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“Foundation Model Paradigm”

Pretraining
1. Train a large model on a lot of data in an unsupervised way

Vision: CLIP
Language: LLAMA, Mistral, Gemma, etc.

Expensive, hard to re-create, broadly performant

2. Specialize this model for specific task(s) Fine-tuning



Pre-trained Models are Valuable
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Source: Nie et. al., “Large language diffusion models”

(expensive) pre-training
yields broadly performant
models ...

The same, “frozen” model

(no specialization) has great
zero shot or few shot
performance on a range of tasks.



Eg: Gemma

Gemma-1 Gemma-2 | Mistral LLaMA-3 Gemma-1 Gemma-2 | Gemma-2
Benchmark metric 2B 2B 7B 8B 7B 9B 27B
MMLU 5-shot 42.3 52.2 62.5 66.6 64.4 71.3 75.2
ARC-C 25-shot 48.5 55.7 60.5 59.2 61.1 68.4 71.4
GSMS8K 5-shot 15.1 24.3 39.6 45.7 51.8 68.6 74.0
AGIEval 3-5-shot 24.2 31.5 44.0° 45.9" 449" 52.8 551
DROP 3-shot, F1 48.5 51.2 63.8° 58.4 56.3 69.4 74.2
BBH 3-shot, CoT| 35.2 41.9 56.0° 61.1° 59.0° 68.2 74.9
Winogrande  5-shot 66.8 71.3 78.5 76.1 79.0 80.6 83.7
HellaSwag 10-shot 71.7 72.9 83.0 82.0 82.3 81.9 86.4
MATH 4-shot 11.8 16.0 12.7 - 24.3 36.6 42.3
ARC-e 0-shot 73.2 80.6 80.5 - 81.5 88.0 88.6
PIQA 0-shot 77.3 78.4 82.2 - 81.2 81.7 83.2
SIQA 0-shot 49.7 51.9 47.0° - 51.8 53.4 53.7
Boolq 0-shot 69.4 72.7 83.2° - 83.2 84.2 84.8
TriviaQA 5-shot 53.2 60.4 62.5 - 63.4 76.6 83.7
NQ 5-shot 12.5 17.1 23.2 - 23.0 29.2 34.5
HumanEval pass@1 22.0 20.1 26.2 - 32.3 40.2 51.8
MBPP 3-shot 29.2 30.2 40.2° - 44.4 52.4 62.6
Average (8) 44.0 50.0 61.0 61.9 62.4 70.2 74.4
Average (all) 44.2 48.7 55.6 - 57.9 64.9 69.4




Eg: DeepSeek

Benchmark oetsio Claude-3.5- GPT-40 DeepSeek |OpenAl OpenAl|DeepSeek
Sonnet-1022 0513 V3 ol-mini 01-1217 R1

Architecture - - MoE - - MoE
# Activated Params - - 37B - - 37B
# Total Params - - 671B - - 671B
MMLU passe1) 88.3 87.2 88.5 85.2 91.8 90.8
MMLU-Redux Em) 88.9 88.0 89.1 86.7 - 92.9
MMLU-Pro &m) 78.0 72.6 75.9 80.3 - 84.0
DROP (3-shot F1) 88.3 83.7 91.6 83.9 90.2 92.2
Enghsh IF-Eval (Prompt Strict) 86.5 84.3 86.1 84.8 - 83.3
GPQA Diamond (pass@1) 65.0 499 59.1 60.0 75.7 71.5
SimpleQA (Correct) 28.4 38.2 24.9 7.0 47.0 30.1
FRAMES (Acc) 72.5 80.5 73.3 76.9 - 82.5
AlpacaEval2.0 (Lc-winrate) 52.0 51.1 70.0 57.8 - 87.6
ArenaHard (GpP1-4-1106) 85.2 80.4 85.5 92.0 - 92.3
LiveCodeBench (passe1-cor) 38.9 32.9 36.2 53.8 63.4 65.9
Code Codeforces (Percentile) 20.3 23.6 58.7 934 96.6 96.3
Codeforces (Rating) 717 759 1134 1820 2061 2029
SWE Verified (Resolved) 50.8 38.8 42.0 41.6 48.9 49.2
Aider-Polyglot (Acc) 45.3 16.0 49.6 32.9 61.7 53.3
AIME 2024 (pass@1) 16.0 9.3 39.2 63.6 79.2 79.8
Math MATH-500 (pass@1) 78.3 74.6 90.2 90.0 96.4 97.3
CNMO 2024 (pass@1) 13.1 10.8 432 67.6 - 78.8
CLUEWSC E&m) 85.4 87.9 90.9 89.9 - 92.8
Chinese C-Eval &m) 76.7 76.0 86.5 68.9 - 91.8
C-SimpleQA (Correct) 55.4 58.7 68.0 40.3 - 63.7




Forgetting

What happens to these models when they are fine-tuned ?
1. They improve on the task / domain they are fine tuned on

2. They degrade on everything else they were originally measured on

Method Performance General Capability
eHho GSMS8K Commensense MMLU HumanEval Average
Llama-2-7B 13.7 65.6 42.0 242 43.9 e.g. LLAMA-2-7B
62.3 36.6 16.1 38.3 .
Full FT 49.4 Py iy 81 -y finetuned on
HET 75 655 03 236 338 MathQA
' -0.1 +0.3 -0.6 -0.1
N 65.1 38.3 27.4 43.6
Lq-regularization 39.0 05 37 +3.0 04
o 65.5 39.2 25.9 43.5
L,-regularization 44.5 01 Y 17 04
o oo 65.7 427 246 443
MoFO (a% = 15%) 47.7 +0.1 +0.7 +0.4 +0.4

Source: Chen et. Al. “MoFO: Momentum-Filtered Optimizer for Mitigating Forgetting in LLM
Finetuning”



Data-oblivious Setting

Typically, we do not know how pretraining was done
- Dataset not public, or even if public too cumbersome

- Precise description of training choices not always available

Q: How do we mitigate forgetting when we only have
access to the model, but not to the data + methodology
used to train it ?



Notation

9 Weights of the model
fz' ((9) Loss function of the ith finetuning sample
9* Weights of the pre-trained model

Standard fine-tuning

, 1
m@m NZ]C@(H) starting from (9*



Approach 1: Regularize ( /5 — reg )

Overcoming catastrophic forgetting in neural
networks

James Kirkpatrick?®, Razvan Pascanu?, Neil Rabinowitz?, Joel Veness?, Guillaume Desjardins?,
Andrei A. Rusu?, Kieran Milan?, John Quan®, Tiago Ramalho?, Agnieszka Grabska-Barwinska 2,
Demis Hassabis?, Claudia Clopathb, Dharshan Kumaran?, and Raia Hadsell?

Penalize deviation from pretrained model parameters during fine-tuning

min Zfz + 116 — 6,15



Approach 2: Do not finetune everything

MOoFO: Momentum-Filtered Optimizer for Mitigating
Forgetting in LLM Fine-Tuning

Yupeng Chen*!, Senmiao Wang*!, Zhihang Lin!, Zeyu Qin®, Yushun Zhang'?,
Tian Ding?, and Ruoyu Sun’!2

In each iteration, finds the parameters with the biggest momentum term
and updates those



Approach 3: PEFT ( LoRA )

LoRA Learns Less and Forgets Less

Dan Biderman!?, Jacob Portes?, Jose Javier Gonzalez Ortiz?, Mansheej Paul?, Philip
Greengard!, Connor Jennings?, Daniel King?, Sam Havens?, Vitaliy Chiley?, Jonathan Frankle?,
Cody Blakeney?, John P. Cunningham'

Title says it all ...

esmall

, 1
1111 N Z fi(esmall =+ (9*)




Approach 4: Weight ensemble (Wise-FT)

Robust fine-tuning of zero-shot models
Mitchell Wortsman* Gabriel Ilharco*! Jong Wook Kim? Mike Li#
Simon Kornblith® Rebecca Roelofs® Raphael Gontijo-Lopes®

Hannaneh Hajishirzi™  Ali Farhadi*' = Hongseok Namkoong** = Ludwig Schmidt™

First finetune normally, then average the weights of final and pretrained

o1
91 < in NZfz(e) starting from @,

Hfinal — ab + (1 — 04)6)*



Approach 5: Ours

A new approach to mitigate forgetting
- Works for both generative and discriminative models
- Bests previous approaches (in our experiments)

- Complementary to and additive with the other approaches



ldea : Sample Weighting

At a high level, all approaches try to discourage big moves away from (9*
Each sample i “causes” a move away from (9* of magnitude V@ fz (9*)

Idea: de-prioritize the samples which cause big moves
min g 7 fi(6)
0 .
1

Per-sample weight that depends on (9*



ldea : Sample Weighting

Large ngz(e*) > Low 7T;
Issue: calculating gradients is compute and memory intensive, so instead
Large fz (9*) —> Low 7T,

1. For each sample find its weight based on it’s loss in the pretrained model

2. Solve weighted loss



Determining 77;

Two requirements:

1.Forall § = 7 suchthat f;(6.) > f;(6.) weshould have 71, < 77 ;

2. The distribution 77T should be spread out

Both requirements can be met by entropic regularization
min E m fi(0e) + T g ; log ;
T
) )

Weighted

Spreads 71 out
pretrain loss P



Determining 77;

The optimal 71 that solves this entropic regularization objective is

T = %exp (— fz(f*)>

We use this in our method - FLOW



Algorithm : FLOW

Algorithm 1 Fine-tuning with Pre-trained Loss-Oriented Weighting (FLOW)
Input: Pre-trained model 8%, dataset {(x;,y;)}; for the new task, temperature parameter 7.

f;(8) — i*® sample’s loss at @, with a non-negative loss function (e.g., cross-entropy loss).
1. Compute sample weights: w; = exp (—@).

2. Weighted loss: £(0) = Y -, w; fi(0).

3. Fine-tune with weighted loss: 6 := arg min £(0).

o
Output: Fine-tuned model 6*.

In our expts: 7 is chosen to be the median pretrain loss on the entire finetuning
dataset

But one could have it be the median of the mini-batch, a running / online median, etc.



Relationship to DRO

Our form is evocative of distributionally robust optimization

Except that ours is the exact opposite.

In particular, DRO will give 7} o exp ( @)

DRO focuses on the hard samples, and so would accentuate forgetting



Experiment Setup

Recall: we want to measure the degradation in general capability when we
finetune for a specific downstream task

Two pretrained models: Gemma 2 2B and LLAMA 3.2 3B

Downstream task:

fine-tune on MetaMathQA, measure on GSM8K
use CommonSense, MMLU and MBPP as proxies for general capability

Evaluations using 1m-evaluation-harness

We follow the setup used in both “LoRA learns less and forgets less” and “MoFO”



Results

| General Capability Acc. Target Acc. |
Method ‘ Commonsense MMLU MBPP | GSMSK | Average
g Pre-trained 57.23 (+0.00) 49.59 (+0.000 28.40 (+0.00) | 24.49 (-38.89) 40.79
o Standard Fine-tuning 55.07 (-2.16) 45.59 (-4.00) 16.80 (-11.60) 63.38 (+0.00) 46.31
g WIiSE-FT (a =0.5) 57.28 (+0.05) 50.13 (+054)  25.60 (-2.80) 53.30 (-10.08) 47.60
& LoRA (r =64) 55.67 (-1.56) 44.28 (-5.31) 25.80 (-2.60) 60.43 (-2.95) 47.05
§ {5-Regularization 57.01 (-0.22) 48.43 (-1.16) 24.80 (-3.60) 62.85 (-0.53) 49.19
O FLOW (Ours) 57.59 (+0.36) 49.31 (028)  26.80 (-1.60) | 62.55 (-0.83) 49.98
a Pre-trained 54.48 (+0.00) 54.34 (+0.00) 38.00 (+0.00) | 26.01 (-40.94) 44.28
o~ Standard Fine-tuning 50.68 (-3.80) 45.29 (-9.05) 17.80 (-20.20) | 66.95 (+0.00) 46.10
o WIiSE-FT (a = 0.5) 54.54 (10.04) 53.33 (-1.01) 34.60 (-3.40) 57.01 (-9.94) 50.75
g LoRA (r =64) 53.10 (-1.38) 50.95 (-3.39) 34.00 (-4.00) 63.84 (-3.15) 51.66
a {5-Regularization 53.60 (-0.88) 51.28 (-3.06) 33.60 (-4.40) 66.87 (-0.08) 52.30
=  FLOW (Ours) 54.30 (-0.18) 51.86 (-2.48) 36.00 (-2.00) 65.58 (-1.37) 52.87




Additiveness to ¢/, and LoRA

Common
Sense MMLU MBPP GSM8K

Method | Al A2 A3 B1 Avg.

ls 07.01 48.43 24.80 | 62.85 | 49.19
lo+ 57.53 49.38 26.60 | 62.02 | 49.79

LoRA 55.67 44.28  25.80 | 60.43 | 47.05
LoRA+ | 56.74 47.68 28.80 | 61.49 | 49.31




What about task-specific heads ?

In many applications (e.g. image classification) we may only borrow the
Body/trunk of a pretrained model, and then add on a new prediction head

E.g. take a model trained on Imagenet, add on a prediction head for CIFAR-100,
and then Linear probe or fine-tune

In this case, FLOW operates as follows:

1. Make a linear probed prediction head (on frozen pretrained body) for the
downstream dataset

2. Use this to determine the weights

3. Weighted fine-tuning of this head + un-frozen body



Expt Setup

Pretrained models: ResNets trained on Imagenet 1K by [Russakovsky et. al.]

Datasets. We select six widely-used image classification datasets: CIFAR-10 [Krizhevsky, 2009,
CIFAR-100 [Krizhevsky, 2009], Flowers102 [Nilsback and Zisserman, 2008], Caltech101 [Li et al.,
2022|, Cars [Krause et al., 2013], and Dogs [Parkhi et al., 2012].

For each method, we finetune on a per-dataset basis and then report
average scores



Results

Method IN-1K Acc. | Target Acc. | Average
0 Pre-trained 69.76 (+0.00) | — -
~ Standard FT 19.58 (-50.18) | 89.07 (+0.00) 54.60
© Linear Probe 69.76 (+0.00) | 73.57 (-15.50) 71.63
2 {,-Reg. 34.78 (sa0%) | 88.12 (o0 | 61.45
r WiSE-FT 54.15 (1s61) | 80.23  (sse) | 67.19

FLOW (Ours) | 65.21 (455 | 83.93  (5.14) 74.57
o Pre-trained 79.02 (10.00) | — -
¥ Standard FT 36.91 (42.11) | 91.78 (10.00) 64.34
® Linear Probe 79.02 (+0.00) | 76.45 (-15.33) 77.73
2 lr-Reg. A4.78 (sa20) | 9158  (o020) | 68.18
® WISEFT 61.65 (17.37) | 81.38 (1040) | T71.52

FLOW (Ours) | 76.09  (-2.93) | 86.25  (-5.53) 81.17




Additivity

Method IN-1K Acc. | Target Acc. | Average

WiSE-FT 54.15 80.23 67.19
ResNet-18 = v iop pr 63.71 74.03 71.37

WiSE-FT 61.65 81.38 71.52
ResNet-50  yrop ppy 78.29 73.80 76.04




Theory Summary

We analyze FLOW for the linear setting, and find the minimal set of
conditions on four quantities:

covariance matrix of the finetuning data i

covariance matrix of the pretraining data )

parameters of the pretrained model (9*

optimal parameters of the model for downstream task only 5*

Under which FLOW provably outperforms model averaging and 52



Theory Summary

err1(6) :=Ep (v — (6,%))°| = (0 6.) ' (6 -6.),

~

erry(6) == E5 | (7 - (6,%))°] = (0 - 6.) '5(0 - .)

1/2
Theorem 7.2 (FLOW). Let y = (T+2T”e”2) . Then:
2

~ ~ K
O =0, + (Id — 2772’) e,
where &' = p(Ig — Q) with
Q=(1-p?ee +p?(1—p?e e —pu(ee] +e.e').

By controlling 7" we can find a Q that can stall convergence to §, in bad directions



Summary

Selecting samples is a cheap and complementary way to mitigate model
Forgetting

Solving catastrophic forgetting is a crucial step in continual learning



