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In a discussion of the work by Mane et al. (2024), Ryvkin (2025)
suggested a different approach to evaluate the energy release rate in
lattice materials and to derive their effective fracture toughness. He
noted that Mane et al. (2024) did not take into account the energy lost
due to the strain redistribution in the lattice and thus underestimated the
energy release value. Here, as a response to the discussion, we present
our view on the evaluation of the energy release rate and the effective
fracture toughness of two-dimensional (2D) Kagome lattices as consid-
ered by Mane et al. (2024).

First, let us clarify the distinction between “energy release rate” and
“critical energy release rate” in fracture mechanics. The two terms may
look similar, but they are fundamentally different in our opinion. The
energy approach in fracture mechanics is founded in thermodynamics,
where the free energy of the system can be written as a function of the
crack area (or crack length in 2D). The basic principle of thermody-
namics dictates that, as an irreversible process, the crack can grow only
if the free energy decreases with the crack area. The free energy of the
system includes elastic energy of the body and other inelastic energy
such as surface energy, plastic energy (dissipation), etc. Let ® be the
total free energy, including an elastic part (®eja5ic) and an inelastic part
((Dinelastic); nam(ﬂy

q)(Ac) = (Delastic (Ac) + (Dinelastic (Ac) (1)
where A, stands for the area of the crack face. The thermodynamic
condition for the crack to grow requires that

do _ dq)elastic dq)inelastic
dA.  dA dA,

<0 @

Thus, the critical condition for crack growth is:

do _ dq)elastic dq)inelastic

dA, ~  dA. a0 3)
or equivalently

dq)elastic _ dq)inelastic
TTdA, T da, C)]

The left-hand side of Eq. (4) is the reduction of the elastic energy per unit
area of crack growth, which is called the energy release rate. The right-
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hand side of Eq. (4) is the increase of the inelastic energy (dissipation)
per unit area of crack growth, which is often called by different names,
such as fracture energy, fracture toughness, or “critical energy release
rate”. Regardless how it is called, the above energy-based critical con-
dition for fracture separates elastic energy release from inelastic energy
dissipation. The reduction (or release) of the elastic energy in the body
drives the crack to grow, which however must overcome a penalty as the
inelastic energy dissipation increases with crack growth. The above
critical condition is often written as

where the energy release rate, G = —‘1‘1‘)&%, and the critical energy
release rate, G, = %

The energy release rate (G) is a loading parameter, depending on
the specimen and crack geometry (including crack length) as well as
boundary conditions.

Under the condition of small-scale yielding or small-scale inelastic
processes, the critical energy release rate (G.) is a material property
(fracture toughness), independent of the specimen/crack geometry or
boundary conditions.

To evaluate the energy release rate of a crack, we solve a boundary
value problem, often assuming a small-scale inelastic process zone near
the crack tip. Whether the crack can grow or not, the energy release rate
can be evaluated, which does not require the knowledge of any inelastic
processes except for the assumption of a small-scale inelastic process
zone.

To evaluate the critical energy release rate (or fracture toughness) of
a material, by definition we would need to know exactly what inelastic
processes are involved in fracture. For example, in the case of a brittle
material like glass, Griffith (1921) simply assumed that the material
(glass) is elastic all the way till fracture so that the only inelastic process
is the creation of new surfaces due to crack growth. In this idealized case
(for brittle materials), the critical energy release rate (or fracture
toughness) is simply due to the increase of surface energy, that is

d(binelastic

A, 2y (6)

where y is the surface energy per unit area (for both upper and lower
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Fig. 1. A Kagome network with a crack-like defect, subject to tension with the
clamped boundary condition.

crack faces). Eq. (6) gives a reasonable estimate of the critical energy
release rate in the order of ~1 J/m? for glass. However, for metals, Eq.
(6) would underestimate the critical energy release rate, because plastic
deformation near the crack tip (even for small-scale yielding) is inelastic
and significantly increases the energy dissipation (on top of the surface
energy) per unit area of crack growth.

In practice, however, the inelastic processes associated with crack
growth are often too complicated, and fracture toughness of a material is
commonly measured by using a particular specimen with a crack. The
energy release rate of the crack in the specimen can be calculated as a
function of the applied load P, G = G(P), whether the crack grows or
not. At a critical load, P = P, the crack starts growing, and the corre-
sponding energy release rate is the critical energy release rate, G, =
G(P.). This procedure relies on the above energy-based critical condi-
tion, Eq. (5), bypassing the detailed inelastic processes.

In Mane et al. (2024) Section 6.2, we considered steady-state crack
growth in a Kagome network subject to tension with clamped edges
(Fig. 1). For such a specimen (with a long crack), the elastic energy
release rate associated with the crack growth is well known:

1 Ey ,
G==- L 7
21—1/§ff€yy ™

where ¢, is the applied strain. Note that this energy release rate is in-
dependent of the crack length, as long as the crack is sufficiently long
(Lerack>>Ly). When the strain €, reaches a critical value, the crack starts
growing and reaches a steady state as shown in the numerical simula-
tions in Mane et al. (2024). The corresponding strain for the steady state
was found to be ess ~ 0.6¢y, for the specimen with a relative density p =
0.118 and L,/L = 10v/3. Using this value for the applied strain ¢, in Eq.
(7), we obtained the energy release rate during the steady-state crack
growth:

Gss = 0138Ef€?L (8)

Here, the effective elastic properties of the Kagome network are used:
Eo ~ 3 pEy and e ~ 1.

By the same critical condition for fracture as Eq. (5), the steady-state
energy release rate equals the fracture toughness of the material (for
steady state crack growth), namely

Iss = Gss (C)]

Here, we chose to use I for toughness and G for energy release rate, to
distinguish the two. The above approach is commonly used to measure
fracture toughness of various materials.

In the case of 2D Kagome networks, Mane et al. (2024) proposed an
alternative approach to estimate the steady-state fracture toughness,
I'ss, based on the near-tip analysis of the inelastic processes, following

the definition, I = d“’jijg‘:“i“. Here, for the Kagome networks of brittle fi-

bers, the only inelastic process is the brittle fracture of the fiber segments
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Fig. 2. Simulated steady-state damage progression (or crack growth) in a
Kagome network (Mane et al., 2024).

around the crack tip. It was assumed that a crack grows in the steady
state by cutting through one layer of unit cells, so that four slanted fiber
segments per unit cell are fractured. This leads to Eq. (6.9) in Mane et al.
(2024):

[ss = = —=pElL (10)

For the specimen with p = 0.118, Eq. (10) predicts a steady-state
toughness, T'ss = 0.068EfefL, which is about half of the steady-state
energy release rate Ggs in Eq. (8). Therefore, the above approach ap-
pears to underestimate the steady-state energy release rate. This
discrepancy was noted in Mane et al. (2024) and was attributed to the
fact that, in the numerical simulation, more than four fiber segments per
unit cell were fractured during the steady state crack growth. As shown
in Fig. 2 below, besides the four fiber segments in the unit cell along the
crack plane, there are four more broken fiber segments (two on each
side), as the crack front passed through the shaded box. In other words,
the inelastic damage process was not fully localized in one layer of unit
cells along the crack plane. The damage process spread to the next layer
of unit cells on both sides of the crack. Thus, instead of four, there were
eight fiber segments as the crack grows by one unit cell. Consequently,
the fracture toughness should be:

Tss = = —=pElL an

which is two times of Eq. (10). For the specimen with p = 0.118, Eq.
(11) predicts a steady-state toughness, I'ss = O. 136Ef€2L in close

agreement with the steady-state energy release rate Gss in Eq. (8).
Therefore, we believe that the underestimated fracture toughness by Eq.
(10) is because of the underestimated dissipation due to the damage
process in the broken fiber segments. To evaluate the effective fracture
toughness (or the critical energy release rate) from the near-tip pro-
cesses, we must take into account all the inelastic energy dissipation
associated with crack growth.

As discussed above, our view differs from Ryvkin (2025), who sug-
gested that evaluation of the critical energy release rate should include
“energy lost in the broken elements” and “energy lost due to the strain
redistribution in the lattice”. In our opinion, only the “energy lost in the
broken elements” should be included for calculating the critical energy
release rate (or the fracture toughness), not the “energy lost due to the
strain redistribution in the lattice”. Strain redistribution in the lattice
may reduce the elastic energy, but elastic deformation is a reversible
process and does not dissipate any energy. All dissipation results from
inelastic processes. In all materials, there is elastic strain redistribution
around the crack as the crack grows. The reduction of the elastic energy
gives the energy release rate on the left hand side of Eq. (4), while the
inelastic dissipation gives the toughness on the right-hand side of Eq.
.

A related point of discussion is on the difference between the critical
energy release rate for initiation of crack growth and that for steady-
state crack growth. As noted in Mane et al. (2024), damage initiation
occurred in the numerical simulations at a critical strain level different
from that for steady state growth. Previous works (Fleck and Qiu, 2007;
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Fig. 3. A fracture resistance curve (R-curve).

Luan et al., 2022) assumed that initiation of crack growth occurs when
the maximum local tensile stress at any point attains the strength of the
fiber material, which means the first link at the crack tip. This
assumption appears to be different from the condition for steady-state
crack growth. In other words, the critical condition for initiation of

International Journal of Solids and Structures 311 (2025) 113275

crack growth can be different from that for steady-state crack growth.
Such difference has been described by fracture resistance curves (R-
curves, see Fig. 3) for various materials (Bao and Suo, 1992). Typically, a
crack starts growing when G =Ty, and the energy release rate increases
as the crack grows, eventually reaching a steady state value, G = I'.
The increase of the energy release rate from I'y to I is due to the
development of the inelastic damage process zone around the crack. In
the ideal case when the damage process zone is infinitely small, we
would have I'y = I';. However, when the damage process zone size is
finite, [’y < [.
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