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Principal Component Analysis

This data in 2D can be represented in 1D without much loss of
information.

PCA: Data in higher dimensions represented in lower dimensions while
preserving important information.
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Matrix Algebra Basics

M is a symmetric matrix if it is square and mij = mji for all i , j .
i.e. It is equal to its transpose. M = MT .
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Eigen Values and Eigen Vectors

Every symmetric matrix can be written as a product:

M = VΛV T
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Eigen Values and Eigen Vectors

The eigen vectors are orthonormal, i.e. they are normal: ||vi ||22 = vTi vi = 1
and they are orthogonal: vTi vj = 0.
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Eigen Values and Eigen Vectors

Eigen Decomposition of d × d matrix M:

M = λ1v1v
T
1 + λ2v2v

T
2 + λ3v3v

T
3 + . . .

M =
d∑

i=1

λiviv
T
i

Each vi is a d × 1 vector, each λiviv
T
i is a d × d matrix.
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Rank

The rank of a symmetric matrix M is the number of non-zero
eigenvalues.

M =
r∑

i=1

λiviv
T
i

r : rank
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Back to dimensionality reduction

Suppose 3 points lie on a line - ”lower dimensional”

Correlation matrix of the points - write each point as a vector v and sum
up vvT over all points.
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Back to dimensionality reduction

Correlation matrix is a symmetric matrix. (2/
√
5)2 + (1/

√
5)2 = 1. Thus

the above is an eigen decomposition with rank 1 as only one eigen vector
is required. Note it is rank 1 as the points lie exactly on a line.

Sujay Sanghavi PCA 10 / 1



Back to dimensionality reduction

Here, correlation matrix will be almost low-rank.
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PCA (Symmetric matrix version

Approximate a given symmetric matrix by a low-rank matrix

i.e. find rank-r matrix M(r) that minimizes squared error.

||M −M(r)||22 =
d∑

i=1

d∑
j=1

|mij −m
(r)
ij |2
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PCA (Symmetric matrix version)
Given data points x1, x2, . . . xn and each xi ∈ Rd

Make the correlation matrix M =
∑n

j=1 xix
T
i . This is symmetric

because
▶ Each xix

T
i is symmetric ((xix

T
i )T = (xTi )T xTi = xix

T
i )

▶ sum of symmetric matrices is symmetric

Take eigen-decomposition of M. M =
∑d

i=1 λiviv
T
i = VΛV T where

V is d × d

Reorder eigen values and corresponding eigen vectors such that
λ1 ≥ λ2 ≥ λ3 ≥ . . . λd .

Choose r < d which is the desired rank. We take the top r eigen
vectors and discard the others

Set M(r) =
∑r

i=1 λiviv
T
i = V (r)Λ(r)(V (r))T where V (r) is a d × r

matrix
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PCA (Symmetric matrix version)

x̂j = (V (r))T xj i.e. xj is a d × 1 vector and becomes x̂j which is an
r × 1 vector
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Back to dimensionality reduction

V =

(
2/

√
5

1/
√
5

)
x̂1 =

(
2/
√
5 1/

√
5
)(2

1

)
=

√
5

x̂2 =
(
2/
√
5 1/

√
5
)(4

2

)
= 2

√
5

If the points were not exactly on a
line, then V would have been a 2× 2
matrix and we would drop the second
vector. Then our final values would
be close to but not exactly the values
we got above.
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Choosing rank

Eigen vectors corresponding to high eigen values are important - carry
much of the information about the data. If eigen values become much
lower after a point, drop from those eigen vectors onwards.

Here we can choose a rank of 3 or more.
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Example: MNIST dataset

Correlation matrix of the points - write each point as a vector v and sum
up vvT over all points.
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PCA of MNISTt

Correlation matrix of the points - write each point as a vector v and sum
up vvT over all points.
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