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Principal Component Analysis
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Principal Component Analysis
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This data in 2D can be represented in 1D without much loss of
information.

PCA: Data in higher dimensions represented in lower dimensions while

preserving important information.
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Matrix Algebra Basics

M is a symmetric matrix if it is square and mj; = mj; for all /, ;.
i.e. It is equal to its transpose. M = MT.

mi m;

:

Main Diagonal

E
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Eigen Values and Eigen Vectors

@ Every symmetric matrix can be written as a product:

M= VAVT

M = Symmetric V = Orthonormal Columns A = Diagonal
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Eigen Values and Eigen Vectors
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The eigen vectors are orthonormal, i.e. they are normal: ||v;|[3 = v,”

and they are orthogonal: v,/ v; = 0.
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Eigen Values and Eigen Vectors

+ +

i.e.M=[@: I\zl— Im—

Eigen Decomposition of d x d matrix M:

M= /\1V1V1T + )\2V2V2T + )\3V3V3T + ...

d
M = Z )\,-v;v,-T
i=1

Each v; is a d x 1 vector, each )\,'v;v,-T is a d x d matrix.
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Rank

@ The rank of a symmetric matrix M is the number of non-zero

eigenvalues.
Rank=2| =
r
M = E )\,'v,'v,-T
i=1
r: rank
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Back to dimensionality reduction

Suppose 3 points lie on a line - "lower dimensional”

4 Correlation Matrix = 4 2] | 6 3
+ +
1

(6,3)

° 4.2

°@n

Correlation matrix of the points - write each point as a vector v and sum

up w ' over all points.
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Back to dimensionality reduction

1 Correlation Matrix =| 2 4 6|6 3
+ +
1 2 3
=| s 28 | = |25 25 15
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v

Correlation matrix is a symmetric matrix. (2/v/5)% 4+ (1/v/5)?> = 1. Thus
the above is an eigen decomposition with rank 1 as only one eigen vector
is required. Note it is rank 1 as the points lie exactly on a line.
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Back to dimensionality reduction
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Here, correlation matrix will be almost low-rank.
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PCA (Symmetric matrix version

@ Approximate a given symmetric matrix by a low-rank matrix

i.e. find rank-r matrix M(") that minimizes squared error.

d d
1M = MO =37 " |my — mi))?

i=1 j=1

Sujay Sanghavi PCA 12/1



PCA (Symmetric matrix version)

e Given data points x1,x2, . .. X, and each x; € R?
@ Make the correlation matrix M = 27:1 x,-x,-T. This is symmetric
because
» Each x;x is symmetric ((x;x")" = (x7)"x" = x;x.")
» sum of symmetric matrices is symmetric
@ Take eigen-decomposition of M. M = 27:1 )\,-v,-v,-T = VAVT where
Visdx d
@ Reorder eigen values and corresponding eigen vectors such that
A=A > A3> 000 Mg
@ Choose r < d which is the desired rank. We take the top r eigen
vectors and discard the others
o Set M(N =31 NvivT = VOAD(VINT where V(D isa d x r
matrix
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PCA (Symmetric matrix version)

A

o 5= (VMNTx; ie xjisadx1vector and becomes %; which is an
r x 1 vector

-
Q.
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Back to dimensionality reduction

b

“63)
. 4,2) —_— % % %
):1(21) V5 2v5 3v5
2//5
V = If the points were not exactly on a

line, then V would have been a 2 x 2
. 2 matrix and we would drop the second
X1 = (2/\/5 1/\/5) (1) =5 vector. Then our final values would

be close to but not exactly the values

% = (2/v/5 1/V5) (g) —2v/5 we got above.
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Choosing rank

Eigen vectors corresponding to high eigen values are important - carry
much of the information about the data. If eigen values become much
lower after a point, drop from those eigen vectors onwards.

Here we can choose a rank of 3 or more.
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Example: MNIST dataset
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Correlation matrix of the points - write each point as a vector v and sum

up w ' over all points.
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PCA of MNISTt
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Correlation matrix of the points - write each point as a vector v and sum

T

up vv' over all points.
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