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Abstract Within the context of linear elasticity,
approximate analytical solutions are developed for the
energy release rate for axisymmetric planar cracks in
elastic thin layers sandwiched between two rigid plates.
These solutions are validated by comparing them with
finite element solutions, and they are applicable to
cracks in constrained thin layers made of compress-
ible, nearly incompressible, or incompressible mate-
rials. These analytical solutions provide insights into
the effects of geometry and material compressibility on
fracture of thin layers. In particular, stability of crack
growth is discussed under both displacement and force-
controlled loading conditions, summarized in stabil-
ity maps. Remarkably, it is found that, under force-
controlled conditions, stable crack growth is possible in
incompressible or nearly incompressible layers, but not
in compressible layers. We compare the energy release
rates for embedded and interfacial cracks, showing
that they differ when the cracks are small but become
approximately equal for large cracks. The analytical
approach is further extended to non-axisymmetric pla-
nar cracks in compressible thin layers. However, a sim-
ilar extension does not apply for cracks in incompress-
ible or nearly incompressible layers.
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1 Introduction

Soft thin layers constrained by stiff materials are com-
monly used in engineering applications, such as bear-
ings, sealants, and adhesives (Kelly and Konstantinidis
2011; Warn and Ryan 2012; Shull and Creton 2004;
Biggins et al. 2013; Creton and Ciccotti 2016; Lin
et al. 2017). This paper is concerned with fracture of
constrained thin layers under tension. In particular, we
restrict our attention to internal, as opposed to edge,
cracks in sandwich structures in which a soft thin layer
is constrained between two stiff plates. It has been
established experimentally that fracture of such layers
can be either cohesive or adhesive. Cohesive fracture
occurs as a result of nucleation and growth of cracks
embedded in the layers, as observed in many exper-
iments (Gent and Lindley 1959; Lindsey 1967; Fond
2001; Bayraktar et al. 2008; Kumar and Lopez-Pamies
2021; Guo and Ravi-Chandar 2023). In contrast, adhe-
sive fracture occurs as a result of nucleation and growth
of cracks along the interfaces, also observed in many
experiments (Lin et al. 2000; Webber et al. 2003; Min-
sky and Turner 2015; Fischer et al. 2017; Hensel et al.
2019).

This paper focuses on approximate analytical
approaches to determining the energy release rate G
for both embedded and interfacial cracks, since G is
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central to quantifying conditions for initiation and sta-
bility of crack growth. Our approach is based on for-
mal asymptotic analysis of uncracked elastic thin lay-
ers by Movchan et al. (2021, 2023). Although this
approach is limited to the linear elastic setting, it allows
one to seamlessly analyze layers made of compress-
ible, nearly incompressible, or incompressible mate-
rials, and for cracks of both small and large sizes.
The accuracy of the approximate analytical solutions
is assessed by comparing them to convergent finite ele-
ment solutions. To our knowledge, only a subset of
such solutions for G have appeared previously, such as
those for axisymmetric embedded cracks in compress-
ible layers, small embedded cracks in incompressible
layers, and small interfacial cracks (Crosby et al. 2000;
Benvidi and Bacca 2021). Although in all cases G can
be calculated numerically, the approximate analytical
solutions provide additional insights into the effects of
geometry and material compressibility on fracture of
elastic thin layers. Remarkably, the approximate ana-
lytical solutions can be extended to non-axisymmetric
planar cracks in compressible thin layers, although a
similar extension does not apply for cracks in incom-
pressible or nearly incompressible layers.

Our analysis also deals with stability of crack
growth, especially possible arrest of crack growth in
thin layers formed by nearly incompressible or incom-
pressible materials. In the context of linear elasticity,
this effect has been discussed by Benvidi and Bacca
(2021) and Horvath and Kossa (2024), based on finite
element calculations of G for axisymmetric interfacial
cracks including both internal and edge cracks. For thin
layers of nearly incompressible materials, Benvidi and
Bacca (2021) found that the internal center cracks are
more likely to grow than the edge cracks. In this work,
we focus on internal cracks. Furthermore, Hao et al.
(2023) demonstrated that arrest of crack growth is also
possible for axisymmetric cracks embedded in thin lay-
ers formed by incompressible neo-Hookean materials.

The remainder of the paper is structured as follows.
In Sect.2, we present two sets of approximate analyti-
cal solutions for G for axisymmetric embedded cracks.
The first set is for small cracks, whose size is much
smaller than the layer thickness, and the second set is
for large cracks, whose size is much larger than the
layer thickness. In Sect. 3, these two sets of solutions
are exploited to analyze stability of crack growth under
either displacement- or force-controlled boundary con-
ditions. In Sect.4, the approximate analytical solu-
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tions developed for embedded cracks are extended to
axisymmetric interfacial cracks. In Sect. 5, we compare
the energy release rates for the axisymmetric embedded
and interfacial cracks. In Sect. 6, approximate analyti-
cal solutions are developed for non-axisymmetric pla-
nar cracks in thin layers formed by compressible mate-
rials. In Sect. 7, we conclude the paper with a summary
of the results. For completeness, the asymptotic solu-
tions for uncracked layers used for the development of
the approximate analytical solutions for cracked layers
are presented in the appendix.

2 Axisymmetric problems for embedded cracks
2.1 Problem statement

Consider a circular solid cylindrical layer whose thick-
nessis 2k and radius is a (Fig. 1). This layer is described
in cylindrical coordinates, such that

—h<z<h and r<a. (1)

The layer is perfectly bonded to two rigid plates at the
bases z = +h. The layer contains an embedded circular
crack of radius c¢. The crack is confined to the plane
z = 0, and its center coincides with that of the layer.

We are interested in determining the energy release
rate G along the crack front, as a result of pulling the
plates apart along the z-axis, so that the upper plate
is displaced by A and the lower plate is displaced by
—A. We analyze this problem in the context of the
classical theory of linear elasticity, by assigning to the
layer material a shear modulus p and Poisson’s ratio v.
We assume that the layer is thin, so that 7 < a.

For the configuration in Fig.1, we construct two
approximate analytical solutions for G. The first solu-
tion is for small cracks characterized by the inequality
¢ < h. The second solution is for large cracks, char-
acterized by two inequalities, ¢ > h and a — ¢ > h.
Thus, both the radius of the crack ¢ and the uncracked
ligament a — ¢ are large compared to the thickness
of the layer. We regard the two approximate analyti-
cal solutions as general because they are valid for any
Poisson’s ratio, including v = 1/2 for incompress-
ible materials. This generality is particularly important
for problems involving layers formed by nearly incom-
pressible materials.

The problems of interest involve three dimensionless
parameters. The first one is the normalized thickness,
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Fig. 1 An embedded Z

circular crack of radius ¢ « T 1\

lying in the mid-plane of a

thin layer of radius a and :
thickness 2/, constrained 2h :I_

between two rigid plates !
and loaded symmetrically :

by a displacement A «

s:=ﬁ<<1. (2
a

The second parameter represents material compress-
ibility,

_ [3a-2v)
TN 20 - )

This parameter was first introduced by Lindsey et al.
(1963), and it arises naturally in formal asymptotic
analysis of uncracked elastic thin layers (Movchan etal.
2021, 2023). It is clear that y = O represents incom-
pressible materials. For nearly incompressible materi-
als, x « 1; for compressible materials, with v signifi-
cantly different from 1/2, x = O (1). The parameter x
is essential for characterization of thin layers formed by
nearly incompressible materials. In this regard, let us
recall the classical results of Stefan (1874), Reynolds
(1886), and Filon (1902) for the apparent Young mod-
ulus, which takes into account that the layer is con-
strained. For an incompressible material (Stefan 1874;
Reynolds 1886)

3u
8g2’
whereas for a compressible underlying material (Filon
1902),

E = 3—’2 ) (5)
X

The use of these two equations becomes problematic

for thin layers formed by nearly incompressible mate-

rials, simply because it is unclear which one to choose.

This issue has been addressed in Movchan et al. (2021)

who introduced the ratio

{i=—. (6)

E= “)

Then, for layers characterized by ¢ > 1, the mate-
rial incompressibility prevails, and Eq. (4) is the right
choice. In contrast, for layers characterized by ¢ < 1,
the layer thinness prevails, and Eq. (5) is the right
choice. However, for layers characterized by ¢ =

O (1), a different and more complicated expression
has to be used (Movchan et al. 2021). We regard such
layers as nearly incompressible. Thus, while a nearly
incompressible material is characterized by the condi-
tion ¥ < 1, a nearly incompressible layer is charac-
terized by the condition { = O (1). Note that a nearly
incompressible thin layer is necessarily formed by a
nearly incompressible material because the conditions
(=0 and & € limply x = O () < 1.Buta
nearly incompressible material may form a compress-
ible layer if § < x. For example, for a rubber layer
characterized by v = 0.499905 (Anderson et al. 2004)
and £ = 0.001, the parameter ¢ =~ 0.04, and therefore
its apparent Young modulus is better represented by
Eq. (5) than Eq. (4).

The third dimensionless parameter is the normalized
crack size:

c

Si=— (7
a

This choice of normalizing the crack radius is not nat-
ural for small cracks, for which a better parameter is
¢/ h. Of course, the two normalizations are related as
c_ g
- == ®)
h &

Since the theory of linear elasticity dictates that the
energy release rate G is a quadratic function of A, itis
useful to normalize G as

A2
G=g(€,x,§)xuh<ﬁ> . (€))
Here g is a dimensionless function of the three dimen-
sionless parameters. The chosen dimensional group is
meaningful, but certainly not unique. Throughout the
paper, variants of g are used to present both analytical
and numerical solutions. We distinguish among those
variants by using subscripts, superscripts, and listing
their arguments.

In this work, the accuracy of the approximate analyt-
ical solutions is assessed by comparing them with con-
vergent finite element solutions, which are straightfor-
ward to obtain using the standard features of ABAQUS,
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Table 1 The values of Poisson’s ratio v and the material com-
pressibility parameter x for the benchmark materials

Material Type CM NIM1 NIM2 M
v 0.3 0.49 0.4999 0.5
X 0.9258 0.2425 0.0245 0

including axisymmetric hybrid elements (CAX8H and
CAX6H), quarter-point elements at the tip of the crack,
and the J-integral to calculate the energy release rate
G. We use the hybrid elements uniformly in all cases,
although they are not necessary for the cases with
compressible materials. In those cases, the standard
displacement-based elements can be used to reduce the
computing time, but using hybrid elements does not
cause additional errors.

The errors in the finite element solutions for G, pre-
sented in this work, were estimated to be less than 0.3%.
This estimate was based on a convergence study, by
comparing the solutions obtained with progressively
finer meshes. Figure 2 shows the mesh used for finite
element analysis of the configuration characterized by
h/a = 1/10 and ¢/h = 1. By symmetry, only half of
the layer is analyzed with the traction-free condition
along the crack and the symmetry condition elsewhere
along the mid-plane (z = 0). This mesh was generated
by identifying the semicircular contours centered at the
crack tip (Fig. 2b) along with uniform seeding nodes on
the layer boundary. The semicircular contours around
the crack tip are used for calculating the energy release
rate by the J-integral method.

Throughout the paper, we consider four representa-
tive values of Poisson’s ratio, v = 0.3, 0.49, 0.4999,
0.5. These values represent benchmark compressible
(CM), nearly incompressible (NIM1 and NIM2), and
incompressible (IM) materials, respectively. The val-
ues of x corresponding to these benchmark materials
are compiled in Table 1. Hereafter, we refer to lay-
ers formed by the benchmark materials simply as CM,
NM1, NM2, and IM layers.

2.2 Small cracks
For small embedded cracks, ¢ < h < a, and therefore

a small crack can be treated as if it were embedded in
an infinite body, subjected to a remote tensile stress oy,

@ Springer

corresponding to the axial stress that would be trans-
mitted through the center of the uncracked layer.

For a circular crack in an infinite body, the pertinent
classical solution for the energy release rate is (Sad-
owsky and Sternberg 1949; Green and Sneddon 1950;
Irwin 1962; Tada et al. 1973):

Ge — K,2 _ I—v

2 2
ST 2 o (;ao\/%) . (10)

Here, the subscript s and superscript e refer to small
embedded cracks, respectively, and K; is the Mode-I
stress intensity factor of the crack.

For a constrained thin layer, the stress o at the center
depends on the layer thinness £ and the material com-
pressibility x. A general expression for oy is derived
from the asymptotic solution for an uncracked layer
(Movchan et al. 2021); see (A.12) in Appendix. As a
result, Eq. (10) is specified as

1—v

e 27
e
2
4y —24x* +39x2 - 18 c
2+(3—X2) [31()(%)_25)(11 (%)] (h)
xmh (%)2 : (1)

where Iy and I; are modified Bessel’s functions of the
first kind (Abramowitz and Stegun 1968). Then, fol-
lowing Eq. (9), we obtain the normalized energy release
rate:

B c\ 27

8s (S, X 71) S G-
2
2y 4yb —24x* +394% — 18 (C)

o) -2 ()]

12)

Equation (12) is valid for any x > 0. For incom-
pressible layers characterized by &/x > 1, Eq. (12)
can be simplified by taking the limit x — 0, while
fixing £ and ¢/ h, which yields

¢ (6 5) =t (50 ) = g () -3
8 (5’ )= imes (8 x5 ) = Terea ) - (19

For compressible layers characterized by §/x < 1,
Eq. (12) can be simplified by taking the limit & — O,
while fixing x and ¢/ h, which yields:
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Fig. 2 a The mesh used for the finite element analysis of an
axisymmetric embedded crack (indicated by the red line) in an
elastic thin layer with #/a = 1/10 and ¢/ h = 1. By symmetry,

@ () = i (s.r. )

27 c
Coaxt(3-x2) (h) : (14

Note that g¢, g¢, and g¢ are linear functions of ¢/ h.
The accuracy of the functions gf, g, and g¢ is
assessed in Fig.3 by comparing them with the corre-
sponding finite element solutions for the normalized
energy release rate. In Figs. 3a,c,e, we plot the energy
release rate, normalized according to Eq. (9), versus
¢/ h for & = 1/100, 1/50, 1/10, respectively. In each
of these plots, the analytical solutions, g¢, g¢, and g¢,
are shown as lines, while the finite element solutions
are shown as discrete symbols. The function g¢ in Eq.
(12) is used for the NIM1 and NIM2 layers, the func-
tion g¢ in Eq. (13) is used for the IM layers, and the
function g¢ in Eq. (14) is used for the CM layers. In
each plot, 0 < ¢/h < 1, while the approximate ana-
Iytical solutions are expected to be accurate only for
c¢/h <« 1. For this reason, in each plot, we show a
green region defined by the inequality ¢/h < 1/10,
which is adopted as a proxy for the condition ¢ < h.
The inequality ¢/h < 1/10 implies that we choose to

only the upper half of the layer is meshed. b The local mesh near
the crack front with concentric semicircular contours. The crack
face is shown in red

treat 1/10 as a small number; consequently, in what
follows, 10 is treated as a large number.
In Fig. 3, we also plot the relative error,

8A — 8FE
8FE

e =

’

versus c¢/h. Here, the subscripts A and FE refer to
the analytical and finite element solutions, respectively.
Figures3b,d,f are paired with Figs.3a,c,e, respec-
tively, as each pair shares the same &. The plots
in Figs.3b,d indicate that the approximate analyti-
cal solutions are accurate with e < 1% for 0 <
c/h < 0.1 and & = 1/100, 1/50, although the error
is slightly larger for the IM layers. For the thick-
est layers (§ = 1/10) in Fig.3(f), the error is much
larger for the NIM1, NIM2, and IM layers. This was
expected because the asymptotic expression for og
is expected to be accurate only for sufficiently thin
layers. Furthermore, the predictions for e &~ 5% in
Fig.3f are consistent with those in Movchan et al.
(2021) for & = 1/10. Thus, the approximate ana-
lytical solutions, gf, g¢, and g¢ presented in Eqgs.
(12), (13) and (14), respectively, are accurate only
for small cracks (¢c/h < 0.1) in sufficiently thin
layers.
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Fig. 3 The approximate analytical (lines) and finite element
(symbols) solutions for small embedded cracks. a,c,e The energy
release rate, normalized according to Eq. (9), versus ¢/ h; b,d.f
the relative error e of the approximate analytical solutions vis-
a-vis finite element solutions versus ¢/ h. The plots are paired
so that h/a = 1/100 for (a,b), h/a = 1/50 for (c,d), and
h/a = 1/10 for (e,f). In each plot, the approximate analytical
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solutions are represented by g¢ for the NIM1 and NIM2 layers,
by g¢ for the IM layers, and by g¢ for the CM layers. These
functions are specified in Eqs. (12), (13), and (14), respectively.
The compressibility of the four materials, CM, NIM1, NIM2,
and IM, are specified in Table 1. The domains of validity of the
approximate analytical solutions are colored green
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2.3 Large cracks

The approximate analytical solutions for large cracks
(c,a — ¢ > h) are constructed by starting with the
definition of the energy release rate:

G = ~9Ac 15)
where P is the potential energy and Ac is the area of
the crack platform. For a circular crack of radius c, the

energy release rate is

1 oP
G=———. (16)
2me dc

For a prescribed displacement A (Fig. 1), the potential
energy P is equal to the strain energy in the layer and
thus
P =FA, a7
where F' is the transmitted force corresponding to A.
Therefore, we can express G as

A OF

G=——-—. 18
2mce dc (18)

Note that, as ¢ increases, the layer becomes more com-
pliant, so that F' decreases, and therefore G > 0.

The crux of our analytical approach is that, for a
large crack, the force F is calculated not for the original
specimen but for an annular layer with the inner radius
c and outer radius a (Fig. 4 ). That is, we assume that
the material in the cylinders above and below the crack
contributes negligibly to the force. Since ¢ > handa—
¢ > h for large cracks, the annular layer can be treated
as thin, and the force F can be calculated approximately
by the asymptotic approach (see Appendix) as

o))}

with the parameters C; and C; defined in Appendix
(A.16) and (A.17). In this equation, K| is a modified
Bessel’s function of the second kind (Abramowitz and
Stegun 1968) and the subscript [ refers to large cracks.

Although Eq. (19) is valid for any x > 0, its explicit
form is too complicated to provide insight. Therefore, it
isimportant to develop simpler expressions restricted to
compressible, nearly incompressible, and incompress-
ible layers. For IM layers (§/x > 1), this is accom-
plished by taking the limit as x — 0:

19)

Fl = lim F;
x—0

. 37 pa? (1 — §2) [1 -+ (1 + gz) log g] A

8h&Zlog ¢
(20)
Once combined, Egs. (9), (18), and (20) yield
2
~ 3(1 —¢?+26%logg
g &, )= ( ) . (21

166252 log” ¢
For compressible layers (§ /x < 1), Eq. (19) is sim-
plified by taking the limit as § — 0:

3rpa(l — cBHA

Fp = lim £ = 7 (22)

Once combined, Egs.(9), (18), and (22) yield

0= (23)
X

For nearly incompressible layers, £ /x = O (1), and
thus neither of the above two limits is applicable. In
this case, Eq. (19) is rewritten by replacing x with &/¢
based on Eq. (6), so that the expression for F; involves
only one small parameter £. Then, by expanding the
modified version of Eq. (19) into Maclaurin’s series in
&, we obtain

_ 3mpalA _ z_ﬁ 1 +§
S 2 ko (8o (2) -0 (8) ko () 7
[Kllﬂ In(£) K, (X& X)) Ko (X5 Ki (%) (X& &
LS o (£) 1 () + 10 (1) & () |+ [0 (8) Ko (%) + K (2) 0 ()]
(1) () () o )
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Fig. 4 An annular thin Z
layer with ¢ <r < a, used " ~— T T

as an approximation for a r

r 4+ 1 1
/

thin layer containing a large 25 I
axisymmetric crack of i

radius ¢

In this equation, we have reversed to the use of £ and
X, but it is worth mentioning that the expression inside
the curly brackets can be written using ¢ and ¢ rather
than ¢, &, and x.

Once combined, Egs. (9), (18), and (24) yield

g & x.6)

A OIGRIOLTL) g

2L () () - n(e) )
Note that this expression can be used to calculate g; in
Eq. (21) by evaluating the limit of g as x — 0.

The accuracy of the functions g, g/, and g is
assessed in Fig.5 by comparing them with the corre-
sponding finite element solutions for the normalized
energy release rate. In Figs. 5a,c,e, we plot the energy
release rate, normalized according to Eq. (9), versus
¢ = c¢/a for & = 1/100, 1/50, 1/10, respectively. In
each of these plots, the analytical solutions, g7, g/, and
gf, are shown as lines, while the finite element solu-
tions are shown as discrete symbols. The function g
in Eq. (25) is used for the NIM1 and NIM2 layers, the
function g7 in Eq. (21) is used for the IM layers, and the
function g/ in Eq. (23) is used for the CM layers. As
in Fig. 3, we also plot the relative errors in Figs. 5b,d.f.

The domains of validity of the approximate analyt-
ical solutions are colored green in Fig. 5. Within these
domains, both ¢ and a — ¢ are at least 104. Note that
such a domain cannot be identified in Figs.5e,f for
the layers characterized by & = 1/10. In this case,
the approximate analytical solutions are inaccurate and
have relatively large errors. Within the domains of
validity in Figs. 5a,c, the approximate analytical solu-
tions compare well with the finite element solutions for
& = 1/100 and 1/50. The relative errors are around 1%
or less for the CM layers. For the NIM1, NIM2, and
IM layers, the errors are larger, but the overall trend
is well captured by the approximate analytical solu-
tions. Therefore, the approximate analytical solutions,
g/ &;»>and g; in Egs. (25), (21) and (23), respectively,
are accurate for large cracks in sufficiently thin layers.

@ Springer

2.4 Summary of Solutions

The approximate analytical solutions for the normal-
ized energy release rate, Egs. (12), (13), and (14) for
small cracks and Egs. (21), (23), and (25) for large
cracks, work well in their respective domains of valid-
ity. Here, we combine these solutions with their finite
element counterparts and focus on their predictive
capabilities in the entire parametric range. To this end,
itis useful to rewrite Eqs. (12), (13), and (14) by replac-
ing ¢/ h with ¢/& so that the three functions become
27¢

g &, x,¢)= m
2
A4y6 —24x* +39x% — 18 (26)
X 424+ ,
EEGETa)

e 9%

gs (E? g) - 167'[55 ’ (27)
and
0K = 8)

As a result, all of the six approximate analytical solu-
tions, g7, &5, &5, &/» &/» & are expressed as functions
of &, x,and ¢.

We summarize the six approximate analytical solu-
tions developed in this section in Table 2. In all cases,
the layer is assumed to be thin, that is, § <« 1. The
material is assumed to be linearly elastic, but can be
compressible, nearly incompressible or incompress-
ible, depending on the parameter x . However, the layer
compressibility depends on the ratio £/x. For small
cracks, the function g¢ (£, x, ¢) is applicable for all
three cases, but can be simplified to g¢ (£, x, ¢) if the
layer is compressible or g¢ (£, ¢) ifitisincompressible.
For large cracks, the function g; (¢, x, ¢) is applicable
for nearly incompressible layers, but can be simplified
to g/ (&, ¢) as the incompressible limit. A more gen-
eral solution for large cracks is too complicated to be
useful.
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Fig. 5 The approximate analytical (lines) and finite element
(symbols) solutions for large embedded cracks. (a,c,e) The
energy release rate, normalized according to Eq. (9), versus c/a;
(b,d,f) the relative error e of the approximate analytical solu-
tions vis-a-vis finite element solutions versus c/a. The plots are
paired so that #/a = 1/100 for (a,b), h/a = 1/50 for (c,d), and
h/a = 1/10 for (e,f). In each plot, the approximate analytical
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solutions are represented by g/ for the NIM1 and NIM2 layers,
by g/ for the IM layers, and by g for the CM layers. These
functions are specified in Egs. (25), (21), and (23), respectively.
The compressibility of the four materials, CM, NIM1, NIM2,
and IM, are specified in Table 1. The domains of validity of the
approximate analytical solutions are colored green
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Table 2 Summary of the approximate analytical solutions for small and large embedded cracks in thin layers of various compressibility.

All solutions are for & <« 1

Layer compressibility

Small crack ¢ < &

Large crack § € ¢,1—¢

Compressible § /x < 1
Nearly incompressible £/ x = O(1)
Incompressible £/ > 1

8 &, x.¢) & ()
g &, x.¢6) g & x.¢)
g &, ) g (& ¢)

In Fig.6, we present log-log plots for the normal-
ized energy release rate by treating £ and x as param-
eters and ¢ as an argument. The values for & and x
are the same as in Figs.3 and 5. Also, as in those
two figures, we identify the domains of validity, where
the approximate analytical solutions are expected to
be accurate. Apparently, in all cases, the combined
approximate analytical solutions are qualitatively in
agreement with the finite element solutions for all crack
sizes (0 < ¢ < 1). Consequently, one can use the
approximate analytical solutions for qualitative anal-
ysis not only for small and large cracks, but also for
intermediate cracks. This is quite remarkable, as the
approximate analytical solutions are not expected to be
accurate there.

Three features of the plots in Fig. 6 are worth men-
tioning:

e For the CM layers, g€ increases linearly with c¢/a
until it reaches a plateau, consistent with Egs. (28)
and (23). Note that g/ depends on x only. That is,
this function is geometry-independent.

e For the NIM1 and NIM2 layers, g¢ first increases
linearly with c/a and then decreases. This behavior
is similar to g¢ for the IM layers, but is different
from g¢ for the CM layers. These similarities and
differences are central to stability of crack growth
discussed in Sect. 3.

e For fixed c¢/a and h/a, the normalized energy
release rate increases considerably (by orders of
magnitude) as the material compressibility x
decreases for the NIM layers, with an upper bound
set by g¢ for the IM layers.

3 Stability of crack growth
In this section, we examine stability of growing axisym-

metric embedded cracks in constrained thin layers, with
the emphasis on the roles of the layer thinness & and

@ Springer

material compressibility . We follow the traditional
approach and consider both displacement- and force-
controlled boundary conditions. The former represents
situations involving loading devices whose stiffness is
much larger than that of the specimen, whereas the
latter represents situations involving loading devices
whose stiffness is much smaller than that of the speci-
men. We aim to develop a qualitative understanding of
the problem, based largely on the approximate analyt-
ical solutions in Sect. 2. Our stability analysis does not
account for the R-curve effect (Kanninen and Popelar
1985), and it is restricted to examining the sign of the
partial derivative, .G := dG/dc.

3.1 Displacement-controlled boundary conditions

Under displacement-controlled boundary conditions, it
is natural to rely on Eq. (9) as the point of departure
and evaluate .G focusing on the normalized partial
derivative, 0. g := dg/d¢. Then, crack growth is stable
if 9.g < 0, unstable if 9. g > 0, and neutral (or steady
state) if . g = 0. These properties can be examined by
inspecting Fig. 6. Accordingly, small cracks, character-
ized by ¢ < &, are always unstable as 9. g¢ > 0 for all
& and x. As ¢ increases, the normalized energy release
rate g° reaches a cross-over point and two distinct sce-
narios appear. For the CM layers, the cross-over sig-
nifies a transition from unstable to steady-state crack
growth. In contrast, for the NIM1, NIM2, and IM lay-
ers, the cross-over signifies a transition from unstable
to stable crack growth. That is, at a fixed A, a growing
crack can be arrested if the layer is incompressible or
nearly incompressible. This behavior is consistent with
experimental observations of crack growth and arrest
in rubber and PDMS layers (Gent and Lindley 1959;
Guo and Ravi-Chandar 2023).

The results presented in Fig. 6 suggest that the nor-
malized energy release rate for the NIM1 and NIM2
layers is qualitatively similar to that for the IM lay-
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Fig. 6 The approximate analytical (lines) and finite element
(symbols) solutions for embedded cracks. The energy release
rate, normalized according to Eq. (9), versus c/a for: a h/a =
1/100, b h/a = 1/50, and ¢ h/a = 1/10. In each plot, the
approximate analytical solutions are represented by g¢ and g/
for the NIM1 and NIM2 layers, by g5 and g; for the IM layers,
and by g¢ and g/ for the CM layers. These pairs of functions
are specified in Eqgs. (26) and (25), (27) and (21), and (28) and
(23), respectively. The compressibility of the four materials, CM,
NIMI, NIM2, and IM, are specified in Table 1. The domains of
validity of the approximate analytical solutions are colored green
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Fig. 7 The normalized energy release rate for axisymmetric
embedded cracks in the CM layers (v = 0.3) versus ¢/ under
displacement-controlled boundary conditions. The approximate
analytical solutions, g¢ and g; (lines), viz-a-viz the finite element
solutions (symbols) are shown for three values of 4 /a

ers. Thus, for qualitative analysis, it is sufficient to use
the functions g§ and g; for incompressible and nearly
incompressible layers. Similarly, for compressible lay-
ers, it is sufficient to use the functions g{ and g;. The
two scenarios are discussed separately in the following.

For the CM layers, the normalized crack radius ¢*
associated with the transition from unstable to steady-
state crack growth is determined approximately by set-
ting

& E x.9)=8 () - (29)
Then, Egs. (28) and (23) combine to yield

= _ T 2(r 2

=51 (3-2)s. (30)

Thus, the transition occurs at a crack radius that is pro-
portional to the thickness of the layer. For the CM layers
with x = 0.9258, this equation yields &* = 0.64¢ or
c¢* = 0.64h, which is consistent with the numerical
results in Fig. 7.

Similarly, for the IM layers, the normalized crack
radius ¢* associated with the transition from unstable
to stable crack growth is determined approximated by
setting

& .9 =g ¢.9) . (€19}

Upon substitution of Egs. (27) and (21) into Eq. (31),
we obtain

35 log* 5*

: (32)
7[1- (@97 +2@ log 7]

£ =
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Fig. 8 The stability map for crack growth in the IM layers (v =
0.5) under displacement-controlled boundary conditions

This equation cannot be solved for ¢* explicitly. Nev-
ertheless, it is sufficient for constructing the stabil-
ity map shown in Fig.8, where Eq. (32) sets the
boundary between the regions of unstable and stable
crack growth. This map clearly shows that stable crack
growth is favored in thinner layers, and the transition
crack size ¢* decreases as & decreases. Consequently,
smaller cracks can be arrested in thinner layers. This
is in agreement with experimental observations (Gent
and Lindley 1959; Guo and Ravi-Chandar 2023).

3.2 Force-controlled boundary conditions

In general, crack growth under force-controlled bound-
ary conditions is less stable than under displacement-
controlled boundary conditions (Kanninen and Popelar
1985). To clarify this statement, let us consider two
identical specimens, one subjected to force-controlled
boundary conditions and the other to displacement-
controlled boundary conditions. It can be shown that,
if G‘F = G|A, then

3CG\F > acG\A . (33)

This implies that, under force-controlled boundary con-
ditions, .G > 0 for all crack sizes in compressible
layers, and thus crack growth is always unstable. There-
fore, there is no transition to be analyzed in this case.
Following our analysis of displacement-controlled
boundary conditions, stability of crack growth is qual-
itatively similar in incompressible and nearly incom-
pressible layers. Consequently, in the remainder of this

@ Springer

subsection, we focus on crack growth in incompressible
layers under force-controlled boundary conditions.
Stability of crack growth under force-controlled
conditions in incompressible layers is analyzed by
rewriting the energy release rate G in terms of the
applied force F rather than the displacement A. To
this end, G is expressed as
- F \?
Ge=77"($,§)><ua< 5 ) : (34)
Tas

where ¢ is a dimensionless function.

For the IM layers, the force-elongation relations
are given by Eqgs. (A.15) and (20) for small and large
cracks, respectively. Combining these relations with g¢
in Eq. (13) and g/ in Eq. (21), we obtain

4

ys - ’ (35)
T
and
2
se — i 2(1- c?+2c%log S) 36)
P73 lc-e)[1— ¢+ (14+¢2)logc]

In Fig. 9, we compare the normalized energy release
rates ;¢ in Eq. (35) and y in Eq. (36) with the corre-
sponding finite element solutions. Note that y¢ is inde-
pendent of &, but p/ increases with &. Furthermore,
ys increases linearly with ¢, while 7 depends on ¢
non-monotonically. Figure9 shows that the approxi-
mate analytical solutions in Egs. (35) and (36) are in
qualitative agreement with the corresponding finite ele-
ment solutions for values of & up to 1/10. Thus, the
approximate analytical solutions may be used for qual-
itative analyses of crack growth stability. In particular,
we identify two transitions under force-controlled con-
ditions: (i) from unstable to stable crack growth, and
(i1) from stable back to unstable crack growth. The first
transition is similar to that present under displacement-
controlled boundary conditions, while the second tran-
sition is absent under displacement-controlled condi-
tions. Qualitatively similar transitions were noted by
Benvidi and Bacca (2021) for axisymmetric interfacial
cracks.

The first transition point ¢ is determined by equat-
ing y¢ and p/ in Egs. (35) and (36), respectively. As a
result, we obtain

2
36 [(1- &) + (1 - &) tog &1
T (1 — §12 + 2§12 log §1)2 '

This equation cannot be solved for ¢; explicitly.

£ (37)
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Fig. 9 The normalized energy release rate for axisymmetric
embedded cracks in the IM layers (v = 0.5) versus c¢/a under
force-controlled boundary conditions. The approximate analyti-
cal solutions, y¢ and )71‘? (lines), viz-a-viz the finite element solu-
tions (symbols) are shown for three values of /1/a

For the second transition point, ¢3, we need to deter-
mine the minimum of y¢. Upon differentiation of Eq.
(36), we obtain

&~ 022. (38)

Thus, this transition is independent of £.

Equations (37) and (38) allow us to construct the sta-
bility map shown in Fig. 10, for crack growth in incom-
pressible layers under force-controlled boundary con-
ditions. On this map, the curved boundary corresponds
to Eq. (37) and the first transition, whereas the verti-
cal boundary corresponds to Eq. (38) and the second
transition. The two boundaries intersect at a point with
& ~ 0.18. Therefore, stable crack growth under force-
controlled boundary conditions is possible only in thin
layers with & < 0.18. Moreover, the range for stable
crack growth increases as £ decreases, but the largest
stable crack size, ¢ &~ 0.22 or ¢ ~ 0.22a, is indepen-
dent of £. The map in Fig. 10 clearly shows that stable
crack growth is possible under force-controlled bound-
ary conditions, provided that the layer is sufficiently
thin and the material is nearly incompressible.

4 Axisymmetric problems for interfacial cracks

In this section, we analyze the problem identical to
that analyzed in Sect. 2, but with one major exception,
as the crack is no longer located in the mid-plane of
the layer. Rather, its center is shifted along the z-axis

0.2
Unstable

0.15 F
< 01l
<

Stable
0.05 ¢
0 L
0 0.1 0.2 0.3
c/a

Fig. 10 The stability map for crack growth in IM layers (v =
0.5) under force-controlled boundary conditions

to the interface between the layer and the lower rigid
plate (Fig. 11a). Technical differences between analyz-
ing the embedded and interfacial cracks are significant,
but the strategy is the same. Therefore the flow in this
section is similar to that in Sect.2. In particular, once
the supercript e, for embedded cracks, is replaced with
i, for interfacial cracks, the functions summarized in
Table 2 for the embedded cracks becomes their coun-
terparts for the interfacial cracks.

For small cracks, ¢ <« h < a, the original prob-
lem (Fig. 11a) is equivalent to the problem for a crack
of radius c at the interface between two semi-infinite
bodies (Fig. 11b). The semi-infinite body above the
crack is characterized by the elastic properties of the
layer and the semi-infinite body below the crack is
rigid. The upper crack face is subjected to the open-
ing stress o1, which would be transmitted through the
point (r = 0, z = —h) if the layer were uncracked; see
(A.13). There is no shear stress at this location due to
axial symmetry.

The problem in Fig. 11b is analyzed in two steps:
(1) by calculating the complex stress intensity factor of
the crack, K = K| + i K> (Kassir and Bregman 1972;
Rice 1988), and (ii) by expressing the energy release
rate G in terms of K| and K> (Malyshev and Salganik
1965; Rice 1988; Hutchinson and Suo 1991). Here, we
present our result using the widely accepted notation
for interfacial cracks (Rice 1988; Hutchinson and Suo
1991) as opposed to that used in Malyshev and Salganik
(1965) and Kassir and Bregman (1972).

For a circular interfacial crack between elastic and
rigid semi-infinite bodies (Fig. 11b), the complex stress
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intensity factor can be obtained from a more general
solution by Kassir and Bregman (1972):

FQ2+ie)
ra/2+ie)’
Here I is Euler’s I'-function (Abramowitz and Stegun
1968) and
= L log 3+ .

2w 3— %2

Following Rice (1988) and Hutchinson and Suo

(1991), the corresponding energy release rate for the
interfacial crack is expressed as

34X (2 g
G\ = (k3 +K3) . @41)

Using Eq. (39) and the identities

1 2
IT 2 +ie)? = M and

sinh(re)
1 2
'\z+is
2
we specify Eq. (41) as

3+ x%) (1462
+ XZL(XZ—Fs )80_126' @)

This expression differs from Eq. (8) in Benvidi and
Bacca (2021), also derived from the solution of Kassir

K =K +iK, =201/c (39)

&

(40)

T (42)

- cosh(e) ’

ng(
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and Bregman (1972). The two analytical solutions are
identical only if the material is incompressible. Besides
cosmetic differences, associated with the use of the
standard elastic constants E and v, there are two typos
in Benvidi and Bacca (2021). First, in Eq. (5), lead-
ing to Eq. (8), the denominator must be E* cosh? (we)
rather than E* cosh (), and this typo persists in Eq.
(8). Second, in Eq. (8), it must be I' (2 + i ¢) rather than
['(1+ie), according to Kassir and Bregman (1972). In
addition, the inclusion of the term (2¢)’¢ in Eq. (8) is
unnecessary because its magnitude is one.

For a small interfacial crack in a constrained thin
layer (Fig. 11a), the energy release rate is obtained by
substituting Eq. (A.13) for the stress o1 in Eq. (43).
Following Eq. (9), the normalized energy release rate
is

9(3+x2) <1+£2>£

20

g x o=

9—6x2

(B3-x2) [25;(11 (%) — 31 (g)} } <§> ’

x 414+

(44)

Further, following Egs. (13) and (14), we obtain

9¢

3273 “45)

8o =
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and

. 9(3 2 (1 + &2
§E xS = (”)(“)’3@), 46)

2x6

respectively. Note that Eq. (44) is valid for all values
of x, while Eq. (45) is valid for £ /x > 1 and Eq. (46)
for§/x < 1.

Let us mention that our approach above differs from
that in Benvidi and Bacca (2021). First, as illustrated in
Fig. 11, we assume the displacement-controlled condi-
tion and thus normalize the energy release rate accord-
ing to Eq. (9), whereas Benvidi and Bacca (2021)
assumed a uniform remote stress applied to the rigid
plates and normalized the energy release rate in a way
similar to Eq. (34) under the force-controlled condi-
tion. Second, Benvidi and Bacca (2021) focused on
the cases with nearly incompressible materials and
assumed ¢ ~ 0 to simplify the analytical solution.
Here, Eq. (44) is valid for all material compressibil-
ity, with two limits for incompressible and compress-
ible layers in Eqgs. (45) and (46), respectively. Third, in
our analysis, the stress o1 in Eq. (43) is obtained from
the asymptotic solution for uncracked layers (Appendix
A), while the local stress in Benvidi and Bacca (2021)
was obtained from finite element analysis of uncracked
layers.

For large interfacial cracks, ¢ > handa — ¢ > h,
we retain the underlying assumption for the approxi-
mate analytical solutions for large embedded cracks,
and therefore

SExO=gEx.9) ., &E9
=g/ (&, ¢), and g () =8 (X): (47)

see Egs. (21), (23), and (25) for details.

The accuracy of the approximate analytical solu-
tions for interfacial cracks is assessed by comparing
them with the corresponding finite element solutions.
The finite element mesh used for the interfacial crack
is similar to that in Fig. 2, except that the entire elastic
layer is meshed, with the Dirichlet boundary condition
ahead of the crack. The energy release rate for the inter-
facial crack is computed by evaluating the J-integral
over the semicircular contours in the elastic layer. Sim-
ilarly to those for embedded cracks, the approximate
analytical solutions are reasonably accurate within their
domains of validity. Figure 12, patterned after Fig.6,
shows both analytical and finite element solutions ver-
sus ¢. That is, each plot is for a fixed &, containing solu-
tions for both small and large cracks for the CM, NIM1

and NIM2, and IM layers. In addition, the domains of
validity in Fig. 12 are the same as in Fig. 6. The paral-
lels between the two figures include not only their orga-
nization, but also the results, which appear to be very
similar, at least qualitatively. For this reason, comments
pertaining to Fig. 6, made at the end of Section 2.4, are
also applicable to Fig. 12.

5 Embedded versus interfacial cracks

Itis natural to compare the embedded versus interfacial
cracks by evaluating the ratio

g ¢ x.9)
P&, x.6): CE L) (48)
where g’ and g€ are the normalized energy release rates
of the interfacial and embedded cracks, respectively.
For both small and large cracks, this ratio is indepen-
dent of the crack size. In particular, according to Eq.

(47), for large cracks (¢ < ¢, 1 — ¢), we have
pr=p=p =1 (49)
For small cracks (¢ « &), the ratio pg can be calcu-
lated from the approximate analytical solutions in Egs.
(12) and (44). Alternatively, according to Egs. (13) and
(45), for incompressible layers (§/x > 1), we obtain
. 1
Ps = E (50)
For compressible layers (§/x <« 1), Egs. (14) and (46)
yield

O—xH(1+e)  3+x°
122 B3y
Figure 12 shows the ratio py viz-a-viz finite ele-
ment results as a function of y for & = 1/100, 1/50
and 1/10. The agreement is excellent for the two thin-
ner layers (¢ = 1/100 and 1/50), but not so for the
thicker layer (§ = 1/10). This is expected as the
approximate analytical solutions are accurate only for
thin layers. Interestingly, for both compressible and
incompressible layers, the ratios ps; and p; are inde-
pendent of £. However, for nearly incompressible lay-
ers (§/x = O(1)), the ratio p, is approximately 1/2,
but decreases slightly as & increases. Thus, the energy
release rate for an interfacial crack is approximately
one-half that of an embedded crack of the same size,
as has been noted by others (Crosby et al. 2000).
As the crack size increases from small to large, the
ratio p (€, x, ¢) transitions from approximately one

(51

Ps (X) =
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Fig. 12 The approximate analytical (lines) and finite element
(symbols) solutions for interfacial cracks. The energy release
rate, normalized according to Eq. (9), versus c/a: a h/a =
1/100, b h/a = 1/50, and ¢ h/a = 1/10. In each plot, the
approximate analytical solutions are represented by gé and g;
for the NIM1 and NIM2 layers, by &' and gx;‘ for the IM layers,
and by ! and g;' for the CM layers. These pairs of functions
are specified in Eqs. (44) and (25), (45) and (21), and (46) and
(23), respectively. The compressibility of the four materials, CM,
NIMI, NIM2, and IM, are specified in Table 1. The domains of
validity of the approximate analytical solutions are colored green
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Fig. 13 The ratio of the normalized energy release rates for
small interfacial/embedded cracks, p;, versus the compressibility
parameter x, comparing Eq. (51) (line) and the finite element
results (symbols) for three different values of /1 /a
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Fig. 14 The ratio of the normalized energy release rates, p =
g'/g¢, versus the normalized crack size c/a for h/a = 1/100,
obtained by finite element analysis. The compressibility of the
four materials, CM, NIM1, NIM2, and IM, are specified in
Table 1

half when ¢ « & to one when § <« ¢, 1 — ¢. Figure 14
shows this transition based on finite element solutions
for & = 1/100. Note that p (€, x, ¢) is a monotonic
function of the normalized crack size ¢ for the CM
layers, but not monotonic for the IM and NIM layers.
In this work, the focus has been on axisymmetric
planar cracks lying in the mid-plane or the interfaces.
These configurations are the extreme cases for planar
cracks lying in planes z = z., with |z.| < h. The
energy release rate for these intermediate configura-
tions is expected to vary between the two extremes. This
assertion has been confirmed by analyzing two numer-
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ical examples, one for a small crack and the other for
a large crack. However, an example involving an inter-
mediate crack size revealed a more complex behavior,
which deserves a separate study.

6 Non-axisymmetric problems

In this section, we restrict our attention to planar cracks
in compressible layers (§ / x < 1), but without insisting
on axial symmetry. Thus, the layer and crack platforms
are no longer required to be concentric circles. In fact,
their shapes can be essentially arbitrary. This extension
is based on the asymptotic analysis in Movchan et al.
(2023), which applies only to compressible layers.

6.1 Background

Consider the class of problems stated in Sects. 2 and 4,
but without insisting on axial symmetry. That s, neither
the layer nor the crack front is required to be circular
and aligned. Rather, the layer and crack platforms are
defined by smooth planar curves, I';, and I'¢, respec-
tively (Fig.15). This generalization requires us to re-
formulate the definitions of thin layers, small cracks,
and large cracks. To this end, we identify the smallest
circle containing I'; and denote it by T';. We adopt
the radius of 'y, as the effective radius of the layer and
denote it by a. Similarly, we identify the smallest circle
containing I'c and denote it by I'c. We adopt the radius
of ['¢ as the effective radius of the crack and denote it
by c. Of course, if I';, and "¢ are concentric circles,
the new definitions recover those of the axisymmetric
problem. With these definitions, thin layers are defined
by the inequality # < a, and small cracks are defined
by the inequality ¢ < h. To define large cracks, let us
identify two points

(Xc, yc) € FC and (xL, yL) (S FL .

The shortest distance between I'¢c and 'z, is defined as

d := distance (I'c, ')

:= min \/(Xc —x0)?+ (e —yu)?, (52)

where the minimum is evaluated over all pairs of points,
one belonging to I'c and the other to I';, (Fig. 15). We
regard d as the smallest ligament size ahead of the
crack, so that large cracks are defined by the inequalities

Fig. 15 Schematic of a non-axisymmetric problem, with a pla-
nar crack front I', lying in the mid-plane of a layer bounded by
I'r. The smallest circle containing I'¢ is ['c, and the smallest
circle containing 'y is V3

¢ > handd > h. Again, this definition of large cracks
is consistent with that for the axisymmetric problem.
Our approach to the non-axisymmetric problem is
based on the asymptotic analysis of Movchan et al.
(2023), where it is shown that the displacements in the
bulk of a compressible layer (except for small regions
near the edges) are
uzzA%, uy =uy =0, (53)
regardless of the shape of the layer. Here the x-axis
and y-axis must form a right-handed Cartesian system
with the z-axis, but arbitrary otherwise. The stresses
corresponding to Eq. (53) are

O, = —3MA Oxx = Oyy = —(3 _ 2X2) pa and
2z th ’ XX yy th )
Oxy = 0x; =0y, =0, (54)

and the strain energy density is

3u (AN
wzﬁ(ﬁ) . (55)

Therefore, the stress field is uniform in the bulk of
the layer (except for small regions near the edges),
which allows the analysis of non-axisymmetric prob-
lems in this section. However, the same analysis does
not apply for incompressible or nearly incompressible
layers, where the stress field in the bulk is not uniform.
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The asymptotic analysis of thin layers with non-
circular platforms requires additional assumptions,
necessary to guarantee exponentially decaying edge
effects (Movchan et al. 2023). Consequently, we
assume that the smallest radius of curvature of I'f is
much larger than %. In addition, for large cracks, the
radius of curvature of I'c is also much larger than 4.
For small cracks, the shape of I'c can be arbitrary but
smooth.

6.2 Small embedded cracks

In the absence of axial symmetry, the energy release
rate for a small embedded crack can be obtained by
modifying Eq. (10) as follows. First, for compressible
layers, Eq. (A.12) is simplified as in Eq. (54) so that
3u A
00=——.
Second, the expression for the stress intensity factor
K is modified by taking into account that it depends

on the location along I'¢ but not on elastic constants
(Mear and Rodin 2011):

(56)

2
Ki=—¢(p) oo/Tc. (57)

Here ¢ is a function specific to I'¢c and p is a variable
parameterizing the crack front I'c. Upon combining
Egs. (56) and (57) we obtain the generalization of Eq.
(14) for non-axisymmetric small cracks:

2 (X7 p) =0 ) 27 (5) ©®
The only difference between this equation versus Eq.

(14) is the factor ¢? (p), which depends on the shape
of the crack front I'c.

6.3 Large embedded cracks

Following Sect. 2.3, for large embedded cracks, we cal-
culate the potential energy as the strain energy stored
in the ligament ahead of the crack front. For an annular
layer, Eq. (55) implies

3(AL — Ac)
)

A 2
x uh (Z) . (59)
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Pr=[2h(AL - AQ)lw =

Here Ay and Ac are the areas enclosed by 'y and
I"c, respectively, and the term in square brackets is the
volume of the ligament ahead of the crack front. The
energy release rate follows immediately from Eq. (59):

- P 3 AN?
Gl=———=— h{—) , 60
'T A T 2 <h) (©0
and consequently
3
g =—- (61)
l X2

Remarkably, this result coincides with g;’ in Eq. (23) for
axi-symmetric large cracks. Thus, the energy release
rate for large cracks embedded in compressible layers
is independent of details of either I'c or I'y, as long
as the contours are smooth and the smallest radius of
curvature is much larger than /.

6.4 Elliptical embedded cracks

As an example, consider embedded elliptical cracks.
Since there is an exact analytical solution for the stress
intensity factor of an elliptical crack embedded in an
infinite solid, this solution can be used to construct the
function ¢(p) in Eq. (57). The solution can be found in
Tadaetal. (1973), and it can be traced back to Sadowsky
and Sternberg (1949), Green and Sneddon (1950), and
Irwin (1962). In particular, for an elliptical crack with
the long semi-axis ¢ and short semi-axis ac (0 < o <
1), the stress intensity factor is
Ve (sin? 0 + o cos? 0) 1/4

K = o) oo/Te. (62)

Here E (o) is the complete elliptic integral of the second
kind (Abramowitz and Stegun 1968) and 6 is the angle
that parameterize the elliptical crack front (Fig. 16)
such that the coordinates of each point on the crack
front are:

x=ccosf and y = acsinf .

Upon comparing Eqs. (57) and (62), we obtain

@ = /e (sin® @ + o® cos? 9)1/4 ©3)
i) = 2E(a)
Substituting Eq. (63) into Eq. (58), we obtain
. ¢ 27may/sin2 0 + a2 cos? 6 /¢

A\ x,—,0) = —) (64
&s (X h ) 4x* (3= x2) E2(a) (h) ©4)
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Fig. 16 Schematic of an
elliptical crack in a thin
layer (showing a quarter of
the crack front only), and
the parametrization of an
elliptical crack front by the
angle 6

NN NENENEN N

Fig.17 A 3D finite element mesh for the region near an elliptical
crack front (indicated by the red line). Only a quarter of the crack
front is shown

Of course, for large elliptical cracks, g/ is shape inde-
pendent and given by Eq. (61).

To assess the accuracy of the approximate analytical
solutions, a 3D finite element mesh (Fig. 17) was con-
structed for an elliptical crack embedded in a CM layer
characterized by v = 0.3 and & = 1/50. This mesh
was formed by displacement-based quadratic elements
(C3D20 and C3D15 in ABAQUS). The mesh param-
eters were chosen using the two-dimensional mesh in
Fig.2 as a guide. At each point along the crack front,
we determined the energy release rate by calculating
the J-integral in the plane normal to the crack front.
The normalized energy release rate is then determined
as a function of 6.

The approximate analytical solutions in Eqgs. (61)
and (64) are compared with the corresponding finite
element solutions for a small (¢/h = 0.2) and a large
(c/h = 30) elliptical cracks. Both cracks are charac-
terized by « = 0.5 and are embedded in a CM layer

>
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Fig. 18 The normalized energy release rate along the front of a
small (c/h = 0.2) and a large (c/h = 30) embedded elliptical
cracks (o = 0.5), versus the angle 6. The analytical solutions,
g¢ in Eq. (64) and g/ in Eq. (61), are shown as lines, and the
finite element solutions are shown as symbols. The CM layer is
characterized by v = 0.3 and & = 1/50

characterized by & = 1/50. The comparisons are pre-
sented in Fig. 18, where Eqgs. (61) and (64) are plotted
as functions of 6 for both cracks. It is clear that, in
both cases, the approximate analytical and finite ele-
ment solutions are in good agreement.

6.5 Interfacial cracks

In this subsection, we exploit the results for non-

axisymmetric embedded cracks to develop approxi-

mate analytical solutions for non-axisymmetric inter-

facial cracks. As in the case of axisymmetric cracks, we

retain the underlying assumption for large embedded

and interfacial cracks, and therefore

i - 3

g =8 = 2 (65)
For small interfacial cracks, we assume that the ratio

ps in Eq. (51) for circular cracks can be extended to
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Fig. 19 The normalized energy release rate along the front of a
small (c/h = 0.2) and a large (c/h = 30) interfacial elliptical
cracks (o = 0.5), versus the angle 6. The analytical solutions,
§§ in Eq. (66) and g;’ in Eq. (65), are shown as lines, and the
finite element solutions are shown as symbols. The CM layer is
characterized by v = 0.3 and § = 1/50

non-circular cracks, and therefore
B~ m o0& (x5p) - (66)
The accuracy of these approximate solutions is
assessed by comparing them to finite element solu-
tions for the two configurations considered in Sec-
tion 6.4, except that the elliptical cracks are interfacial
rather than embedded. Accordingly, results presented
in Fig. 19 for the interfacial elliptical cracks resemble
those in Fig. 18 for the embedded elliptical cracks. In
both figures, the normalized energy release rates for the
large cracks are approximately equal. In contrast, the
normalized energy release rate for the small elliptical
crack in Fig. 19 is approximately half of that in Fig. 18.
For both interfacial cracks, the approximate analytical
and finite element solutions are in good agreement.

7 Summary

In this paper, we have developed approximate analyt-
ical solutions for the energy release rate of embedded
and interfacial cracks in constrained elastic thin lay-
ers. The accuracy of these solutions has been assessed
by comparing them with those obtained by finite ele-
ment calculations. The main results are summarized as
follows.

e For small circular embedded cracks, the energy
release rate is linear in the crack radius. Under

@ Springer

displacement-controlled boundary conditions, the
normalized energy release rate increases signifi-
cantly with decreasing material compressibility and
layer thickness.

e For large circular embedded cracks, the energy
release rate approaches a constant (steady state)
in compressible thin layers under displacement-
controlled boundary conditions. In contrast, the
energy release rate decreases with the crack radius
in incompressible and nearly incompressible lay-
ers.

e Under displacement-controlled boundary condi-
tions, crack growth is unstable for small cracks
and transitions to neutral stability with a constant
energy release rate (steady state) for large cracks
in compressible thin layers. In contrast, for incom-
pressible and nearly incompressible layers, crack
growth transitions from unstable to stable.

e Under force-controlled boundary conditions, the
energy release rate increases with the crack size
for both small and large cracks in compressible
layers, and thus crack growth is unstable. In con-
trast, for incompressible and nearly incompress-
ible layers, crack growth transitions from unsta-
ble to stable and then to unstable again. The sta-
ble crack growth under the force-controlled condi-
tion is rather unusual, which may be attributed to
the combined effect of low material compressibility
(x < 1) and layer thinness (§ < 1).

e For circular interfacial cracks, qualitatively similar
analytical solutions are obtained for small and large
cracks. It is found that the energy release rate for a
small interfacial crack is approximately half of that
for an embedded crack of the same size. In contrast,
the energy release rate for a large interfacial crack
is approximately equal to that for a large embedded
crack.

e For compressible thin layers, the approximate ana-
Iytical solutions can be extended to non-axisymmetric
planar cracks for both embedded and interfacial
cracks. The solution is particularly simple for large
cracks, as it implies approximately constant energy
release rate along the crack front, independent of its
shape or location. However, this approach cannot
be easily extended to cracks in incompressible or
nearly incompressible layers.

We believe that this paper has the following contri-
butions to the literature:
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e It provides a comprehensive set of approximate
analytical solutions for the energy release rate of
axisymmetric embedded cracks of small and large
sizes in compressible, nearly incompressible, and
incompressible thin layers. An important aspect of
these solutions is they clearly distinguish between
nearly incompressible materials, defined by the
condition ¥ < 1, and nearly incompressible lay-
ers, defined by the condition &£ /x = O(1).

e It significantly expands and improves on the pre-
vious results of Benvidi and Bacca (2021) for
axisymmetric interfacial cracks, as it provides accu-
rate asymptotic solutions for both small and large
cracks, and the asymptotic solutions for nearly
incompressible layers are constructed by properly
taking into account the competition between small
normalized thickness & and small compressibility
X

e It provides a simple approximate solution for any
large planar crack, embedded or interfacial, in com-
pressible thin layers. The simplicity of this solution
should be particularly appealing for characteriza-
tion of thin adhesive layers.
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Appendix A Asymptotic solutions for constrained
elastic thin layers

In this appendix, we follow the approach of Movchan
et al. (2021) and develop analytical expressions for
solid and annular thin layers used in Sect. 2.

Appendix A.1 General solution

A solution of partial differential equations governing
axisymmetric problems of classical elasticity can be
represented using Love-Galerkin’s potential ®. This
potential must satisfy the bi-harmonic equation

2 18 9\
-4+ —) =0, Al
<8r2+r8r+8Z2> 1)

where r and 7 are cylindrical coordinates, such that z is
measured along the axis of symmetry. For a given &,
the displacement components are expressed as

1 9’0

21— ) draz (A2

U, =

and
P 13d 1-2v 3’
Uy = — t+-——+————.
ar2 ror  2(1—v) 9z2
For thin layers, it is advantageous to introduce scaled
coordinates

(A.3)

as they naturally introduce the small parameter £ =
h/a into the problem. As a result, Eqs. (A.1) through
(A.3) can be rewritten as

ERE)
577 =0. (A.4)
1 & 3%®
- = , A5
I T A=W hZaRAZ (A-5)
and

_52[82<I> 1aq>] 1-2v 1 9%® |
2

=S|+ == ——— .(A6
“: =32 ar2 YRR | Taa—wnrazz "
Note that Eq. (A.4) implies that ® is a cubic polynomial
in Z.

For constrained thin layers, & is taken in the form

&= thA(R) <z2 3) z (A7)
=2, , .

where A(R) satisfies Bessel’s equation
52 " 1 /

- [AT R+ AR | +AR) =1. (A.8)
X R

With these provisions, the displacements derived from
(A.5)and (A.6) satisfy the boundary conditions imposed
by the plates.

The general solution of Eq. (A.8) is

Rx Ry
AR)=14+Ci11y <?> + 2K (?> . (A9

where C and C; are integration constants to be deter-
mined by satisfying traction-free boundary-conditions
on the cylindrical boundary (boundaries).

Appendix A.2 Solid layer

For a solid thin layer of radius a, the traction-free
boundary conditions are satisfied approximately, by
requiring

1 h

1 h
> _ha,rdz:Oandﬁ/_horzdzzmlt r=a.
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Of these two conditions, the second one is automati-
cally satisfied due to symmetry, so that the traction-free
boundary conditions yield only one non-trivial equa-
tion for C| and C;. The second equation is obtained by
requiring A(R) to be finite at R = 0. As a result, we
obtain

C = 36 -20) (A.10)
(=) [26xn (%) =300 (£)]

and

C=0. (A1)

Now one can reconstruct A(R) and P, calculate the
displacements, and then stresses. Of particular interest
is the stress o, at two locations,

o) =0 (R=0,Z=0)

_ [1+ (3—2;(2) (6—9x2+2X4> )MA
2(

s ()= (7]
(A.12)
and
0] =0,z (R=0,Z=-1)
IR, S S
(B3-x?) [25)(11 (%) — 31 (%)] hx*
(A.13)

The transmitted force is calculated as

a 1
Fs = 271/ Ozz)z=p7dr = 27ra2/ 0zz1z=1RAR =
0 0

37r;w2A
3 B—x2)h

(s (8) 2 (52 +0) ()]
| |

s0(8) 2000 )

(A.14)
For incompressible materials,
~ . 3mpa® A

Appendix A.3 Annular layer
For an annular layer with the inner radius ¢ = ¢a and

the outer radius a, the traction-free boundary conditions
are imposed at r = ¢ and r = a. As a result, we obtain

@ Springer
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(A.17)

The transmitted force is calculated as

a S
F = 271/ Ozz|e=ptdr = 2na2/
c 0

3mua*(l — c)A  6mpa’eA
x>h x3h

Al (E) s () e
L0 )le)

(A.19)

UZZ|Z:1RdR =

n

An explicit form of this equation is too cumbersome to
be useful.
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