral. The mixed- 
mode case (p = 0.5) in Fig. 12 presents an interesting contrast in 
behavior under displacement or rotation control. In the former, J1 > J2 
during crack extension, while the opposite is true for rotation control. 
This is interesting as p = 0.5 is expected to be Mode II-dominant. 

However, with reference to Fig. 8, it can be seen that crack initiation 
occurs under mode I dominant conditions for displacement control 
(Fig. 8a) and quickly becomes mode II dominant. On the other hand, 
rotation control is consistently mode II dominant at p = 0.5. A 
displacement-controlled device can be viewed as initially having a 
stronger affinity to mode I than to mode II. This means that there will be 
a much smaller range of p values for which J2 > J1 is observed during 
crack extension. Furthermore, in cases where toughness increases with 
mode-mix, this effect is compounded and mode-mix resolution issues are 
more likely under displacement control. We try to quantify this effect in 
Section 5.8. 

5.6. Original crack tip displacements 

As the crack grows, the crack front location changes. It is therefore 
important, particularly when employing direct extraction methods, to 
pick a single location and then discuss the relative normal and shear 
displacements at that point. For this purpose, we have chosen the tip of 
the initial crack a0 = 12mm. Note that while the crack grows, in our 
approach the coordinate system is itself moving, as we define the origin 
of the system at the moving crack tip. This exercise is demonstrated for 
one value of the loading ratio, i.e., p = 0.5, in Fig. 13. Initially the 
response is linear, as governed by Eq. (21)–(24) and their rotation 
control counterparts. When the crack growth criterion is reached, we 
solve for the new crack length, reorient the axes, and use the elastic 
curve (Appendix 2) to obtain the displacements. 

The fact that variation of δn, δt is one order higher in x under 
displacement versus rotation control (Eq A17, A18, A28 and A29) might 
not seem obvious from Fig. 13, but it should also be remembered that the 
relation is also dependent upon the changing crack length, and thus the 
relationship is not so straightforward. 

5.7. Effect of damage 

The interaction laws being considered in the analytical model do not 

Fig. 12. Resistance curves for (a,b) displacement and (c,d) rotation control loadings.  
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account for damage evolution. Most practical traction-separation re-
lations do have a softening part due to progressive damage evolution, 
such as the bilinear/trapezoidal/exponential traction-separation re-
lations (Williams & Hadavinia, 2002). We have rationalized our simpler 
analytical approach by claiming that it yields explicit results from which 
the already mentioned properties could be extracted. It is then natural to 
ask how satisfactory such a simple approach is. For this purpose, we 
present a comparison using our analytical approach (using TSR1, see 
section 4.2-3) and finite element results (using TSR2, see section 4.4). 

The simulations, as described in section 4.4, were conducted for p =

− 0.5 and the results for only M1 reaction are presented under rotation 
control as the responses under displacement control were quite similar 
qualitatively. Since we use 2D plane strain elements, rotation cannot be 
directly applied on the beam. For this purpose, we constrain a rigid plate 
to the end of the beams and rotate the plate to obtain indirect rotations 
at the beam. The reactive moment on the beam is also assumed to be the 
moment at the loading point (center of the plate). For these simulations, 
we use b = 1 m, while all other parameter values remain the same as 
were employed in the analytical model. The moment-rotation responses 
with damage due to relatively weak (δ0

δc
= 1

16) and strong (δ0
δc

= 9
16) in-

teractions (Fig. 14a and 14b, respectively) are compared with the re-
sponses when the interface does not develop any damage (analytical 
model). 

Since we enforce the same initial stiffness and the total area under 
the traction-separation curve to remain the same (i.e., same fracture 
toughness), the maximum tensile (or shear) traction for the bilinear case 
is lower, and that is why one can see a departure from the linear zone 
quite early (Fig. 14a). However, when the damage is complete, the re-
sponses are the same. This is expected, since once damage is complete, 
the shape of the traction-separation response becomes irrelevant 
[Hutchinson & Suo, 1991]. When the bilinear interaction is stronger 
(Fig. 14b), there is barely any difference in the responses with and 

without damage. In addition, since we used the full 2D analysis here, our 
beam assumption has been justified, along with the fact that we can 
indeed assume that eλn(a− L) and eλt(a− L)→0. 

5.8. Loading mode attributes 

In this section, we develop several quantifiable metrics to distinguish 
between the various control modes. Consider the components of the J- 
integral under for moment control: 

J1 =
12M2

d

Eb2h3
; J2 =

9M2
s

Eb2h3
.

An asymmetry is immediately evident, i.e., even if the fracture 
toughness for both pure mode I and II are the same (Γ1 = Γ2 = Γ), the 
critical value of the moment required to initiate fracture would be 
different. Under moment control, both ends must be loaded in the 
opposite sense with MIc =

̅̅̅̅̅̅̅̅̅
bDΓ

√
for a mode I crack to propagate. Under 

mode II, both ends are loaded in the same sense and MIIc =

̅̅̅̅̅̅̅̅
4bDΓ

3

√

. This 
means that one of the modes will require a larger load than the other to 
reach the point of crack initiation. The generalization to the other three 
loading modes is straightforward. Inspired by linear algebra, we define a 
‘condition number’ C , for a given geometry and a loading condition as 
follows 

C =
Critical Value of the Loading Parameter for Mode II Growth
Critical Value of the Loading Parameter for Mode I Growth 

To put this idea in context, consider the case of an infinite plate 
under the remote tractions σ and τ for mode I and II loading, respec-
tively. Recall that J1 = πσ2a

E and J2 = πτ2a
E , which means that there is no 

asymmetry and the condition number is unity, while for the moment 
control case, this ratio is 2/√3. 

Fig. 13. Crack tip displacements for p = 0.5 at the original crack tip for (a) displacement control and (b) rotation control loading.  

Fig. 14. Comparison of moment rotation responses of the upper beam under rotation control with p = − 0.5. (a) Response for (a) low and (b) high strength relative to 
the linear interaction. 
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The condition number is important in the design of experiments. 
Thus, for C = 10, the load necessary for pure mode II failure is a factor 
of 10 higher compared to pure mode I, even when the tensile and shear 
interactions have the same toughness. If the resolution of the loading 
device is designed taking the mode II case into account, the resolution 
for mode I experiments may be insufficient, given that resolution and 
range requirements of the sensors (load cells, etc.) are opposed. Note 
that for many interactions kt > kn and Γ2 > Γ1, which further worsens 
the scenario (intrinsic asymmetry becomes amplified). Therefore, in an 
ideal case, a value of C would be as close as 1 as possible, in order to 
make the effective asymmetry vanish. Let us compute the condition 
numbers for all the loading cases discussed previously 

C M =
2̅
̅̅
3

√ ,

C Θ =
2̅
̅̅
3

√

3a
4 + 3

4λt
+ L

4

a + 1
λn

,

C P =
2̅
̅̅
3

√

(
1 + 1

λna

)

(
1 + 1

λt a

),

C Δ =
1̅
̅̅
3

√

(
λ2

n(1 + λna)
2(1 + λna)3

+ 1

)(
λ3

t

(
L3 + 3a3

)
+ 9λ2

t a2 + 9λtL + 9λta − 9
λ2

t (1 + λta)

)

.

These relations have been obtained by using the expressions for the 
J-integrals (Eq. 11, 17, 18, 19, 21, 22, 25, 26). These expressions were 
equated to a given value of fracture toughness, and the ratio of critical 
loads was found as described in the first paragraph of this section. 
Obviously, the subscripts indicate the appropriate loading configuration 
(M for moment control, Θ for rotation control, Δ displacement control, P 
for force control). 

In the limiting cases kn, kt→∞ (LEFM) 

C M = C P =
2̅
̅̅
3

√ ,

C Θ =
2̅
̅̅
3

√

(
3
4
+

L
4a

)

,

C Δ =
2̅
̅̅
3

√

(
3
4
+

L3

4a3

)

.

Given that L > a, load and moment control generally have the 
optimal condition number. Of course, when a = L, all loading systems 
have the same condition number of 2̅̅

3
√ , which is a pre-factor that is 

common to all loading configurations associated with laminated beams. 
The condition number is also important, since it acts like a unifying 

parameter to differentiate between various loading modes. As an 
example, consider the representation of the mode-mix angle for any 
loading configuration in terms of the appropriate condition number and 
the loading ratio p, which describes the ratio of load applied on the 
second beam to the first 

ψ = tan− 1
(

1
C (a, kn, kt)

.
1 + p
1 − p

)

. (39) 

The variation of the mode-mix angle with the crack length (cf. Sec 
5.1) can be thought of as coming purely from the variation of the con-
dition number with the crack length, at a given ramp load. A look at 
Fig. 15 shows that the variation is expectedly the maximum for the 
displacement-control case, while there is no variation for the moment- 
control. The load-control case is not considered due to unstable crack 
growth. For finite values of λn, λt it is possible for C Δ,C Θ < 2̅̅

3
√ = C M, 

however, for the practical values of the cohesive parameters, this hap-
pens at a = L, which is not suitable for any reasonable measurements. 

The asymmetry for displacement-control also decreases and reaches a 
value near that of the rotation-control, but this happens when a becomes 
large. A large value of the initial crack length relative to the length of the 
specimen is undesirable since end effects may deem some of our ap-
proximations untrue and more importantly because there may not be 
full development of the cohesive zone. Fig. 15 clearly shows that the 
change of mode-mix is a function of the crack length and therefore for a 
given initial configuration, we propose ∂C

∂a as the deciding parameter to 
convey an idea of change of the change of ψ . 

Another important experimental concern regarding the hypersensi-
tivity of ψ with change of the loading ratio p was raised in Sec. 5.2. The 
condition number is seen to be the unifying parameter that dictates this 
behavior from Fig. 16. As the magnitude of the condition number is the 
amount of asymmetry, it is natural that a higher value of C would cause 
a higher sensitivity of ψ to p at higher mode-mix angles. It should be 
remembered that a higher sensitivity at larger values of the mode-mix 
comes with lower sensitivities at lower values of the mode-mix. 

6. Conclusions 

In this work, we build on an existing beam on elastic foundation 
model (Wu et al., 2019) to study various loading configurations for the 
simultaneous extraction of traction-separation relations. This study was 

Fig. 15. Variation of the condition number with crack length.  

Fig. 16. Sensitivity of ψ with the loading ratio.  
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motivated by a previous study (Yang et al., 2022) where it was noticed 
that displacement-controlled loading device was not best suited to 
extract the entire cohesive constitutive response in both normal and 
shear directions. Here we solved the full nonlinear problem analytically 
by employing a linear traction-separation response without any damage. 
As a result, it was noted that rotation control will be much more effective 
for the afore-mentioned purpose, in that the change in mode-mix as the 
crack extends is minimal, and the crack is fully stable. Our model is also 
consistent with the other established results, such as the crack length 
independence of J-integrals in the moment-controlled case, stability of 
various loading conditions, etc. 

As a by-product of this analysis, we also noticed that there is an 
inherent asymmetry in the dual actuator loading devices, and that it can 
be reduced to a large extent by using rotation-controlled loading. This is 
of importance for the control of resolution errors while performing the 
experiments. In addition, finite element computations confirmed that, if 
the damage zone is small, the beam on elastic foundation model pro-
vides a very satisfactory solution. Lastly, we propose a dimensionless 
number, which we call the condition number of the particular loading 
configuration. This is a measure of the inherent asymmetry in the 
loading condition itself for the symmetric laminates considered here. 
This unifying condition number is a quantitative tool, as a large value 
implies greater sensitivity of ψ at higher mode-mixes. In addition, a large 
magnitude of its derivative with respect to crack length points towards a 
larger change in mode-mix angle with the crack length. In cases where 
Γ2 > Γ1, the effect of the inherent asymmetry of the loading mode is 
multiplied. Nonetheless, it is to be noted here that there may be situa-
tions where rotation control may be unnecessary, e. g. consider a case 
where one has to extract traction-separation relations at mode-mixes 
close to zero degrees. Fig. 9 shows that the sensitivity of displacement 
control is actually lower than for rotation control for such an applica-
tion. Accordingly, we do not propose a blanket statement ‘rotation 
control is better than displacement control’ but provide experimental 
measures (most of which can be obtained from the knowledge of the 
condition number) that provide the caveats for this statement. 

Another important point raised in the literature is that of the self- 

similarity of the crack profiles (Bao & Suo, 1992; Suo et al. 1992). A 
moment-controlled device produces fully self-similar profiles as the 
crack grows and this can be understood as follows: ψ can be defined in 
multiple ways, and in the linearly elastic regime with a homogenous 
interface, they provide the same results. One of the alternate definitions 
of the mode-mix angles deals with the ratio of tangential to normal crack 
tip displacements. For pure mode I or mode II fracture, δ*

t or δ*
n is 

respectively zero (here we mean the crack opening displacement at the 
current crack tip whose location changes as the crack grows, unlike the 
situation described in Section 5.6), so that the mode-mix never changes 
and we have self-similar crack growth under any loading condition. 
However, in mixed-mode cases, a change of mode-mix will therefore 
mean that the ratio of tangential to normal crack tip displacements will 
change as the crack grows, meaning that the self-similarity would be 
lost. It is therefore implied that a larger change of mode-mix with the 
crack length will lead to larger losses of self-similarity, and thus the 
quantity ∂C

∂a also provides a measure of the extent of departure from self- 
similar crack growth. 
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Appendix 1. Linearly elastic fracture mechanics analysis 

Here we summarize the known results for the laminated beam specimens in Fig. 1 based on classical fracture mechanics analyses (Hutchinson and 
Suo, 1991), assuming that the interaction is rigid in the region x ∈ ( − s, 0). For the case of load control (Fig. 1a), the J-integral at the crack tip can be 
written in terms of the applied forces as 

J =
1

2b

(
(P1a)2

E1I1
+
(P2a)2

E2I2
−
(P1a + P2a)2

qbE2h3

)

. (A1) 

For the specimen with no material or geometric asymmetry, E1 = E2 = E and I1 = I2 = bh3

12 , where E = E
1− ν2 denotes the plane-strain elastic modulus, 

and b, h refer to the width and thickness of the beams, respectively. The quantity q is a measure of the elastic and geometry mismatch in the laminated 
beam system, which is 23 for the symmetric specimen. 

The J-integral in Eq. (1) can be partitioned into mode I and mode II components based on (Williams, 1988) as J = J1 +J2 and 

J1 =
3(P1 − P2)a2

Eb2h3 , (A2)  

J2 =
9(P1 + P2)a2

4Eb2h3 . (A3) 

The phase angle of the fracture mode-mix can then be defined based on the energy release rates as 

ψP = tan− 1

̅̅̅̅̅
J2

J1

√

= tan− 1
( ̅̅̅

3
√

2
•

P1 + P2

P1 − P2

)

. (A4) 

The bar denotes that the mode-mix is for perfectly bonded joints (LEFM). The end forces are related to the end displacements as 

P1 =
3E1I1

a3(1 + 2β)
(Δ1 + β(Δ1 − Δ2) ), (A5)  
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P2 =
3E2I2

a3(1 + 2β)
(Δ2 − β(Δ1 − Δ2) ). (A6) 

where β = 1
8

(
L3

a3 − 1
)

. Thus, in the case of displacement control (Yang et al., 2022), the mode-mix phase angle as a function of the applied displacement 
ratio is 

ψΔ = tan− 1

(
2
̅̅̅
3

√

3 + (L/a)3 •
1 + Δ2/Δ1

1 − Δ2/Δ1

)

. (A7) 

Therefore, a full range of mode-mix is feasible by varying the end displacement ratio (Δ2/Δ1). As noted in a previous work (Yang et al., 2022), the 
mode-mix is not affected by the crack length for the two limiting cases with Δ2/Δ1 = ±1 for pure mode I (ψΔ = 0) and mode II (ψΔ = ±90◦ ). However, 
for the generally mixed-mode cases, the phase angle changes as the crack grows under the displacement control. In contrast, the mode-mix is in-
dependent of the crack length under load control (Eq. (A4)). However, the crack growth is typically unstable under load control, as the energy release 
rate (Eq. (A1)) increases with the crack length. 

Similarly, for the case of moment control (Fig. 1b), the J-integral is given by (Sørensen et al., 1996) as 

J =
21
(
M

2
1 + M

2
2

)
− 6M 1M 2

4b2h3E
. (A8) 

Following the principle of superposition (Fig. 3), the uneven bending moments (M 1,M 2) in Fig. 1b can be expressed as the sum of two problems: 
one with the end moments Ms =

M 1+M 2
2 for both beams, and the other having the end moments of the same magnitude, Md = M 1 − M 2

2 , applied in the 
opposite directions. By symmetry, the former problem is purely mode II and the latter is purely mode I. The J-integral in Eq. (8) can then be partitioned 
into mode I and mode II components as 

J1 =
12M2

d

b2h3E
, (A9)  

J2 =
9M2

s

b2h3E
. (A10) 

The corresponding phase angle of the fracture mode-mix is 

ψM = tan− 1

̅̅̅̅̅
J2

J1

√

= tan− 1
( ̅̅̅

3
√

2
M1 + M2

M1 − M2

)

, (A11)  

which is independent of the crack length. Unlike the case of load control where the energy release rate increases with the crack length (hence un-
stable), the J-integral under the moment control is independent of the crack length. This raises the possibility of neutral stability if the moment at crack 
initiation can be maintained. However, if ramp moment control is applied, this configuration will be unstable. 

The end rotations are related to the end moments as 

Θd =
12aMd

Ebh3
, (A12)  

Θs =
12Ms

Ebh3

(
3a
4
+

L
4

)

, (A13)  

where Θd = Θ1 − Θ2
2 and ΘS = Θ1+Θ2

2 . Thus, for the rotation control, the J-integral is inversely proportional to the square of the crack length, so that the 
crack growth is stable. The phase angle of mode-mix under rotation control is: 

ψΘ = tan− 1
(

2
̅̅̅
3

√

(3 + L/a)
Θ1 + Θ2

Θ1 − Θ2

)

, (A14)  

which changes with crack length. Compared to displacement control, the change of mode-mix is less severe under rotation control. 

Appendix 2 

Here we provide the specific elastic fields for both the rotation and moment control configurations. The governing equations and boundary 
conditions have been provided in the text. 

Moment/rotation control 
For the region x ∈ ( − s,0)

δn =
12Md

Ebh3λ2
n
eλnx(sinλnx + cosλnx), (A15)  

δt =
12Ms

Ebh2λt
eλtx. (A16) 

Note that Eq. (A2) predicts that δt ∕= 0 when x = − s. This is because these expressions assume that exp( − λts)→0. 
For the fractured ligament x ∈ (0,a)

M.A. Ansari et al.                                                                                                                                                                                                                               



International Journal of Solids and Structures 270 (2023) 112229

15

δn =
12Md

Ebh3

(

x +
1
λn

)2

, (A17)  

δt =
12Ms

Ebh2

(

x +
1
λt

)

. (A18) 

In-plane displacements 
The governing equations for axial displacements of the beams in the cohesive zone are 

Eh
d2u10

dx2 − ktδt = 0, (A19)  

Eh
d2u20

dx2 + ktδt = 0. (A20) 

In order to obtain meaningful results, care must be taken in placing our approximation of exp(− λts)→0. In this case, we will first use the most 
general form of δt 

δt =
12Ms

Ebh2λt
(
1 + e2λt s

t
)
(
eλt x − eλt(2s− x)). (A21) 

Under the assumed sign conventions, the top and the bottom beams will undergo compression and extension respectively. The boundary conditions 
for either of them are (i = 1,2) 

ui0(x = s) = 0, u’
i0(x = 0) = 0. (A22) 

After invoking our assumption at this stage, we find that because of symmetry, u*
10 = − u*

20, that δ*
ta = 2

⃒
⃒u*

10

⃒
⃒ = 3Ms

Ebh2 (a − L+ 1
λt
). Here δ*

ta is the 
tangential relative displacement purely due to axial stretch mismatch (the other component of δ*

t comes from bending). 
Elastic curve for a single beam 
The problem has already been broken down into a superposition of purely mode I and II problems. For the pure mode I case, the symmetry is quite 

apparent and the elastic curve of a single beam is found by just dividing the normal separation by two and noting that there is no shear displacement. 
The mode II case is more involved, in that there is no relative normal separation, but we do have a transverse displacement for each beam. Our aim in 
this section is to determine the elastic curve for this case, which will enable us to obtain the relation between load sums (Ms,Ps) and displacement sums 
(Δs,Θs). 

Focusing now on the vertical component of the displacement, the governing equations are 

D
d4w
dx4 =

1
2

hb
dτ
dx
. (A23) 

For each beam we note that σ = 0 for pure mode II. The expression for τ is directly taken from τ = ktδt , using δt(x), which has been found earlier. As 
with the relative axial displacement analysis, this analysis will also involve two different governing equations for the two regions. While the governing 
equation mentioned above in Eq. (A9) is valid for x ∈ ( − s,0), the right-hand side of the equation is zero for x ∈ (0, a). Using the condition that 
exp( − λts)→0, the elastic profile can be obtained as 

Dw =
6Mskt

λ4
t Eh

eλt x + Ms
x2

8
+
(L − a)Ms

4
x +

Ms(L − a)2

8
(A24)  

for x ∈ ( − s,0) and 

Dw =
Msx2

2
+

(
3

4λt
+

L
4
−

a
4

)

Msx+
6Mskt

λ4
t Eh

+
Ms(L − a)2

8
(A25)  

for the traction free zone x ∈ (0,a). The results for the pure mode II case can now be inferred from these relations. 
Load/Displacement Control 
For completeness, we provide the following relations for load/displacement control case, where the derivation is quite similar to the rotation/ 

moment control case. 
In the region x ∈ ( − s,0)

Dδn = eλnx

(
Pda
λ2

n
sinλnx +

Pd

λ3
n
(1 + λna)cosλnx

)

, (A26)  

Dδt =
12Psa
Ebh2λt

eλt x +
12Ps

Ebh2λ2
t
. (A27) 

In the fractured ligament, x ∈ (0, a), 

Dδn = Pdax2 −
Pdx3

3
+

2Pdax
λn

+
Pd

λ2
n
(a + x) +

Pd

λ3
n
, (A28)  

Dδt = −
hPsx2

2
+ hPsax +

hPs

λ2
t
(1 + λta). (A29) 
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