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Response to “A numerical study on tensile strength of low-density Kagome 
networks made of brittle fibers”

Re: On the evaluation of the energy release rate in brittle beam-lattices 

Rui Huang, Kenneth M. Liechti 

In a discussion of the work by Mane et al. (2024), Ryvkin (2025)
suggested a different approach to evaluate the energy release rate in 
lattice materials and to derive their effective fracture toughness. He 
noted that Mane et al. (2024) did not take into account the energy lost 
due to the strain redistribution in the lattice and thus underestimated the 
energy release value. Here, as a response to the discussion, we present 
our view on the evaluation of the energy release rate and the effective 
fracture toughness of two-dimensional (2D) Kagome lattices as consid
ered by Mane et al. (2024).

First, let us clarify the distinction between “energy release rate” and 
“critical energy release rate” in fracture mechanics. The two terms may 
look similar, but they are fundamentally different in our opinion. The 
energy approach in fracture mechanics is founded in thermodynamics, 
where the free energy of the system can be written as a function of the 
crack area (or crack length in 2D). The basic principle of thermody
namics dictates that, as an irreversible process, the crack can grow only 
if the free energy decreases with the crack area. The free energy of the 
system includes elastic energy of the body and other inelastic energy 
such as surface energy, plastic energy (dissipation), etc. Let Φ be the 
total free energy, including an elastic part (Φelastic) and an inelastic part 
(Φinelastic), namely 

Φ(Ac) = Φelastic(Ac)+Φinelastic(Ac) (1) 

where Ac stands for the area of the crack face. The thermodynamic 
condition for the crack to grow requires that 

dΦ
dAc

=
dΦelastic

dAc
+

dΦinelastic

dAc
< 0 (2) 

Thus, the critical condition for crack growth is: 

dΦ
dAc

=
dΦelastic

dAc
+

dΦinelastic

dAc
= 0 (3) 

or equivalently 

−
dΦelastic

dAc
=

dΦinelastic

dAc
(4) 

The left-hand side of Eq. (4) is the reduction of the elastic energy per unit 
area of crack growth, which is called the energy release rate. The right- 

hand side of Eq. (4) is the increase of the inelastic energy (dissipation) 
per unit area of crack growth, which is often called by different names, 
such as fracture energy, fracture toughness, or “critical energy release 
rate”. Regardless how it is called, the above energy-based critical con
dition for fracture separates elastic energy release from inelastic energy 
dissipation. The reduction (or release) of the elastic energy in the body 
drives the crack to grow, which however must overcome a penalty as the 
inelastic energy dissipation increases with crack growth. The above 
critical condition is often written as 

G = Gc (5) 

where the energy release rate, G = − dΦelastic
dAc

, and the critical energy 

release rate, Gc = dΦinelastic
dAc

.
The energy release rate (G) is a loading parameter, depending on 

the specimen and crack geometry (including crack length) as well as 
boundary conditions.

Under the condition of small-scale yielding or small-scale inelastic 
processes, the critical energy release rate (Gc) is a material property 
(fracture toughness), independent of the specimen/crack geometry or 
boundary conditions.

To evaluate the energy release rate of a crack, we solve a boundary 
value problem, often assuming a small-scale inelastic process zone near 
the crack tip. Whether the crack can grow or not, the energy release rate 
can be evaluated, which does not require the knowledge of any inelastic 
processes except for the assumption of a small-scale inelastic process 
zone.

To evaluate the critical energy release rate (or fracture toughness) of 
a material, by definition we would need to know exactly what inelastic 
processes are involved in fracture. For example, in the case of a brittle 
material like glass, Griffith (1921) simply assumed that the material 
(glass) is elastic all the way till fracture so that the only inelastic process 
is the creation of new surfaces due to crack growth. In this idealized case 
(for brittle materials), the critical energy release rate (or fracture 
toughness) is simply due to the increase of surface energy, that is 

dΦinelastic

dAc
= 2γ (6) 

where γ is the surface energy per unit area (for both upper and lower 
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crack faces). Eq. (6) gives a reasonable estimate of the critical energy 
release rate in the order of ~1 J/m2 for glass. However, for metals, Eq. 
(6) would underestimate the critical energy release rate, because plastic 
deformation near the crack tip (even for small-scale yielding) is inelastic 
and significantly increases the energy dissipation (on top of the surface 
energy) per unit area of crack growth.

In practice, however, the inelastic processes associated with crack 
growth are often too complicated, and fracture toughness of a material is 
commonly measured by using a particular specimen with a crack. The 
energy release rate of the crack in the specimen can be calculated as a 
function of the applied load P, G = G(P), whether the crack grows or 
not. At a critical load, P = Pc, the crack starts growing, and the corre
sponding energy release rate is the critical energy release rate, Gc =

G(Pc). This procedure relies on the above energy-based critical condi
tion, Eq. (5), bypassing the detailed inelastic processes.

In Mane et al. (2024) Section 6.2, we considered steady-state crack 
growth in a Kagome network subject to tension with clamped edges 
(Fig. 1). For such a specimen (with a long crack), the elastic energy 
release rate associated with the crack growth is well known: 

G =
1
2

Eeff

1 − ν2
eff

ε2
yLy (7) 

where εy is the applied strain. Note that this energy release rate is in
dependent of the crack length, as long as the crack is sufficiently long 
(Lcrack≫Ly). When the strain εy reaches a critical value, the crack starts 
growing and reaches a steady state as shown in the numerical simula
tions in Mane et al. (2024). The corresponding strain for the steady state 
was found to be εSS ≈ 0.6εf , for the specimen with a relative density ρ =

0.118 and Ly/L = 10
̅̅̅
3

√
. Using this value for the applied strain εy in Eq. 

(7), we obtained the energy release rate during the steady-state crack 
growth: 

GSS = 0.138Ef ε2
f L (8) 

Here, the effective elastic properties of the Kagome network are used: 
Eeff ≈

1
3 ρEf and νeff ≈

1
3.

By the same critical condition for fracture as Eq. (5), the steady-state 
energy release rate equals the fracture toughness of the material (for 
steady state crack growth), namely 

ΓSS = GSS (9) 

Here, we chose to use Γ for toughness and G for energy release rate, to 
distinguish the two. The above approach is commonly used to measure 
fracture toughness of various materials.

In the case of 2D Kagome networks, Mane et al. (2024) proposed an 
alternative approach to estimate the steady-state fracture toughness, 
ΓSS, based on the near-tip analysis of the inelastic processes, following 
the definition, Γ = dΦinelastic

dAc
. Here, for the Kagome networks of brittle fi

bers, the only inelastic process is the brittle fracture of the fiber segments 

around the crack tip. It was assumed that a crack grows in the steady 
state by cutting through one layer of unit cells, so that four slanted fiber 
segments per unit cell are fractured. This leads to Eq. (6.9) in Mane et al. 
(2024): 

ΓSS =
4Uf Vf

Auc
=

1̅
̅̅
3

√ ρEf ε2
f L (10) 

For the specimen with ρ = 0.118, Eq. (10) predicts a steady-state 
toughness, ΓSS = 0.068Ef ε2

f L, which is about half of the steady-state 
energy release rate GSS in Eq. (8). Therefore, the above approach ap
pears to underestimate the steady-state energy release rate. This 
discrepancy was noted in Mane et al. (2024) and was attributed to the 
fact that, in the numerical simulation, more than four fiber segments per 
unit cell were fractured during the steady state crack growth. As shown 
in Fig. 2 below, besides the four fiber segments in the unit cell along the 
crack plane, there are four more broken fiber segments (two on each 
side), as the crack front passed through the shaded box. In other words, 
the inelastic damage process was not fully localized in one layer of unit 
cells along the crack plane. The damage process spread to the next layer 
of unit cells on both sides of the crack. Thus, instead of four, there were 
eight fiber segments as the crack grows by one unit cell. Consequently, 
the fracture toughness should be: 

ΓSS =
8Uf Vf

Auc
=

2̅
̅̅
3

√ ρEf ε2
f L (11) 

which is two times of Eq. (10). For the specimen with ρ = 0.118, Eq. 
(11) predicts a steady-state toughness, ΓSS = 0.136Ef ε2

f L, in close 
agreement with the steady-state energy release rate GSS in Eq. (8). 
Therefore, we believe that the underestimated fracture toughness by Eq. 
(10) is because of the underestimated dissipation due to the damage 
process in the broken fiber segments. To evaluate the effective fracture 
toughness (or the critical energy release rate) from the near-tip pro
cesses, we must take into account all the inelastic energy dissipation 
associated with crack growth.

As discussed above, our view differs from Ryvkin (2025), who sug
gested that evaluation of the critical energy release rate should include 
“energy lost in the broken elements” and “energy lost due to the strain 
redistribution in the lattice”. In our opinion, only the “energy lost in the 
broken elements” should be included for calculating the critical energy 
release rate (or the fracture toughness), not the “energy lost due to the 
strain redistribution in the lattice”. Strain redistribution in the lattice 
may reduce the elastic energy, but elastic deformation is a reversible 
process and does not dissipate any energy. All dissipation results from 
inelastic processes. In all materials, there is elastic strain redistribution 
around the crack as the crack grows. The reduction of the elastic energy 
gives the energy release rate on the left hand side of Eq. (4), while the 
inelastic dissipation gives the toughness on the right-hand side of Eq. 
(4).

A related point of discussion is on the difference between the critical 
energy release rate for initiation of crack growth and that for steady- 
state crack growth. As noted in Mane et al. (2024), damage initiation 
occurred in the numerical simulations at a critical strain level different 
from that for steady state growth. Previous works (Fleck and Qiu, 2007; 

Fig. 1. A Kagome network with a crack-like defect, subject to tension with the 
clamped boundary condition.

Fig. 2. Simulated steady-state damage progression (or crack growth) in a 
Kagome network (Mane et al., 2024).
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Luan et al., 2022) assumed that initiation of crack growth occurs when 
the maximum local tensile stress at any point attains the strength of the 
fiber material, which means the first link at the crack tip. This 
assumption appears to be different from the condition for steady-state 
crack growth. In other words, the critical condition for initiation of 

crack growth can be different from that for steady-state crack growth. 
Such difference has been described by fracture resistance curves (R- 
curves, see Fig. 3) for various materials (Bao and Suo, 1992). Typically, a 
crack starts growing when G = Γ0, and the energy release rate increases 
as the crack grows, eventually reaching a steady state value, G = Γss. 
The increase of the energy release rate from Γ0 to Γss is due to the 
development of the inelastic damage process zone around the crack. In 
the ideal case when the damage process zone is infinitely small, we 
would have Γ0 = Γss. However, when the damage process zone size is 
finite, Γ0 < Γss.
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Fig. 3. A fracture resistance curve (R-curve).
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