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ARTICLE INFO ABSTRACT
Keywords: In this paper, we present a numerical study on the tensile strength of low-density Kagome networks made of
Kagome network brittle fibers. First, an elastic beam model is employed to analytically predict the effective elastic properties and

Tensile strength tensile strength, as well as the critical condition for buckling of the fibers in Kagome networks. A series of finite

Buckling element analyses are then conducted to simulate the elastic deformation and failure of Kagome networks under

Damage . . . . .

Toughness tension. The numerical results based on unit-cell models reveal four possible failure modes of the Kagome
networks subject to uniaxial tension, summarized in a phase diagram in terms of the relative density and the fiber
strength. The pre-buckling failure mode is restricted to cases with relatively high density and low fiber strength.
A low-density Kagome network is likely to fail by one of the post-buckling modes, with an effective tensile
strength much lower than the prediction by the elastic beam model. For Kagome networks consisting of a large
number of unit cells, the effect of boundary conditions on the tensile strength is examined. Under periodic
boundary conditions, the effective tensile strength is nearly identical to that predicted by the unit-cell model,
independent of the model size. Under a roller boundary condition, with damage initiation near the free edges
followed by a diffusive damage progression, the effective tensile strength is lower than that under periodic
boundary conditions for the cases of relatively low fiber strengths. Under a clamped boundary condition, the
effective tensile strength is higher than that under periodic boundary conditions for the cases of relatively high
fiber strengths, where fiber buckling is largely suppressed by the clamped boundaries. Finally, the effect of a
crack-like defect on the effective tensile strength is studied for Kagome networks under the clamped boundary
condition. With a small defect, the effective strength is nearly independent of the defect size. In contrast, with a
relatively long defect, the effective strength decreases almost linearly with the length of the crack-like defect. The
effective toughness for damage initiation and steady-state damage progression in the Kagome networks is dis-
cussed from an energetic perspective.

1. Introduction relative density can be written approximately as

. . . . . Ad
Micro-architectured materials offer the opportunity of obtaining =—, (1.1)

unique combinations of material properties, such as high strength and L

fracture toughness at low density (Fleck et al., 2010; Schwaiger et al., where A is a constant depending on the network topology and the cross

2019; Liu et al., 2020). In particular, two-dimensional (2D) and three- section of the fibers, L is the length of a fiber segment between two

dimensional (3D) periodic lattice or network structures have been hi- adjacent joints, and d is the thickness of the fiber. Table 1 lists the values

erarchically architected to achieve lightweight, flaw-tolerant, and ultra- of A for the three periodic 2D networks made from fibers with a square

strong mechanical properties (Meza et al., 2014; Meza et al, 2015; Xia cross section, as presented in Romijn and Fleck (2007). The values of A

et al., 2019; Zhang et al., 2019). This work focuses on 2D network are slightly different for networks of fibers with a circular cross section

structures. Fig. 1 shows three periodic 2D networks and their unit cells, (Mane et al., 2021). It should be noted that Eq. (1.1) is a good approx-

including Kagome, triangular, and square networks. Each network is imation only for low-density 2D networks (e.g., p < 0.2).

made from uniform, long fibers. For such a periodic 2D network, the A periodic 2D network behaves like a linearly elastic material if the
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overall deformation is small. The linearly elastic properties of periodic
networks have been predicted analytically (Gibson and Ashby, 1997;
Christensen, 2000; Ostoja-Starzewski, 2002; Wang and McDowell,
2004). Assuming linear elasticity for the fiber material and rigid (wel-
ded) joints between the fibers, the effective Young’s modulus (E.) of a
periodic 2D network depends on the relative density and can be written
as:

Ey = Bp"Ey, (1.2)

where Ef is Young’s modulus of the fiber material, B and b are constants
depending on the network topology (see Table 1; Romijn and Fleck,
2007). Both the Kagome and triangular networks are isotropic with a
linear scaling for the effective Young’s modulus (b = 1). In contrast, the
square network is highly anisotropic with a different scaling (b = 3) for
the effective Young’s modulus in the + 45° rotated direction. The linear
scaling (b = 1) of the effective Young’s modulus indicates stretch-
dominated fiber deformation when the network is subject to uniaxial
tension, whereas the cubic scaling (b = 3) indicates bending-dominated
deformation of the fibers. It should be noted that the analytical predic-
tion for the effective Young’s modulus is applicable only in the linearly
elastic regime. In the case of a low-density Kagome or triangular
network, buckling of fibers may lead to highly nonlinear elastic defor-
mation even at small strains (Mane et al., 2021).

Beyond elasticity, inelastic mechanical properties such as strength
and toughness of periodic 2D networks have also been studied exten-
sively (Gibson and Ashby, 1997; Wang and McDowell, 2004; Fleck and
Qiu, 2007; Romijn and Fleck, 2007; Lipperman et al., 2007; Quintana
Alonso et al., 2010; Cui et al., 2011; Tankasala et al., 2015; Gu et al.,
2018; Luan et al., 2022; Shaikeea et al., 2022). In particular, the effec-
tive tensile strength of a periodic 2D network may be estimated using a
linearly elastic truss model, where all the joints are assumed to be pin
joints so that each fiber segment is subject to axial tension or compres-
sion. Assuming that the fiber material is linearly elastic and brittle, with
a tensile strength Sy, failure of the network initiates when the tensile
stress in at least one of the fiber segments reaches its tensile strength.
The effective tensile strength of the network, S.¢, is then determined by
the corresponding force and the effective cross-section area of the
network. For the periodic Kagome, triangular and square networks made
of fibers with a square cross section, the effective tensile strength in the
x and y directions (0/90°) can be written as

Seff = C/)CSf7 (1.3)

where the constants C and ¢ depend on the network topology, as listed in
Table 1 (Fleck and Qiu, 2007).

The truss model assumes that the fibers undergo stretch-dominated
deformation and thus predicts ¢ = 1 for the effective tensile strength.
However, for the square network, this assumption is valid only when it is
subject to uniaxial tension in the x or y direction (0/90°). When a square
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Table 1
Scaling parameters for the effective properties of periodic 2D networks.
Kagome  Kagome  Triangular  Triangular Square (0/ Square
©°) (90°) (9] (90°) 90°) (+45°)
A V3 V3 2v3 2v3 2 2
B 1 1 1 1 1
3 3 3 3 2 4
b 1 1 1 1 1 3
C 1 1 1 1 1 1
3 2 3 2 2 6
c 1 1 1 1 1 2

network is subject to uniaxial tension in the + 45° direction, the truss
model (with pin joints) would predict a zero Young’s modulus until all
fibers are aligned in the loading direction. As noted in previous works
(Wang and McDowell, 2004; Romijn and Fleck, 2007; Mane et al.,
2021), the elastic deformation of a square network loaded in the + 45°
direction is primarily due to bending of the fibers (assuming rigid joints).
In this case, an elastic beam model can be used to estimate its effective
Young’s modulus and strength, which predicts a cubic scaling (b = 3) for
the Young’s modulus and a quadratic scaling (c = 2) for the effective
tensile strength (Mane, 2023).

For the Kagome and triangular networks, the truss model can be
justified if the effect of fiber bending is negligible compared to fiber
stretching. Previously, Fleck and Qiu (2007) considered the effective
strengths of the Kagome and triangular networks, with C = 1/2 in Eq.
(1.3) for the Kagome network subject to uniaxial tension in the y di-
rection (90°), and C = 1/3 for the triangular network subject to uniaxial
tension in the x direction (0°). It has been found that, based on the truss
model, the effective strength is anisotropic for both the Kagome and
triangular networks, with C = 1/3 in the x direction (0°) and C =1/2in
the y direction (90°), in spite of the six-fold symmetry of the network
topology and the isotropic, linearly elastic behavior of both networks.
Similar anisotropy has been observed both numerically and experi-
mentally in the effective yield strength of triangular networks made of
an aluminum alloy (Gu et al., 2018). The effective tensile strength is
lower in the x direction (0°) because only 1/3 of the fibers that are
parallel to the loading direction are stressed, and the other 2/3 of the
fibers are not stressed at all under uniaxial tension (according to the
truss model). In contrast, when subject to uniaxial tension in the y-di-
rection (90°), all fibers are stressed, 2/3 of the fibers in tension and 1/3
in compression (perpendicular to the loading direction), giving rise to a
higher effective tensile strength. In this case, the truss model is valid
only if the fibers in compression do not buckle. However, for a low-
density Kagome or triangular network, fiber buckling may occur at a
small strain (Mane et al., 2021), and consequently, the effective tensile
strength could be considerably lower than predicted by the truss model.
To our knowledge, the effect of buckling on the effective tensile strength
has not been systematically studied in the literature. An additional
consequence of buckling is that the potential failure mode may change
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Fig. 1. Periodic 2D networks made of long fibers: (a) Kagome, (b) triangular, and (c) square. Insets show unit cells with segment length L.
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from stretch-dominated to bending-dominated, leading to different
scaling for the effective strength.

In the remainder of this paper, we focus on low-density Kagome
networks, where the effects of fiber buckling are significant for the
effective tensile strength and the associated failure modes. Section 2
presents an elastic beam model to analytically predict the effective
elastic properties and tensile strength, as well as the critical condition
for fiber buckling in Kagome networks. A finite element method is
presented in Section 3 for simulating the elastic deformation and failure
of Kagome networks under tension. Section 4 discusses the numerical
results based on unit-cell models of Kagome networks. The effects of
model size and boundary conditions are examined in Section 5, followed
by a study on the effect of crack-like defects in Section 6. We conclude in
Section 7 with a summary.

2. Analytical predictions

Elastic beam models have been used to predict the effective tensile
strength of hexagonal networks (Gibson and Ashby, 1997). In an elastic
beam model, bending of the fibers is taken into account along with
stretching. The local stress in the fiber results from the axial force and
bending moment combined. Failure initiates when the maximum local
tensile stress reaches the tensile strength of the fiber material, assumed
to be linearly elastic and brittle, and the corresponding effective stress of
the network defines its effective tensile strength. Here we present an
elastic beam model for the Kagome network. Similar models have been
developed for the triangular and rotated square networks (Mane, 202.3).

For a Kagome network subject to uniaxial tension in the y-direction
(Fig. 2), each slanted fiber segment is subject to two end forces (F and N)
and two bending moments (M; and Ms). The two bending moments are
not necessarily equal, because there are two types of joints in the
Kagome network. The joint between a slanted fiber and a horizontal
fiber can rotate like a rigid body and is called the SH joint. In contrast,
the joint between two slanted fibers, called the SS joint, cannot rotate
due to symmetry, assuming periodic boundary conditions for the unit
cell. In addition, each horizontal fiber segment is subject to a
compressive axial force (N) and a bending moment (Ms). Together, each
unit cell is subject to a uniaxial force of 2F in the y-direction, with zero
net force in the x-direction. Thus, the effective nominal stress of the
Kagome network is: 6, = F/(Ld), with an effective cross-sectional area
of 2Ld for the unit cell. Next we determine the force N and the bending
moments (M; and M) by the equilibrium condition and deformation
compatibility of the fiber segments.

Referring to the free body diagram in Fig. 2(b), the moment balance
requires that

M1+M2:§(F—\/§N). 2.1)

Since each slanted segment is between an SS joint and an SH joint,

(a) (b)
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and the SS joint cannot rotate, the slanted segment can be treated as a
cantilever beam with a fully clamped end at the SS joint, subject to two
forces (F and N) and a bending moment (M) at the other end (SH joint).
The angle of rotation of the SH joint is then

12 M,L
0= 4EI(F7\/§N> B’ 22

where I = d*/12 for the fiber segment with a square cross section.
Meanwhile, each horizontal segment is between two SH joints

(Fig. 2c) and can be treated as a simply supported beam subject to a

bending moment at each end. Thus, the angle of rotation at each end is

ML

= ffl (2.3)

Compatibility of deformation requires the angles of rotation to be
equal at the rigid joints. With Eq. (2.2) and (2.3), we obtain the bending
moment at the SH joints:

M :Ié(F— \/??N). 2.4

Then, with Eq. (2.1) and (2.4), we obtain the bending moment at the
SS joints:

M, :%(Fﬂ/EN), (2.5)

which is twice of the bending moment at the SH joints.
Further, the axial displacement at each end of the horizontal segment
is due to the axial force:
NL

5x = W7 (2-6)

whereas the end displacement in the x-direction for the slanted segment
is due to both the axial force and bending moment:

s
o= 4Ed2 (V3F+N) + 12;1(

V312
N M, . 2.
-3 ) 4E1? @7

The deformation compatibility requires the end displacements to be
equal at the rigid joints. Inserting Eq. (2.4) and Eq. (2.6) into Eq. (2.7),
we obtain

-1
F d? d? F d?
v E () () 5 ()

where the approximation is taken for a low-density network w1th £«1,
retaining two leading order terms. The moments, M; and M,, are then
obtained by inserting Eq. (2.8) into Egs. (2.4) and (2.5).

Moreover, the end displacement in the y-direction for the slanted

(©)

Fig. 2. Elastic beam model for a Kagome network subject to a uniaxial force in the y-direction. (a) A unit cell of the Kagome network; (b) Free body diagram of a

slanted fiber segment; (c) Free body diagram of a horizontal fiber segment.
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segment is obtained as:

3 L(?,F+\/§N)JrL(F—\EN)~ 3FL (1 5d2).

T AR 24E;1 T2E@ " el?
2.9)

The effective strain components of the unit cell are: &, = % and e, =

72%. Thus, with Egs. (2.6) and (2.9), the effective Poisson’s ratio of the
Kagome network is:

I 5 1 d?
Vg = —=V3 Zr(1-—].
F= ", 5, 3( 612

(2.10)
Similarly, the effective Young’s modulus of the Kagome network is
obtained as

(2.11)

o, 1 5d?
Effz—ymprf 1+— s
T e T3 612

where 6, = F/(Ld) is the effective nominal stress. For a low-density

Kagome network (p = \/§d/L<<1), the effective Poisson’s ratio and
Young’s modulus recovers the values predicted by the truss model with
d/L—0, namely, vy = 1/3 and E.¢ = 1pEy. Both Egs. (2.10) and (2.11)
contain additional terms that are quadratic in d/L as the leading-order
correction due to the effect of bending stiffness in the elastic beam
model. It is noted that the coefficients of these correction terms are
different from those listed in Lipperman et al. (2007). However, Lip-
perman et al. (2007) did not provide the details as to how their results
were derived. Thus, it is unclear what could have led to the differences.

With the combined bending moment and axial force, the maximum
tensile stress in the fibers occurs in the slanted fiber segment, which is
obtained as:

oo Md VIFEN 2R 1-gn) VBF[ 11-4
e oI 242 T & 1+& | " 2 3144
(2.12)

With 6, =F/(Ld), the maximum local stress in the fibers is related to
the effective stress as

2L V3d
Omax ~ O'yﬁ (1 +T> .

By setting ome« = Sy, with S; being the tensile strength of the fiber
material, we obtain the effective tensile strength of the Kagome network
as

(2.13)

Sy ~ % (1 - p)pSs. (2.14)

Thus, the elastic beam model recovers the truss model for the
Kagome network when the relative density is low (p<1), predicting c =
1 and C = 1/2 for the effective tensile strength in Eq. (1.3), same as that
given in Fleck and Qiu (2007). Notably, the elastic beam model predicts
that the maximum tensile stress occurs in the slanted segment near the
SS joint where the bending moment is the maximum (M; > M,). Thus,
damage initiation is expected to occur near the SS joints in the Kagome
network subject to uniaxial tension in the y-direction. In contrast, by the
truss model, the local stress is uniform in the slanted fibers, and no
specific location is predicted for damage initiation. Moreover, the first-
order correction to the predicted effective strength in Eq. (2.14) is linear
in the relative density (p = /3d/L), whereas the leading order correc-
tions to the effective elastic properties in Egs. (2.10-2.11) are quadratic.
Therefore, the prediction by the truss model is less accurate for the
effective strength than for the effective elastic properties of low-density
Kagome networks.
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For a Kagome network subject to uniaxial tension in the x-direction
(0°), a similar elastic beam model can be used to estimate its effective
mechanical properties. In this case, each horizontal fiber segment is
subject to an axial tensile force and a bending moment, and each slanted
segment is subject to a horizontal force and a bending moment at each
end. For a low-density Kagome network (p<1), the bending moments
are approximately zero at all joints, and the axial force is approximately
zero in all slanted segments, recovering the truss model with only the
horizontal fibers carrying the load. The effective Poisson’s ratio and
Young’s modulus are the same as in the y-direction, but the effective
tensile strength in the x-direction is lower, Sqr ~ %pSf, as opposed to
Se ~1pSp in the y-direction. However, for a low-density Kagome
network (p<1), fiber buckling could occur to lower the effective stiff-
ness of the network in the y-direction (Mane et al., 2021), and thus the
effective tensile strength in the y-direction can be considerably lower
than that predicted by the truss model or the elastic beam model without
considering the effect of fiber buckling.

In the limit of low relative density (p<1), the effective mechanical
properties (e.g., Young’s modulus, Poisson’s ratio, and tensile strength)
predicted by the truss model are identical for the triangular and Kagome
networks, as listed in Table 1. However, by the elastic beam model, the
effects of bending are different for the two types of networks (Mane,
2023), and the critical conditions for onset of buckling are also different
(Mane et al., 2021). The difference between the triangular and Kagome
networks may be attributed to the difference in the joint or nodal con-
nectivity (Fleck et al., 2010). Moreover, while there are two types of
joints (SH and SS) in a Kagome network, all joints in a triangular
network are of the same type (with same symmetry).

2.1. Fiber buckling in Kagome and triangular networks

For a Kagome or triangular network subject to uniaxial tension in the
y-direction (Fig. 1), the fiber segments in the transverse direction are
under compression, due to Poisson’s effect with v ~ 1/3. When the
compressive force exceeds a critical value, the fiber segments buckle,
leading to a nonlinear, elastic behavior of the network (Mane et al.,
2021). The effective stress at the onset of fiber buckling may be
considered as a limiting stress for the linearly elastic response of the
Kagome/triangular network. The tensile strength predicted by the truss
model or the elastic beam model is valid only if damage initiation occurs
before onset of fiber buckling.

For a low-density triangular network (p<1) subject to uniaxial ten-
sion in the y-direction, assuming that all joints are rigid and cannot
rotate (due to symmetry), the effective stress for onset of fiber buckling
is (Mane, 2023):

7.[2

=—_3E;. 2.1
o8 = 3P B (2.15)

For a low-density Kagome network (p<1) subject to uniaxial tension
in the y-direction, the effective stress for onset of buckling follows the
same scaling, o5 ~ p°E;, but the coefficient is different, because the SH
joints in the Kagome network can rotate (with an elastic resistance).
Previously, by numerical simulations (Mane et al., 2021), we obtained
the critical strain for onset of buckling as

_bp

=107, (2.16)
K

where = 1/4 and x = 0.55 for a triangular network, and f = 1 and x =
0.72 for a Kagome network. The corresponding effective stress is simply,

o5 = Eggep ~ %ﬂzﬂ (2.17)

For a triangular network, a comparison between Eq. (2.15) and Eq.
(2.17) leads to x = v/3/x, in close agreement with the numerical result
(x = 0.55). For a Kagome network, based on the numerical results, xk =
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0.72, and thus the effective stress for onset of fiber buckling is:
o5 ~ 0.643p3E;, which is considerably higher than the critical stress for
the triangular network of the same relative density (by a factor of ~ 2.3).

Compare op and S, for a low-density Kagome (or triangular)
network (p<1) subject to uniaxial tension in the y-direction. The former
scales with pEy, while the latter scales approximately with pS;. The ratio
between the two, o /S, scales with szf /S¢. Thus, the dimensionless
group, p*E; /Sy, determines if the network fails before or after the onset
of fiber buckling. If op/Ses > 1, fracture of the brittle fibers initiates
before onset of buckling, which is the case of pre-buckling failure for a
network with a relatively large value of p2E;/S; (high relative density
and low fiber strength). Otherwise, if 65/Ses < 1, fiber buckling occurs
before fracture, which is the case of post-buckling failure for a network
with a relatively small value of p2E;/S; (low relative density and high
fiber strength). The effective tensile strength of the network due to the
post-buckling failure cannot be predicted by the linear truss or beam
model. Next we present a numerical method to simulate both the pre-
buckling and post-buckling failure of Kagome networks.

3. Finite element method

Similar to a previous work (Mane et al., 2021), we use the second-
order Timoshenko beam elements in ABAQUS to model the fibers. The
fiber material is assumed to be linearly elastic and brittle, characterized
by Young’s modulus Ef, Poisson’s ratio vy (=0.3), and a tensile strength
Sy. In order to model the elastic-brittle behavior of the fibers, we use a
combination of two options in ABAQUS: (a) Progressive Damage and
Failure and (b) User Defined Field Variable. This approach requires
definition of an elastic—plastic response of the material along with a
damage initiation criterion followed by damage evolution. Here, the
elastic-brittle behavior is modeled by setting the yield strength to be Sf
under tension and the critical strain for damage initiation to be & =
S¢/Ey, so that the plastic strain is zero between yielding and damage
initiation. The subsequent damage evolution is specified in a tabular
manner to degrade Young’s modulus of the damaged material, so that
the local stress drops to nearly zero. We assume that the fiber fails under
tension only and remains linearly elastic under compression. The user-
defined field variable is employed to model the tension-compression
asymmetry. In the Timoshenko beam elements, the local stress and
strain are evaluated at the section points along each cross-section of the
beam located at the integration points of each element. Thus, each
section point follows the elastic-brittle behavior, with Young’s modulus
degraded upon damage initiation. Each beam element may be partly
damaged when a subset of its section points are damaged but the other
section points are not.

As an example, we demonstrate the damage model by simulating an
elastic-brittle fiber subject to three-point bend (Fig. 3). Here, the fiber is
simply supported at both ends, and a point force is applied in the
transverse direction at the center section of the fiber. The cross-section
of the fiber is square with a depth d, and the ratio between the depth
and the fiber length is d/L = 0.05. The fiber is modeled with 80 s-order
Timoshenko elements. Each element has two integration points, and the
number of section points across the depth of the beam is varied from 11
to 81. The simulated force-displacement responses in Fig. 3 show that at
least 41 section points are necessary for convergence and accuracy, in
comparison with the analytical prediction. Upon damage initiation, the
force drops to zero, as expected for an elastic-brittle material subject to
three-point bend. The numerical results in Fig. 3 show that the initiation
of failure is slightly delayed at §/L = 0.034 (with 41 or 81 section
points), while the analytical solution predicts failure at §/L = 0.033.
This delay is due to the fact that the damage initiation is determined by
the maximum local stress and strain evaluated at the integration points,
located slightly to the left or right of the node at the center section, while
theoretically the maximum local stress and strain occur exactly at the
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Fig. 3. Force-displacement response of an elastic-brittle fiber (Sy/E; = 0.01)
subject to three-point bend, using different numbers of section points (SP) in
beam elements.

center section. The difference between the local stresses at the center
section and at the closest integration points can be reduced by reducing
the element size at the center where the point force is applied, which
would then improve the agreement between the numerical result and
the analytical prediction.

The finite element method with the damage model has been used for
the study of the tensile strengths of periodic 2D networks, including
Kagome, triangular and square networks (Mane, 2023). Implicit dy-
namic simulations are performed in ABAQUS, with Rayleigh stiffness
proportional damping for stabilization. To minimize the dynamic effect,
we apply sufficiently low strain rates so that the results are quasistatic
with negligible kinetic energy. We caution that the damping coefficient
(#) should be selected carefully, because a large damping coefficient
could lead to inaccurate results. For the three-point bend problem,
damping is not needed. Using damping with a small coefficient (§ =
10~*) gives similar numerical results, but the convergence is faster with
damping in the simulation. However, using a larger damping coefficient
would lead to a more progressive failure, uncharacteristic of the ex-
pected brittle failure, although the peak force corresponding to damage
initiation is unaffected.

4. Unit cell model: Strength and failure modes

This section presents the numerical results for Kagome networks
subject to uniaxial tension, based on the unit cell model (Fig. 1a) with
periodic boundary conditions. The objective of the unit cell model is to
determine the effective tensile strength for damage initiation and the
corresponding failure modes.

Fig. 4 shows the simulated effective stress-strain behavior of the
Kagome networks subject to uniaxial tension in the y-direction, with a
relative density p = 0.118 and various values of the fiber strengths (& =
Sf/Ef). As shown previously in Mane et al. (2021), the stress—strain
curve of the low-density Kagome network follow the linear response (the
dashed line in Fig. 4) with an effective Young’s modulus, E ~ % PE;,
before onset of buckling. However, the effective stiffness of the network
is significantly reduced after buckling. The critical strain for onset of
buckling is approximately 0.027 for p = 0.118, as predicted by Eq.
(2.16). If the fiber strength is low (e.g., & = 0.02), damage initiation
occurs before onset of buckling, upon which the effective stress drops to
nearly zero. In this case, the effective strength of the network may be
estimated by the elastic beam model, Seir &~ 1pS¢(1 —p) in Eq. (2.14). In
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Fig. 4. Effective stress-strain curves of Kagome networks (p = 0.118) subject
to uniaxial tension in the y-direction, for various values of the fiber strength
(¢r = Sy/Ey). The inset shows the unit cell and the direction of uniaxial tension.

contrast, if the fiber strength is high (e.g., &f = 0.1), damage initiation
occurs after buckling. In this case, the effective strength of the Kagome
network is much lower than the prediction of the elastic beam model,
and the stress—strain curve resembles an elastic—plastic behavior, with a
“yield strength” corresponding to the onset of buckling and an “ulti-
mate” tensile strength corresponding to damage initiation.

While the linearly elastic behavior of the Kagome network is
isotropic, the nonlinearly elastic behavior is anisotropic (Mane et al.,
2021). Moreover, the linear beam or truss model predicts that the tensile
strength is also anisotropic, lower in the x-direction compared to the y-
direction (Table 1). Fig. 5a shows the simulated effective stress—strain
behavior of Kagome networks subject to uniaxial tension in the x-di-
rection, with a relative density p = 0.118 and various values of the fiber
strengths. In all cases, the effective stress—strain response closely follows
the linearly elastic behavior before damage initiation, slightly softer as
the strain increases, due to geometric nonlinearity in the finite element
model. Upon damage initiation, the effective stress drops to a very small
value, compared to the maximum stress. Remarkably, after damage
initiation, the effective stress of the network is not necessarily zero in
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Fig. 5. Effective stress—strain curves of Kagome networks (p = 0.118) subject
to uniaxial tension in the x-direction, for various values of the fiber strength
(er = Sy/Ey). The inset shows the unit cell and the direction of uniaxial tension.
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this case. It is found that, before damage initiation, the fibers parallel to
the x-direction are primarily under tension, while the stress is much
lower in the slanted fibers. As a result, the fibers parallel to the x-di-
rection are damaged first, and subsequently the unit cell of the Kagome
network is degraded to a unit cell of a diamond network with only the
slanted fibers that remain intact and connected. The fiber deformation in
the unit cell of the diamond network is bending dominated and much
more compliant so that the effective stress is much lower after damage
initiation. However, it should be noted that, after the first damage
initiation, the progression of damage in Kagome networks with many
unit cells usually cannot be predicted by the unit-cell model. Never-
theless, the effective strengths of the Kagome networks are determined
by the first damage initiation and thus can be predicted by the unit-cell
model.

The effective tensile strengths of the Kagome networks are predicted
by the maximum tensile stress in the effective stress—strain curves from
the finite element simulations, corresponding to the first damage initi-
ation in the unit cell model. Fig. 6(a and b) shows the effective strength
as a function of the relative density for the Kagome networks subject to
uniaxial tension in the x and y directions, respectively. For uniaxial
tension in the x-direction, the effective strength follows the linear
scaling with respect to the relative density, S, ~ 1 pSs, as predicted by
the elastic beam model. For all values of the fiber strength considered
(0.01 < & < 0.1), the ratio S.4/Sy collapses onto the same line in Fig. 6
(a). In contrast, for uniaxial tension in the y-direction, the effective
strength does not follow the linear scaling, and the ratio S, /Sy does not
collapse onto the same line in Fig. 6(b). While the elastic beam model
predicts a higher strength in the y-direction, Sey ~ 1pS;, the prediction
does not consider the nonlinearly elastic behavior due to buckling and
thus generally overestimates the tensile strength in the y-direction. The
elastic beam model without buckling is valid only if the damage initia-
tion occurs before onset of buckling, that is, when the fiber strength is
low (e.g., & = 0.01) and the relative density of the network is high (e.g.,
p = 0.118). For a higher fiber strength or a lower relative density, the
tensile strength of the Kagome network in the y-direction is significantly
lower than the linear prediction. As noted in Mane et al. (2021), the
elastic deformation of the Kagome networks is stretch-dominated before
onset of buckling, but becomes bending-dominated after buckling, and
transitions back to stretch-dominated at large strains. The transitions in
the deformation mode lead to different scaling for the tensile strength,
Ser/Sy p for the stretch-dominated deformation and Sy /Sy p? for the
bending-dominated deformation. Fig. 6(b) shows that, for the case of a
low fiber strength (e.g., &r = 0.01), the effective tensile strength of the
Kagome network follows the linear scaling at high relative densities, but
transitions to the quadratic scaling at low densities. This transition
corresponds to the transition from the stretch-dominated deformation
before buckling (high density and small strain) to the bending-
dominated deformation after buckling (low density and small strain).
For the case of a high fiber strength (e.g., & = 0.1), the effective tensile
strength follows the quadratic scaling at high relative densities, but
transitions to the linear scaling at low densities. This transition appears
opposite to the case of a low fiber strength, and corresponds to the
transition from the bending-dominated deformation after buckling (high
density and large strain) to the stretch-dominated deformation at large
strains (low density and large strain).

Next we examine the failure modes of Kagome networks. Fig. 7
shows the simulated deformations of a Kagome network subject to
uniaxial tension in the x-direction. The color contour shows the beam
stress in the fibers. Before damage initiation (Fig. 7a), the horizontal
fibers are under tension, while the slanted fibers are bent slightly with a
much smaller stress magnitude. All fibers deform elastically until the
maximum tensile stress in the horizontal fibers reaches the fiber strength
Sy, at & ~ 0.057. This strain is slightly below & = 0.06, because the
local strain in the horizontal fibers near the SH joints is slightly higher
than the applied strain ¢y, due to a small bending deformation. As a
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Fig. 6. Effective tensile strength of the Kagome network predicted by the finite element simulations, subject to uniaxial tension (a) in the x direction and (b) in the y
direction. The dashed lines show the linear scaling, and the dotted line in (b) shows the quadratic scaling.

(a)

Fig. 7. Deformation and failure of a Kagome network (p = 0.118 and & =
0.06), subject to uniaxial tension in the x-direction. (a) &x = 0.0567, before
damage initiation; (b) &x = 0.0573, immediately after damage initiation near
the SH joints (circled). The color contours show the beam stress in the fibers.

result, damage initiation occurs in the horizontal fibers near the SH
joints circled in Fig. 7(b). Upon damage initiation, the horizontal fibers
are compromised due to brittle failure, but the slanted fibers remain
intact so that the network retains connectivity. Thus, when the Kagome
network is subject to uniaxial tension in the x-direction, the primary
failure mode is the brittle fracture of the horizontal fibers, same for all
relative densities and fiber strength values considered. Therefore, the
effective tensile strength of the low-density Kagome network in the x-
direction can be predicted reasonably well by the elastic beam model,
Sef ~ LpSy, as shown in Fig. 6(a). We note that the simpler truss model

L

VW

€, = 0.0127 €, = 0.0133

predicts a uniform tensile stress in the horizontal fibers before damage
initiation, and thus cannot predict the location of damage initiation.
Both the elastic beam model and the finite element simulations predict
that the damage initiation occurs in the horizontal fibers near the SH
joints, due to the small bending deformation of the fibers near the SH
joints.

Several different failure modes are predicted for the Kagome net-
works subject to uniaxial tension in the y-direction. Corresponding to
the effective stress-strain curves in Fig. 4, there are two failure modes
for the Kagome networks with p =0.118, as shown in Fig. 8. For the case
of alow fiber strength (¢f = 0.01), damage initiation occurs before onset
of buckling (Fig. 8a-b). As predicted by the elastic beam model, the
slanted fibers are under tension (red) and the horizontal fibers under
compression (blue) before damage initiation. The local tensile stress is
the highest near the SS joints between two slanted fibers. When the local
tensile stress reaches the fiber strength, damage initiation occurs in the
slanted fibers near the SS joints, and the effective stress of the network
drops to nearly zero. This is a case of pre-buckling failure (S < o),
which is expected for the Kagome network of a relatively high density
and low fiber strength. The effective tensile strength for this failure
mode can be well predicted by the elastic beam model without buckling,
namely, Seir ~ (1 —p)pS; by Eq. (2.14).

For the Kagome network with p = 0.118 and a higher fiber strength
(¢s = 0.06), the higher fiber strength allows the horizontal fibers to
buckle before damage initiation (Fig. 8c-d). After buckling, the location
of the highest local stress in the fibers changes from the SS joints to the
SH joints. The bending deformation becomes significant near the SH
joints due to buckling of the horizontal fibers, causing higher tensile
stress in the slanted fibers near these joints. Upon damage initiation, the
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Fig. 8. Failure modes of a Kagome network (p = 0.118) subject to uniaxial tension in the y-direction. (a-b) Pre-buckling failure for & = 0.01, before and after
damage initiation near the SS joints (circled). (c-d) Post-buckling failure for &, = 0.06, before and after damage initiation near the SH joints (circled). The color

contours show the beam stress in the fibers.



S.M. Mane et al.

slanted fibers fail completely at the SH joints, and the effective stress of
the network drops to nearly zero (Fig. 4). This is a case of post-buckling
failure (Se > o), which is expected for the Kagome network of a
relatively high fiber strength. The effective tensile strength for this
failure mode can be considerably lower than that predicted by the linear
beam model (Fig. 6b).

In addition, two other failure modes are predicted for Kagome net-
works with a lower relative density, subject to uniaxial tension in the y-
direction. Fig. 9a shows the effective stress—strain curves for the Kagome
networks with a relative density p = 0.079. Similar to Fig. 4, the
effective stress drops to nearly zero before onset of buckling when the
fiber strength is low (¢; = 0.01), indicating the pre-buckling failure near
the SS joints, similar to that shown in Fig. 8(a-b). For & = 0.04, the
effective stress drops to nearly zero after buckling, indicating the post-
buckling failure near the SH joints, similar to that shown in Fig. 8
(c—d). However, for & = 0.07 and 0.1, the effective stress first drops to
an intermediate level, followed by an increase and a second drop. This
type of stress-strain behavior results from a different failure mode
shown in Fig. 9(b-e). Fig. 9(b) shows the deformation of the Kagome
network with p = 0.079 and & = 0.07 before damage initiation, with
significant buckling of the horizontal fiber segments. In this case, the
location of the highest tensile stress in the fibers shifts to the center of
the buckled fiber segments, where the bending curvature is the largest.
While the horizontal segments are under compression overall, signifi-
cant bending due to buckling induces a high tensile stress locally at the
crest, surpassing the tensile stress in the slanted fibers. Consequently,
the first damage initiation occurs in the horizontal fiber segments near
the center (away from the joints). Interestingly, this damage initiation
does not lead to complete failure of the horizontal fiber segments. As
shown in Fig. 9(c), the horizontal fibers remain connected, but the local
stress is reduced at the center, indicating partial failure of the horizontal
fibers. As a result, the effective stress of the network drops, but not as
much as it would if the horizontal fibers were fully damaged. The partial
failure of the buckled fiber segments may be understood as a result of the
overall compression of the horizontal fibers, stabilizing damage evolu-
tion under the displacement-controlled loading. Subsequently, the
Kagome network becomes more compliant but remains connected with
partially damaged horizontal fibers (Fig. 9d). The location of the highest
local stress now shifts back to the slanted fibers near the SH joints, where
the second damage initiation occurs (Fig. 9¢). The effective stress drops
to nearly zero upon the second damage initiation, when the slanted fi-
bers fail near the SH joints, leading to complete loss of the network
connectivity. Again, it is noted that, after the first damage initiation, the
progression of damage in Kagome networks with many unit cells cannot
be predicted by the unit-cell model. In this case, the effective tensile
strength of the Kagome network is associated with the first damage
initiation due to post-buckling failure of the horizontal segments. The

(a) 0-02 : i (b)
0.015
=
5 0.01
3
—er = 0.01
0.005 o =004

— ey =007 ¥

L

oty =0.1

= = Linear
0 f .
0 002 004 0068 008 01 0.12

€y

€, = 0.0487

International Journal of Solids and Structures 302 (2024) 112987

deformation just before the first damage initiation is elastic and bending
dominated, and thus the effective tensile strength of the network follows
the quadratic scaling (S /Sy ~ p?) as shown in Fig. 6(b).

Yet another mode of failure is predicted for the cases of the lowest
relative density considered (p = 0.02), with the two highest fiber
strengths (¢f = 0.09 and 0.1) considered. As shown in Fig. 10(a), the
effective stress—strain curve for such a low-density Kagome network is
linear only at very small strains, with a small critical strain (~0.002) for
the onset of buckling. Thus, the pre-buckling failure is unlikely in this
case. After buckling, the effective stress-strain curve of the network is
nearly flat at small strains but stiffens significantly at large strains, as the
fiber deformation transitions from bending-dominated to stretch-
dominated. Such a nonlinear and elastic behavior is similar to strain
stiffening in polymer networks (Boyce and Arruda, 2000). When the
fiber strength is low (¢ < 0.09), post-buckling failure of the horizontal
segments occurs first, followed by failure of the slanted segments near
the SH joints, similar to Fig. 9(b-e). When the fiber strength is high
(¢s = 0.09 and 0.1), however, the tensile stress in the buckled fiber
segments is insufficient to cause damage initiation. Instead, significant
stiffening occurs as the slanted fibers rotate to align with the loading
direction. Although the horizontal fiber segments are buckled with
significant bending deformation, the overall deformation of the network
becomes stretch-dominated, and the location of the maximum tensile
stress shifts back to the slanted fibers near the SS joints (Fig. 10b).
Consequently, damage initiation occurs near the SS joints (Fig. 10c), and
the effective stress of the network drops to nearly zero upon damage
initiation. While the location of damage initiation in this case is the same
as the pre-buckling failure mode (Fig. 8b), we note that the post-
buckling failure near the SS joints cannot be predicted by the linear
beam or truss mode. The corresponding tensile strength is much lower
than the prediction of the elastic beam model (see Fig. 6b), and the
effective strain at failure is much larger. Thus, with significant buckling
of the horizontal fiber segments, the low-density Kagome network is
very stretchable, similar to a diamond network (as if the horizontal fi-
bers do not exist).

The four different failure modes of the Kagome networks subject to
uniaxial tension in the y-direction are summarized in a phase diagram
(Fig. 11), in the plane of the relative density p and the normalized fiber
strength (¢ = Sy/Ey), where different failure modes from the numerical
simulations are marked by different symbols in four regions (A-D). We
emphasize that these failure modes refer only to the first damage initi-
ation predicted by the unit-cell model. The boundary between the pre-
buckling failure (Region A) and the post-buckling failure (Regions B-
D) can be determined from Eq. (2.16), which predicts a critical strain for
onset of buckling, e ~ p2. Before onset of buckling, the local stress in
the fiber is linearly proportional to the effective strain applied to the
network. Thus, the highest fiber strength for the pre-buckling failure is
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Fig. 9. (a) Effective stress—strain curves of Kagome networks (p = 0.079) subject to uniaxial tension in the y-direction, with various values of the fiber strength. (b-e)
Post-buckling failure of the horizontal segments and then SH joints in a Kagome network (p = 0.079,& = 0.07), subject to uniaxial tension in the y-direction: (b)
before the first damage initiation; (c) immediately after the first damage initiation, with partial damage in the buckled fiber segments (circled); (d) before the second
damage initiation; and (e) after the second damage initiation at SH joints (circled). The color contours show the beam stress in the fibers.
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Fig. 10. (a) Effective stress-strain curves of Kagome networks of a low relative density (p = 0.02) and high fiber strengths (¢f = 0.09 and 0.1), subject to uniaxial
tension in the y-direction. (b-c) Post-buckling failure of the Kagome network (p = 0.02,& = 0.09), before and after damage initiation at the SS joints (circled),
showing only the upper half of the unit cell.(The finite element model did not account for possible contact between the fibers. However, in this case, the horizontal

fiber segments are buckled so much that they contact and cross the slanted fibers.).
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Fig. 11. A phase diagram of failure modes in Kagome networks, subject to
uniaxial tension in the y-direction. Region A (diamonds): pre-buckling failure
near SS joints; Region B (triangles): post-buckling failure near SH joints; Region
C (circles): post-buckling failure of horizontal segments; Region D (squares):
post-buckling failure near SS joints.

proportional to the buckling strain (e ~ p?) and scales with the relative
density quadratically shown as the red dashed line in Fig. 11. Interest-
ingly, the same scaling appears to be valid for the boundaries between
the three post-buckling failure modes, shown as the blue and green
dashed lines in Fig. 11, although the boundary between Regions C and D
may not be well defined with only two data points in Region D.
Evidently, a low-density Kagome network is likely to fail by one of the
post-buckling modes, so that the effective tensile strength in the y-di-
rection is lower than the prediction of the elastic beam or truss model. A
similar phase diagram of the failure modes has been constructed for the
triangular networks (Mane, 2023).

5. Effect of boundary conditions
In this section we study the effect of boundary conditions on the

tensile strength of Kagome networks consisting of a large number of unit
cells. In particular, we consider rectangular panels made from Kagome

networks, as in typical experiments for measuring mechanical properties
(Guetal., 2018; Luan et al., 2022). Since the effective Poisson’s ratio of a
Kagome network is 1/3 in the linear regime and becomes much larger
after buckling under uniaxial tension in the y-direction (Mane et al.,
2021), the mechanical behavior of the Kagome network can be sensitive
to the boundary conditions.

5.1. Periodic boundary condition

First consider Kagome networks of different sizes, subject to uniaxial
tension in the y direction under periodic boundary conditions. We
simulate the deformation and failure of these networks by the same
finite element method as for the unit-cell model in Section 4. In a pre-
vious study (Mane et al., 2021), we have shown that, for a perfect
Kagome network, buckling occurs simultaneously in all unit cells, and
the post-buckling elastic deformation remains periodic. Thus, we expect
that damage initiation under the periodic boundary condition remains
the same as that in the unit-cell model. Indeed, the effective stress—strain
responses under the periodic boundary conditions are similar to those
predicted by the unit-cell model (e.g., Fig. 4). In particular, the effective
tensile strength associated with the first damage initiation is nearly
identical to that predicted by the unit-cell model (Fig. 6b), independent
of the network size. However, after damage initiation, the stress—strain
responses are somewhat different for different network sizes (Mane,
2023), indicating potentially different damage progression in the
Kagome networks after damage initiation. In the present study, we
consider only perfect Kagome networks in numerical simulations under
the periodic boundary condition. The fact that not all unit cells are
damaged simultaneously in a perfectly periodic Kagome network can
only be attributed to some inevitable numerical noises in the simula-
tions. In reality, with flaws or imperfections in the Kagome networks,
such heterogeneous damage initiation commonly occurs, which, how-
ever, is beyond the scope of the present study. By considering only
perfect Kagome networks under the periodic boundary conditions, our
focus here is on the effective tensile strength associated with damage
initiation, not so much about damage propagation.

5.2. Roller boundary condition

Next, we apply a roller boundary condition to the upper and lower
edges of the Kagome network (Fig. 12a), while leaving the two vertical
edges free. The vertical displacement is zero at the lower edge, and a
constant vertical displacement is imposed to the upper edge, stretching
the network in the y-direction. The roller boundary condition allows
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Fig. 12. (a) A Kagome network subject to uniaxial tension in the y-direction under the roller boundary condition. (b) Effective elastic stress—strain curves for Kagome
networks (p = 0.118 and n, = 5) of various sizes (n,), subject to uniaxial tension in the y-direction with the roller boundary condition.

lateral contraction in the x-direction due to Poisson’s effect, with no
restriction on the horizontal displacement or rotation at the edges. The
free vertical edges resemble free surfaces of a finite body. By symmetry,
only one half of the network is simulated in the finite element model,
with a symmetry boundary condition along the vertical center line.
Fig. 12(b) shows the effective stress—strain curves for Kagome net-
works (p = 0.118) with the roller boundary condition. The size of the
network is varied by the number of unit cells in the x-direction (n,),
while the number of unit cells in the y-direction is fixed (n, 5). The
nominal strain of the network in the y-direction is related to the vertical
displacement imposed at the upper edge, & = u,/L,, where L, =

2V/3Ln,. The effective nominal stress is calculated from the reaction
forces, o, = Fy/(Lxd), where L, = 2Ln, and F, is the sum of all reaction
forces in the y direction along the upper edge. Compared to the elastic
response under the periodic boundary condition, the elastic response is
more compliant under the roller boundary condition, and is dependent
on the network size (n,). As n, increases, the network becomes stiffer,
and approaches the elastic stress—strain response under the periodic
boundary condition when n, > 40. This result resembles the surface
effect in crystals and edge effects in 2D crystals such as graphene (Lu
et al., 2011). Evidently, the network is locally more compliant near the
free edges, so that the overall response of the Kagome network is more
compliant under the roller boundary condition with two free edges. As
n, increases, the fraction of the network near the free edges decreases,
and the edge effect diminishes. Similar edge effects were noted by Fleck
and Qiu (2007), indicating the presence of a boundary layer at the free
edge of a Kagome network subject to either tension or shear loading.
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To investigate the inelastic responses of Kagome networks under the
roller boundary condition, we select a relatively large network model
with n, = 100 and n, = 5 so that the edge effect on the elastic response
is negligible. Fig. 13(a) shows the effective stress—strain responses of the
Kagome networks with various tensile strengths of the fiber (¢f = Sf/Ey).
When ¢ is relatively large (>0.04), the stress—strain response is similar
to that under the periodic boundary condition (Fig. 4). However, for &; =
0.02, the effective stress-strain response under the roller boundary
condition appears different than that under the periodic boundary
condition. Here, damage initiation occurs earlier as the stress—strain
response deviates from linear elasticity, but the effective stress continues
to increase after damage initiation, reaching a peak and then decreasing.
Such a stress-strain response indicates a progressive damage process
(Fig. 14).

Fig. 14(a) shows a “diffusive” damage progression in a Kagome
network (p = 0.118, ¢ = 0.02, n, = 100, n, = 5) under the roller
boundary condition, where the damage process starts at the free edge
and gradually “diffuse” inwards as the applied nominal strain &, in-
creases. At &, = 0.00933, the network is elastic, with no damage in any
fiber segments. The axial force is nearly uniform in all slanted fiber
segments except for those near the free edge, where the axial force is
lower. The horizontal fibers are mostly straight without buckling, but
with some bending deformation near the free edge. At &, = 0.0167,
damage initiation first occurs near the upper and lower corners of the
free edge, and the axial force is reduced in a layer of fiber segments near
the free edge. The distribution of the axial force in the fibers reflects the
damage progression. As the nominal strain increases, damage progresses
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Fig. 13. (a) Effective stress—strain curves of Kagome networks subjected to tension in the y-direction under the roller boundary condition (p = 0.118,n, = 100,n, =
5), with various tensile strengths of the fiber. (b) Normalized damage initiation and ultimate tensile strengths of the Kagome networks (p = 0.118) under the roller
boundary condition, in comparison with the effective tensile strength under the periodic boundary condition.
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Fig. 14. (a) Damage progression in a Kagome network under the roller boundary condition (¢ = 0.02,p = 0.118,n, = 100,n, = 5), with color contours of axial
force in the fibers. (b) Normalized reaction force along the upper edge of the Kagome network.

inward from the free edge, and the axial force is reduced in an different damage initiation and progression under the roller boundary
increasingly thicker layer of fiber segments, resembling a diffusion condition, as shown in Fig. 15 for & = 0.1. Here, damage initiation
process. Such a diffusive damage progression can also be shown by the occurs after buckling of the horizontal fibers, and the effective stress
reaction forces along the upper boundary of the Kagome network drops sharply upon damage initiation. Although the network is more
(Fig. 14b). At e, = 0.00933, the reaction force is a constant except for a compliant near the free edge with more bending deformation, damage
transition region toward the free edge, where the reaction force is lower. initiation occurs simultaneously throughout the entire network at ¢, =
At e, = 0.0167, the reaction force drops slightly at the joint closest to 0.066, similar to the case under the periodic boundary condition.
the free edge, but increases elsewhere. Thus, damage initiation in this However, the corresponding failure mode is different. Under the peri-
case is localized near the free edge, and the overall effective stress of the odic boundary condition, the post-buckling failure would occur in the
network continues to increase with the nominal strain e,. This is in slanted segments near the SH joints (Region B in Fig. 11). Under the
contrast with the abrupt drop of the effective stress upon damage roller boundary condition, our simulation shows that damage initiation
initiation in the same Kagome network (¢ = 0.02) under the periodic occurs in the buckled horizontal segments with partial damage
boundary condition (Fig. 4). The effective stress continues increasing till (Fig. 15a). Subsequently, a periodic deformation pattern emerges at &, =
e, = 0.02, at which point the reaction force drops to nearly zero at the 0.0667 (Fig. 15b), with localized shear deformation along the bound-
joint closest to the free edge, and the transition region has expanded aries between triangular and diamond shaped “domains”. Meanwhile,
further inward. As the nominal strain increases further, a damage region the damaged network contracts significantly in the x-direction. After
emerges near the free edge with nearly zero reaction forces. As the buckling and partial damage of the horizontal fibers, the Kagome
damage region expands, the effective stress decreases, despite that the network becomes more compliant, with a low resistance to shear along
reaction force continues to increase in the undamaged region away from the diagonal directions, similar to a diamond-celled lattice (Quintana
the free edge. Eventually, at ¢, ~ 0.025, the entire network is consumed Alonso and Fleck, 2009). Consequently, the homogeneous deformation
by the damage region, and the effective stress drops to nearly zero becomes unstable and gives way to inhomogeneous, localized shear
(Fig. 13a). deformation, resembling shear bands in metals (Needleman and Tver-

For the case of a relatively high fiber strength (¢; > 0.04), we observe gaard, 1992).
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Fig. 15. Deformation and damage in a Kagome network under the roller boundary condition (¢; = 0.1,p = 0.118,n, =100,n, = 5), with color contours showing the

axial force in the fibers. (a) ¢, = 0.066, immediately after damage initiation, and (b) &, = 0.0667, with localized shear deformation between triangular and diamond
shaped “grains” (illustrated by the dash-lined shapes).
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The effective tensile strengths of the Kagome networks under the
roller boundary condition are compared with those under the periodic
boundary condition in Fig. 13(b). For a relatively low fiber strength
(er < 0.04), the initiation and ultimate tensile strengths are different,
and both are considerably lower than those under the periodic boundary
condition. As shown in Fig. 14, the lower strength in this case is due to
damage initiation near the free edges, followed by a diffusive damage
progression. In contrast, for a relatively high fiber strength (¢ > 0.04),
the initiation and ultimate tensile strengths are nearly identical and
compare closely with those under the periodic boundary condition. In
this case, the presence of free edges does not influence the effective
strength of the network, and damage initiation occurs spontaneously
throughout the network (Fig. 15). Incidentally, the transition from the
edge-induced diffusive damage to the edge-independent spontaneous
damage under the roller boundary condition coincides with the transi-
tion from the pre-buckling failure to the post-buckling failure under the
periodic boundary condition as shown in Fig. 11 for p = 0.118.

5.3. Clamped boundary condition

A more realistic model close to common experimental conditions is
to have the upper and lower edges of the Kagome network clamped
(Fig. 16a), while leaving the two vertical edges free. In this case, both the
vertical and horizontal displacements as well as the rotations are
restricted to be zero along the lower edge, and a constant vertical
displacement is imposed on the upper edge along with zero horizontal
displacement and zero rotation. As a result, lateral contraction of the
Kagome network is restricted except for the regions near the free edges.
By symmetry, only one half of the network is simulated in the finite
element model, with a symmetry boundary condition along the vertical
center line.

Fig. 16(b) shows the effective elastic response of Kagome networks
with the clamped boundary condition, for the relative density p = 0.118
and different network sizes. Unlike the periodic or the roller boundary
condition, the Kagome networks under the clamped boundary condition
exhibit nearly linear effective stress—strain behaviors, with no sign of
buckling. For a sufficiently large n, (>>n,), most part of the network is
subject to a biaxial tension with zero strain in the x direction (e, = 0),
due to the constraint imposed by the clamped boundary condition along
the upper and lower edges. In this case, the horizontal fibers are not
under compression and thus do not buckle. With the effective Young’s
modulus Eg ~ % pE; and the effective Poisson’s ratio v ~ %, the

apparent stiffness for a large Kagome network with the clamped

E Lo
9 = 2E., which is
o

boundary condition can be predicted as: Eqyp = —

(a)
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slightly stiffer than the same network under the periodic boundary
condition. As shown in Fig. 16(b), for n, = 100 and n, =5, the apparent
stiffness is close to E‘app (which is the theoretical limit for ny—c0). For a
smaller n,, the network is more compliant, due to the presence of the
free edges.

Fig. 17 shows the deformation of a Kagome network of size n, = 40,
n, =5 and a relative density p = 0.118, under the clamped boundary
condition. It can be seen in Fig. 17(a) that the strain energy density is
lower in the fibers near the free edge, although locally higher near some
joints. At a higher nominal strain (¢, = 0.1), the network contracts
laterally in the middle but remains constrained at the upper and lower
edges by the clamped boundary condition (Fig. 17b). Such a deforma-
tion is similar to a thin membrane in a pure shear test (Rivlin and
Thomas, 1953). As a result, the deformation in the network is inhomo-
geneous, with more bending near the free edge. Away from the free
edge, the deformation of the network is nearly homogeneous. The hor-
izontal fibers are buckled only in the region near the free edge, and
remain straight elsewhere. Notably, the highest strain energy density
appears in the fiber segments close to the upper/lower corners of the free
edge, where damage initiation is likely to occur.

Fig. 18(a) shows the effective stress—strain responses of the Kagome
networks of size (n, =60,n, =5) with various fiber strengths, under the
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Fig. 17. Deformed Kagome network (half model) under the clamped boundary
condition (p = 0.118,n, = 40,n, = 5). (a) & = 0.01 and (b) &, = 0.1, with
color contours showing the strain energy density in the fibers.
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Fig. 16. (a) A Kagome network subject to uniaxial tension in the y-direction under the clamped boundary condition. (b) Effective elastic stress—strain curves for the
Kagome networks with the clamped boundary condition (p = 0.118,n, = 5), for various network sizes (1,).
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Fig. 18. (a) Effective stress—strain curves of Kagome networks with the clamped boundary condition (p = 0.118,n, = 60,n, = 5), with various fiber strengths. (b)
Normalized tensile strengths of the Kagome networks under the clamped boundary condition, in comparison with the effective tensile strengths under the periodic

and roller boundary conditions.

clamped boundary condition, and Fig. 18(b) shows the effective strength
of the Kagome networks. For & = 0.02, the effective strength is similar
to the damage initiation strength under the roller boundary condition,
which is lower than that under the periodic boundary condition. For
both the clamped and roller boundary conditions, the presence of the
free edges lowers the effective tensile strength for the Kagome network
with a relatively low fiber strength (e; < 0.04). In contrast, for a rela-
tively high fiber strength (¢; > 0.04), the effective tensile strength of the
Kagome network under the clamped boundary condition is higher than
that under the periodic or roller boundary condition. In this case, since
buckling is largely suppressed by the clamped boundary condition, the
effective stiffness of the Kagome network remains relatively high before
damage initiation, and the effective tensile strength exceeds the critical
stress for onset of buckling under the periodic boundary condition. For
g = 0.1, the effective tensile strength of the Kagome network under the
clamped boundary condition is about twice of that under the periodic
boundary condition. This result is independent of the network size as
long as n,>>n,.

€y = 0.0607,

(b)

Fig. 19(a) shows damage initiation and progression in a Kagome
network of the relative density p = 0.118 with & = 0.1, under the
clamped boundary condition. The network remains elastic with stretch-
dominated fiber deformation at the nominal strain e, = 0.058, with
bending of fiber segments near the free edge. Damage initiation occurs
ate, = 0.06, starting from the slanted fiber segments near the upper and
lower corners of the free edge and almost instantaneously growing in the
diagonal direction towards the mid-plane of the network. Subsequently,
the damage grows like a crack along the mid-plane towards the center of
the network. The strain energy is largely relaxed in the fibers behind the
crack front, shown in blue. Ahead of the crack front, the strain energy
density remains high in the fibers, shown in green and yellow. The
highest strain energy density appears in a few fiber segments near the
crack front, shown in red. The damage progression resembles steady-
state crack growth in a long strip (Rivlin and Thomas, 1953). Notably,
more than one layer of fiber segments are damaged along the crack.

Fig. 19(b) shows the vertical component of the reaction force along
the upper edge of the Kagome network under the clamped boundary

0.1, : T ' 7 ' 1
o—¢, = 0.058 ——e, = 0.0603 |
ey = 0.06 —a—e, = 0.0607

Fig. 19. (a) Damage initiation and progression in a Kagome network under the clamped boundary condition (p = 0.118,¢ = 0.1,n, = 60,n, = 5), with color
contours showing the strain energy density in the fibers. (b) Normalized reaction force (in the vertical direction) along the upper edge of the Kagome network, with

increasing nominal strain ,.
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condition. At &, = 0.058, the reaction force is slightly lower near the
free edge and transitions to a constant in the center region. This is ex-
pected as the network is more compliant near the free edge. After
damage initiation at e, = 0.06, the reaction force drops significantly
near the free edge. Surprisingly, the reaction forces are not zero at the
first two joints near the free edge, but drop to nearly zero at the next two
joints. Further away from the free edge, the reaction force transitions to
a constant value. As shown in Fig. 19(a), the crack-like defect appears to
nucleate slightly away from the free edge, leaving behind a partially
damaged boundary layer with some residual connectivity. By slightly
increasing the nominal strain, the reaction force drops to nearly zero at
increasingly more joints, with a steady-state transition to the undam-
aged part, while the partially damaged boundary layer near the free
edge remains. The distribution of the reaction force clearly reflects the
damage progression in the Kagome network shown in Fig. 19(a), with
nucleation and growth of a crack-like defect.

6. Effect of crack-like defect

Consider finite-sized rectangular panels made from Kagome net-
works under the clamped boundary condition. Since damage initiation is
likely to occur near the free edges, the presence of a crack-like defect at
the free edges could influence the damage initiation and thus the
effective strength of the Kagome network. Fig. 20(a) shows an example
of a Kagome network with a crack-like defect at the free edge on the left
side. The crack-like defect is introduced by removing two layers of
slanted fiber segments between two horizontal fibers close to the middle
plane of the network, similar to assuming that a layer of SS joints on the
middle plane are damaged (Fleck and Qiu, 2007). In this section, we
study the effect of the defect length (L.4k) on the effective strength,
damage initiation and progression in the Kagome networks under the
clamped boundary condition.

The inset of Fig. 20(b) shows that the stress—strain response of the
Kagome network under the clamped boundary condition is linear before
damage initiation, with an apparent stiffness decreasing with the
normalized defect length. As shown in Fig. 20(a), the size of the network
model is n, = 30 and n, = 5, with a symmetry boundary condition on
the right side. The defect length (L) is normalized by the length of the
network model, Lk = Leack/Lx, With Ly = 2n,L and L being the
segment length. The apparent stiffness of the Kagome network with a
crack-like defect is approximately linear with the defect length, namely

Eapp ~ ngf(]- - Lcrack) (61)

(a)
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Recall that Egy ~ % pE; and Egy, ~ g o for the Kagome network with

no defect. As shown in Fig. 20(b), the normalized stiffness (E"app /Ee) for
two different relative densities, p = 0.118 and 0.02, are nearly identical,
in good agreement with Eq. (6.1).

Assuming & = 0.1 for the fiber material, Fig. 21 shows the effective
stress—strain responses of the Kagome network (p = 0.118) with various
defect lengths. When the defect size is small (e.g., Liqk = 0.0333), the
effective stress—strain response is similar to that with no defect (Loqcx =
0), but with a slightly lower effective strength. The effective stress of the
network first drops to a lower level upon damage initiation at
&, ~ 0.0586, and then increases slightly with the increasing nominal
strain before dropping to nearly zero at &, ~ 0.0624. Such a stress—strain
response suggests that damage progression is different due to the pres-
ence of a small defect, but damage initiation is similar to that with no
defect. When the defect size is relatively large (e.g., Lyack = 0.167), the
effective strength is considerably lower, partly due to the reduced
stiffness. In this case, damage initiation occurs at a smaller nominal
strain (e, ~ 0.0554), but the effective stress drops slightly and then
continues to increase until it reaches an ultimate strength at
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Fig. 21. Effective stress-strain curves for Kagome networks (p = 0.118 and
g = 0.1) with various defect lengths, subject to uniaxial tension with the
clamped boundary condition.
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Fig. 20. (a) A Kagome network with a crack-like defect, subject to tension with the clamped boundary condition. (b) Apparent stiffness of the Kagome network as a
function of the normalized defect length. Inset: Elastic stress—strain responses of the Kagome networks (p = 0.118), with a crack-like defect of various lengths.
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€, ~ 0.0596. Such a stress—strain response suggests that, due to the
presence of a relatively large defect, both the damage initiation and
damage progression are different from the case with no defect. Notably,
the nominal strains for the damage initiation and for the ultimate
strength appear to be independent of the defect size as long as
Lerack > 0.167.

Fig. 22 shows the damage progression in the Kagome network with a
small defect (Lorqek = 0.0333 or Lok = 2L). At &, = 0.0585, just before
damage initiation, the deformation is similar to that with no defect
(Fig. 19a), with the highest strain energy density in the slanted fiber
segments close to the upper/lower corners of the free edge (Fig. 22a).
The presence of a small defect has little effect on the stress concentration
at the corners. At e, = 0.0587, just after damage initiation, several fiber
segments near the free edge are fractured, but not those near the small
defect (Fig. 22b). The damage is distributed from the upper/lower cor-
ners to the mid-plane of the network, forming a crack-like feature
slightly ahead of the small defect. At this point, the highest strain energy
density appears in the slanted fiber segments at the front of the crack-
like feature. Interestingly, this crack-like feature does not grow much
until the nominal strain increases to &, = 0.062 (Fig. 22c), and then
continues to grow in a steady state fashion (Fig. 22d). The steady-state
damage progression corresponds to the sharp drop of the effective
stress at &, ~ 0.0624 in Fig. 21. Compared to the Kagome network with
no defect (Fig. 19), the damage initiation is similar, but the damage
progression is different with the steady-state growth slightly delayed.

For a larger defect with Leyqk = 0.167 (Leger = 10L), the strain en-
ergy density contour in Fig. 23(a) shows that the highest strain energy
density before damage initiation (¢, = 0.0553) occurs in the slanted
fiber segments at the front of the crack-like defect, with no stress con-
centration at the corners. Consequently, damage initiates near the defect
front at a lower nominal strain (e¢y, ~ 0.0554) than that in Fig. 22. As the
damage process continues with increasing nominal strain, the defect
does not grow much until &, = 0.06, beyond which the damage pro-
gresses like steady-state crack growth. The corresponding reaction
forces along the upper edge of the Kagome network are shown in Fig. 23
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Fig. 22. Damage progression in a Kagome network with a small defect (p =
0.118,6f = 0.1,Lerqex = 0.0333). Color contours show the strain energy density
in the fibers.
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(b). Compared to the Kagome network with no defect (Fig. 19), both the
damage initiation and progression are different, but the steady state is
similar. Before damage initiation, the reaction forces near the free edge
are much lower, due to the presence of the crack-like defect. During the
steady-state growth, the reaction forces drop to nearly zero behind the
crack front, with no residual connectivity near the free edge.

Fig. 24 shows that the location of damage initiation in the Kagome
network with a crack-like defect depends on the length of the defect. As
the defect length increases, the location of damage initiation shifts from
the upper/lower corners of the free edge towards the front of the crack-
like defect. A small defect (e.g., Lok = 0.0333 or Leqc = 2L) has little
effect on damage initiation near the corners. In contrast, with a rela-
tively long defect (Lerqek > 0.1 OF Leger > 6L), damage initiation occurs
near the front of the defect at a lower nominal strain. Fig. 25(a) shows
the critical nominal strain for damage initiation as a function of the
length of the crack-like defect. With no defect (Lqx = 0), damage
initiation occurs in the slanted fiber segments near the upper and lower
corners of the free edge. The critical strain for damage initiation is
approximately proportional to the fiber strength, with &,./e; ~ 0.6 for
& = 0.1 and 0.06. With a small defect (Lerack < 0.1), the critical strain for
damage initiation remains similar. However, with a relatively long
defect (Leqex > 0.1), the critical strain for damage initiation is lower,
&yc/€ ~ 0.55, and is nearly independent of the defect length. As the
defect length increases, the change in the critical strain for damage
initiation correlates with the location of damage initiation in Fig. 24.
Once the defect length is greater than a fraction of L,, damage initiation
occurs at the front of the defect, and the critical strain becomes inde-
pendent of the defect length.

Fig. 25(b) shows the effective strength corresponding to damage
initiation in the Kagome networks (p = 0.118) with a crack-like defect.
With no defect (L.qck = 0), the effective strength normalized by the fiber
strength is approximately S.s/Sf ~ 0.0256 for & = 0.1 and 0.06, ac-
cording to Fig. 18(b). With a small defect (L. q < 0.1), the effective
strength is nearly independent of the defect size and thus flaw tolerant as
noted by Fleck and Qiu (2007). In contrast, with a relatively long defect
(Lerack > 0.1), the effective strength decreases almost linearly with the
length of the crack-like defect. With a constant critical strain, &./ef ~
0.55 for p =0.118 (Fig. 25a), and an apparent stiffness under the
clamped boundary condition by Eq. (6.1), Eqyp ~ 3 pEf(1 — Lergex), the
effective tensile strength is obtained approximately as:

St = Eapptye ~ 0.0243(1 — Leraet) Sy (6.2)

As shown in Fig. 25(b), the numerical results are in good agreement
with Eq. (6.2) for the cases with a relatively long defect (Leq > 0.1),
where the effective strength decreases primarily due to the reduced
stiffness E,,,. We note that the critical strain for damage initiation, ¢, /ey,
may depend on the relative density of the network, so that the
normalized effective strength, Ses/Sy, would depend on the relatively
density accordingly.

6.1. Discussion on damage initiation

The critical strain for damage initiation in a Kagome network may be
used to estimate its effective fracture toughness. Fleck and Qiu (2007)
calculated the effective fracture toughness of a Kagome network by
assuming that the individual fiber segments behave as elastic-brittle
beams and fail when the maximum local tensile stress at any point at-
tains the strength of the fiber material, (Sy). They found that the mode-I
fracture toughness (in terms of the critical stress intensity factor) of the
Kagome network scales with the relative density according to

Kie = DS;+/pL,

where D = 0.212. Corresponding to the critical stress intensity factor,

(6.3)
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Fig. 23. Damage progression in a Kagome network with a crack-like defect (p = 0.118,¢ = 0.1,Lerqcx = 0.167). () Color contours show the strain energy density in

the fibers at increasing nominal strain &,; (b) Normalized reaction force (in the vertical direction) along the upper edge of the Kagome network, with increasing
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Fig. 24. Locations of damage initiation in the Kagome networks (p = 0.118 and & = 0.1) with a crack-like defect of various lengths.
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Fig. 25. (a) Critical nominal strain for damage initiation in Kagome networks (p = 0.118) with a crack-like defect of various lengths and two fiber strengths. (b)
Effective strength for damage initiation, normalized by the fiber strength. The dashed line is predicted by eq. (6.2).
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the effective toughness of the Kagome network in terms of energy
release rate is:

K2
T = < = 3D*Ege}L.

Ey 6.4

Remarkably, this predicted Iy is independent of the relative density
for Kagome networks.

For a Kagome network with a relatively long crack-like defect
(Fig. 20a), subject to tension with the clamped boundary condition,
damage initiation occurs near the crack front. In this case, the energy
release rate can be estimated as in a pure shear test (Rivlin and Thomas,
1953), namely

1 Eyg

G=+
21—z/§ff

(6.5)

2
gy ry -

By setting G =Ty in Eq. (6.4), we obtain the critical strain for
damage initiation as

| L
&y = 4Dey oL
y

For p = 0.118 and n, = 5 (L,/L = 10v/3), Eq. (6.6) predicts that &,/
g = 0.593, which is slightly higher than the numerical results,

(6.6)

€yc/€f ~ 0.55, for relatively long crack-like defects (Lerack > 0.1) shown
in Fig. 25(a). By Eq. (6.6), the critical strain for damage initiation de-
pends on the relative density p and the network size L, /L. However, this
dependence has not been confirmed numerically.

It is noted that by Eq. (6.6) we have assumed that the critical energy
release rate for a Kagome network with the clamped boundary condition
in the present study is the same as that determined by Fleck and Qiu
(2007) using the K-field approach. Both are symmetric mode-I fracture.
In other words, Eq. (6.4) is taken as the effective material property of the
Kagome network, so that the criterion for fracture initiation is: G = T
The underlying assumption is that the damage processes are the same for
the same Kagome networks, even though the elastic K-field may not exist
in the present model with 5 layers of unit cells (Fig. 20a). As can be seen
in Fig. 23, the damage processes are confined within a couple layers of
unit cells near the crack-like defect, and thus the present model is large
enough to contain the damage process zone. The energy approach does
not require the presence of an elastic K-field. As long as the damage
process zone is fully contained in the present model, the same critical
energy release rate is expected as the effective material property.

6.2. Discussion on steady-state damage progression

Next we discuss the steady-state damage progression. It is noted from
Fig. 23 that the steady-state damage progression occurs at a higher
strain, ess =~ 0.6¢;, for the Kagome networks with p = 0.118 and n, = 5
(Ly/L = 10v/3). By setting e, = egs in Eq. (6.5), the energy release rate
for the steady-state crack growth is obtained as:

Gss = 0.138Es¢/*L 6.7)
which is slightly higher than the effective toughness I'ys in Eq. (6.4). If
we assume that, like I'ofr in Eq. (6.4), Gss is a constant independent of the
network size (n,) or the relative density (p), Gss in Eq. (6.7) can be
treated as an effective material property of Kagome networks, so that the
strain for steady-state damage progression can be predicted for other
Kagome networks as

2GSS -1/2
s = 4|z = 0.46¢¢(pn .
EyL, f ( y)

The steady-state strain predicted by Eq. (6.8) depends on the
network size n, and the relative density p. The predicted dependence on
the network size agrees reasonably well with the numerical results

(6.8)
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shown in Fig. 26 for p = 0.118 and two different values of ¢;. However,
the predicted dependence on the relative density has not been confirmed
numerically.

The assumption that the steady-state energy release rate Ggs is in-
dependent of the relative density (p) may be questionable. Here, we
propose an alternative approach to estimating the steady-state energy
release rate by following the Lake-Thomas model for polymer networks
(Lake and Thomas, 1967). Assume that a crack grows in the steady state
by cutting through one layer of unit cells, so that four slanted fiber
segments per unit cell are fractured and the elastic strain energy in the
four fiber segments is dissipated by brittle fracture. Let Uy = %Efef be the

maximum strain energy density in each fiber segment under tension,
which is dissipated upon fracture, and we obtain the steady-state frac-
ture toughness by the energy dissipation per unit area of crack growth
as:

AUy 1

[ss Aw 7§ (6.9)

pEfefL

where Vy = d’L (volume of each fiber segment) and A, = 2Ld (cross
sectional area of each unit cell). When the crack grows in the steady
state, the energy release rate equals the fracture toughness, Gss = I'ss. It
is found that Eq. (6.9) underestimates the steady-state energy release
rate in Eq. (6.7) by a factor of ~ 2 (for p = 0.118). This discrepancy can
be attributed to the fact that more than four fiber segments are fractured
as the crack grows by each unit cell, as shown in Fig. 23(a). Therefore,
Eq. (6.9) predicts the lower bound for the steady-state toughness of the
Kagome network, similar to the Lake-Thomas model for polymer net-
works (Lake and Thomas, 1967; Yang et al., 2019; Deng et al., 2023).
Following a similar approach, Luan et al. (2022) estimated the critical
energy release rate (by fracturing a single strut) for triangular and
hexagonal lattices, and they obtained similar scaling as in Eq. (6.9).
However, in comparison with experiments, they found that the
approximate critical energy release rates underestimated the critical
stresses for both triangular and hexagonal lattices. In the case of the
Kagome networks in the present study, the predicted toughness would
double if eight (instead of four) fiber segments are fractured as the crack
grows by each unit cell, including those segments above/below the crack
plane. Thus, the fracture toughness of the network can be increased by
the distributed damage around the crack, similar to polymer networks
with imperfections (Yang et al., 2019) or non-local energy dissipation
(Deng et al., 2023).

0.7 - -
A\
A
A
A Y
06
\\\ °
b “s .o
— ~
0.5 ~
\“\ 1
TewL. 0
0% mepain e
o ¢ = 0.06
0.3' : ' '
4 6 8 10 12
n,

Fig. 26. Strain for steady-state damage progression in Kagome networks (p =
0.118) of various network sizes (1,).
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Remarkably, Eq. (6.9) predicts that the steady-state energy release
rate scales linearly with the relative density p, in contrast with the
effective toughness I'yy in Eq. (6.4) for damage initiation, which is in-
dependent of the relative density. On the other hand, Fleck and Qiu
(2007) found that K;. ~ p for triangular lattices and Kj. ~ p? for the
hexagonal lattices, both of which would lead to a linear scaling for the
% ~ p. Similarly scaled critical energy
release rates were also obtained by Luan et al. (2022) for triangular and
hexagonal lattices by an energy-based approach. However, for the

effective toughness, Ty =

Kagome lattices, Kj ~ p/? according to Fleck and Qiu (2007), so that
Lo ~ p° (independent of p), differing from both triangular and hexag-
onal lattices. It would be interesting to investigate further if and how the
effective toughness I'py and the steady-state energy release rate Gss of
the Kagome network depend on the relative density. If Ggs is indepen-
dent of the relative density, similar to T by Eq. (6.4), the corre-
sponding strain for the steady state would depend on the relative
density, ess ~ p~'/2, as predicted by Eq. (6.8). In contrast, if Gss depends
on the relative density (Gss ~ p) following Eq. (6.9), the critical strain
for the steady state damage progression can be obtained from Eq. (6.5)
as:

(6.10)

which is independent of the relative density, but with the same depen-
dence on the network size n, as in Eq. (6.8). At the moment, we do not
have any data or evidence to say either Eq. (6.8) or Eq. (6.10) is valid or
invalid. The dependence of the steady-state strain on the relative density
can be used to determine the dependence of the steady-state toughness
on the relative density. We leave it as an open question for future studies
to determine the steady-state toughness of Kagome networks, for which
the pure-shear configuration (Fig. 20a) with a relatively long crack-like
defect can be used as a simple but robust setup for both experiments and
simulations.

7. Summary

We have conducted a numerical study on the tensile strength of low-
density Kagome networks made of linearly elastic and brittle fibers. The
main findings are summarized as follows.

e First, an elastic beam model is employed to analytically predict the
effective elastic properties and tensile strength, as well as the critical
condition for buckling of the fibers in Kagome networks. In partic-
ular, while the linear elastic properties of a Kagome network are
isotropic, the tensile strength is anisotropic, and can be reduced by
buckling.

e A finite element method is developed to simulate the elastic defor-
mation and failure of Kagome networks under tension. The numer-
ical results from unit-cell models reveal four possible damage-
initiation failure modes of the Kagome networks subject to uniaxial
tension, including both pre-buckling and post-buckling failure
modes, summarized in a phase diagram in terms of the relative
density and the fiber strength. In particular, a low-density Kagome
network is likely to fail by one of the post-buckling modes, with an
effective tensile strength much lower than the prediction of the
elastic beam model.

o For Kagome networks consisting of a large number of unit cells, the
effect of boundary conditions on the tensile strength is examined
(Fig. 18b). Under periodic boundary conditions, the effective tensile
strength is nearly identical to that predicted by the unit-cell model.
Under a roller boundary condition, the effective tensile strength is
lower than that under periodic boundary conditions for low fiber
strength, but is similar for relatively high fiber strength. Under a
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clamped boundary condition, the effective tensile strength is similar
to that under the roller boundary condition for low fiber strength, but
is higher for relatively high fiber strength.

Finally, the effect of a crack-like defect on the effective tensile
strength is studied for Kagome networks under the clamped bound-
ary condition. With a small defect, the effective strength is nearly
independent of the defect size. In contrast, with a relatively long
defect, the effective strength decreases almost linearly with the
length of the crack-like defect. The effective toughness for damage
initiation and steady-state damage progression in the Kagome net-
works are estimated and discussed from an energetic perspective. It
is suggested that the steady-state toughness of Kagome networks can
be determined by using the pure-shear configuration (Fig. 20a) with
a relatively long crack-like defect as a simple but robust setup for
both experiments and simulations.
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