

Mitigating Catastrophic Forgetting

in the

Data Oblivious Setting

Sujay Sanghavi

University of Texas, Austin

Sunny
Sanyal

Ali Kavis

Hayden
Prairie

Rudrajit
Das

“Foundation Model Paradigm”

Pretraining

1. Train a large model on a lot of data in an unsupervised way

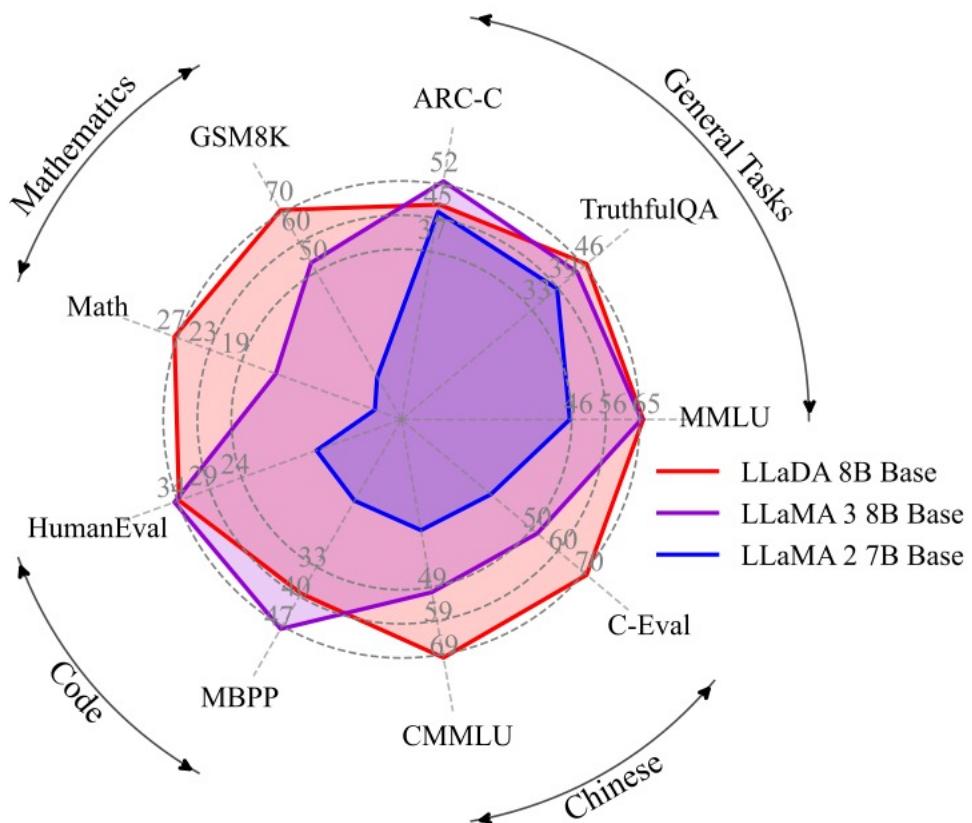
Vision: CLIP

Language: LLAMA, Mistral, Gemma, etc.

Expensive, hard to re-create, **broadly performant**

2. Specialize this model for specific task(s) **Fine-tuning**

Pre-trained Models are Valuable



(expensive) pre-training yields **broadly** **performant** models ...

The same, “frozen” model (no specialization) has great **zero shot** or **few shot** performance on a range of tasks.

Eg: Gemma

Benchmark	metric	Gemma-1		Gemma-2		Mistral	LLaMA-3	Gemma-1	Gemma-2	Gemma-2
		2B	2B	7B	8B	7B	9B	27B		
MMLU	5-shot	42.3	52.2	62.5	66.6	64.4	71.3	75.2		
ARC-C	25-shot	48.5	55.7	60.5	59.2	61.1	68.4	71.4		
GSM8K	5-shot	15.1	24.3	39.6	45.7	51.8	68.6	74.0		
AGIEval	3-5-shot	24.2	31.5	44.0 [†]	45.9 [†]	44.9 [†]	52.8	55.1		
DROP	3-shot, F1	48.5	51.2	63.8 [*]	58.4	56.3	69.4	74.2		
BBH	3-shot, CoT	35.2	41.9	56.0 [°]	61.1 [°]	59.0 [°]	68.2	74.9		
Winogrande	5-shot	66.8	71.3	78.5	76.1	79.0	80.6	83.7		
HellaSwag	10-shot	71.7	72.9	83.0	82.0	82.3	81.9	86.4		
MATH	4-shot	11.8	16.0	12.7	-	24.3	36.6	42.3		
ARC-e	0-shot	73.2	80.6	80.5	-	81.5	88.0	88.6		
PIQA	0-shot	77.3	78.4	82.2	-	81.2	81.7	83.2		
SIQA	0-shot	49.7	51.9	47.0 [*]	-	51.8	53.4	53.7		
Boolq	0-shot	69.4	72.7	83.2 [*]	-	83.2	84.2	84.8		
TriviaQA	5-shot	53.2	60.4	62.5	-	63.4	76.6	83.7		
NQ	5-shot	12.5	17.1	23.2	-	23.0	29.2	34.5		
HumanEval	pass@1	22.0	20.1	26.2	-	32.3	40.2	51.8		
MBPP	3-shot	29.2	30.2	40.2 [*]	-	44.4	52.4	62.6		
Average (8)		44.0	50.0	61.0	61.9	62.4	70.2	74.4		
Average (all)		44.2	48.7	55.6	-	57.9	64.9	69.4		

Eg: DeepSeek

Benchmark (Metric)		Claude-3.5- Sonnet-1022	GPT-4o 0513	DeepSeek V3	OpenAI o1-mini	OpenAI o1-1217	DeepSeek R1
English	Architecture	-	-	MoE	-	-	MoE
	# Activated Params	-	-	37B	-	-	37B
	# Total Params	-	-	671B	-	-	671B
	MMLU (Pass@1)	88.3	87.2	88.5	85.2	91.8	90.8
	MMLU-Redux (EM)	88.9	88.0	89.1	86.7	-	92.9
	MMLU-Pro (EM)	78.0	72.6	75.9	80.3	-	84.0
	DROP (3-shot F1)	88.3	83.7	91.6	83.9	90.2	92.2
	IF-Eval (Prompt Strict)	86.5	84.3	86.1	84.8	-	83.3
	GPQA Diamond (Pass@1)	65.0	49.9	59.1	60.0	75.7	71.5
	SimpleQA (Correct)	28.4	38.2	24.9	7.0	47.0	30.1
Code	FRAMES (Acc.)	72.5	80.5	73.3	76.9	-	82.5
	AlpacaEval2.0 (LC-winrate)	52.0	51.1	70.0	57.8	-	87.6
	ArenaHard (GPT-4-1106)	85.2	80.4	85.5	92.0	-	92.3
	LiveCodeBench (Pass@1-COT)	38.9	32.9	36.2	53.8	63.4	65.9
	Codeforces (Percentile)	20.3	23.6	58.7	93.4	96.6	96.3
Math	Codeforces (Rating)	717	759	1134	1820	2061	2029
	SWE Verified (Resolved)	50.8	38.8	42.0	41.6	48.9	49.2
	Aider-Polyglot (Acc.)	45.3	16.0	49.6	32.9	61.7	53.3
	AIME 2024 (Pass@1)	16.0	9.3	39.2	63.6	79.2	79.8
Chinese	MATH-500 (Pass@1)	78.3	74.6	90.2	90.0	96.4	97.3
	CNMO 2024 (Pass@1)	13.1	10.8	43.2	67.6	-	78.8
	CLUEWSC (EM)	85.4	87.9	90.9	89.9	-	92.8
	C-Eval (EM)	76.7	76.0	86.5	68.9	-	91.8
	C-SimpleQA (Correct)	55.4	58.7	68.0	40.3	-	63.7

Forgetting

What happens to these models when they are fine-tuned ?

1. They improve on the task / domain they are fine tuned on
2. They **degrade on everything else** they were originally measured on

Method	Performance		General Capability		
	GSM8K	CommSense	MMLU	HumanEval	Average
Llama-2-7B	13.7	65.6	42.0	24.2	43.9
Full FT	49.4	62.3 -3.3	36.6 -5.4	16.1 -8.1	38.3 -5.6
HFT	47.5	65.5 -0.1	42.3 +0.3	23.6 -0.6	43.8 -0.1
L_1 -regularization	39.0	65.1 -0.5	38.3 -3.7	27.4 +3.2	43.6 -0.3
L_2 -regularization	44.5	65.5 -0.1	39.2 -2.8	25.9 +1.7	43.5 -0.4
MoFO ($\alpha\% = 15\%$)	47.7	65.7 +0.1	42.7 +0.7	24.6 +0.4	44.3 +0.4

e.g. LLAMA-2-7B
finetuned on
MathQA

Source: Chen et. Al. “MoFO: Momentum-Filtered Optimizer for Mitigating Forgetting in LLM Finetuning”

Data-oblivious Setting

Typically, we do not know how pretraining was done

- Dataset not public, or even if public too cumbersome
- Precise description of training choices not always available

Q: How do we mitigate forgetting when we **only have access to the model**, but not to the data + methodology used to train it ?

Notation

θ Weights of the model

$f_i(\theta)$ Loss function of the i th finetuning sample

θ_* Weights of the pre-trained model

Standard fine-tuning

$$\min_{\theta} \frac{1}{N} \sum_i f_i(\theta) \quad \text{starting from } \theta_*$$

Approach 1: Regularize (ℓ_2 – reg)

Overcoming catastrophic forgetting in neural networks

James Kirkpatrick^a, Razvan Pascanu^a, Neil Rabinowitz^a, Joel Veness^a, Guillaume Desjardins^a, Andrei A. Rusu^a, Kieran Milan^a, John Quan^a, Tiago Ramalho^a, Agnieszka Grabska-Barwinska^a, Demis Hassabis^a, Claudia Clopath^b, Dharshan Kumaran^a, and Raia Hadsell^a

Penalize deviation from pretrained model parameters during fine-tuning

$$\min_{\theta} \frac{1}{N} \sum_i f_i(\theta) + \|\theta - \theta_*\|_2^2$$

Approach 2: Do not finetune everything

MoFO: Momentum-Filtered Optimizer for Mitigating Forgetting in LLM Fine-Tuning

Yupeng Chen^{*1}, Senmiao Wang^{*1}, Zhihang Lin¹, Zeyu Qin³, Yushun Zhang^{1,2},
Tian Ding², and Ruoyu Sun^{†1,2}

In each iteration, finds the parameters with the biggest momentum term and updates those

Approach 3: PEFT (LoRA)

LoRA Learns Less and Forgets Less

Dan Biderman^{1,2}, Jacob Portes², Jose Javier Gonzalez Ortiz², Mansheej Paul², Philip Greengard¹, Connor Jennings², Daniel King², Sam Havens², Vitaliy Chiley², Jonathan Frankle², Cody Blakeney², John P. Cunningham¹

Title says it all ...

$$\min_{\theta_{small}} \frac{1}{N} \sum_i f_i(\theta_{small} + \theta_*)$$

Approach 4: Weight ensemble (Wise-FT)

Robust fine-tuning of zero-shot models

Mitchell Wortsman^{*†}

Gabriel Ilharco^{*†}

Jong Wook Kim[§]

Mike Li[‡]

Simon Kornblith[◊]

Rebecca Roelofs[◊]

Raphael Gontijo-Lopes[◊]

Hannaneh Hajishirzi^{†○}

Ali Farhadi^{*†}

Hongseok Namkoong^{*‡}

Ludwig Schmidt^{†△}

First finetune normally, then average the weights of final and pretrained

$$\theta_1 \leftarrow \min_{\theta} \frac{1}{N} \sum_i f_i(\theta) \quad \text{starting from } \theta_*$$

$$\theta_{final} \leftarrow \alpha \theta_1 + (1 - \alpha) \theta_*$$

Approach 5: Ours

A new approach to mitigate forgetting

- Works for both generative and discriminative models
- Bests previous approaches (in our experiments)
- **Complementary to and additive with the other approaches**

Idea : Sample Weighting

At a high level, all approaches try to **discourage big moves** away from θ_*

Each sample i “causes” a move away from θ_* of magnitude $\nabla_{\theta} f_i(\theta_*)$

Idea: de-prioritize the samples which cause big moves

$$\min_{\theta} \sum_i \pi_i f_i(\theta)$$

Per-sample weight that depends on θ_*

Idea : Sample Weighting

$$\text{Large } \nabla_{\theta} f_i(\theta_*) \quad \longleftrightarrow \quad \text{Low } \pi_i$$

Issue: calculating gradients is compute and memory intensive, so instead

$$\text{Large } f_i(\theta_*) \quad \longleftrightarrow \quad \text{Low } \pi_i$$

1. For each sample find its weight based on it's loss in the pretrained model
2. Solve weighted loss

Determining π_i

Two requirements:

1. For all $i \neq j$ such that $f_i(\theta_*) \geq f_j(\theta_*)$ we should have $\pi_i \leq \pi_j$
2. The distribution π should be spread out

Both requirements can be met by **entropic regularization**

$$\min_{\pi} \sum_i \pi_i f_i(\theta_*) + \tau \sum_i \pi_i \log \pi_i$$

Weighted
pretrain loss

Spreads π out

Determining π_i

The optimal π that solves this entropic regularization objective is

$$\pi_i^* = \frac{1}{Z} \exp \left(-\frac{f_i(\theta^*)}{\tau} \right)$$

We use this in our method - **FLOW**

Algorithm : FLOW

Algorithm 1 Fine-tuning with Pre-trained Loss-Oriented Weighting (**FLOW**)

Input: Pre-trained model $\boldsymbol{\theta}^*$, dataset $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$ for the new task, temperature parameter τ .
 $f_i(\boldsymbol{\theta}) \rightarrow i^{\text{th}}$ sample's loss at $\boldsymbol{\theta}$, with a non-negative loss function (e.g., cross-entropy loss).

1. Compute sample weights: $w_i = \exp\left(-\frac{f_i(\boldsymbol{\theta}^*)}{\tau}\right)$.
2. Weighted loss: $\mathcal{L}(\boldsymbol{\theta}) = \sum_{i=1}^n w_i f_i(\boldsymbol{\theta})$.
3. Fine-tune with weighted loss: $\hat{\boldsymbol{\theta}}^* := \arg \min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$.

Output: Fine-tuned model $\hat{\boldsymbol{\theta}}^*$.

In our expts: \mathcal{T} is chosen to be the median pretrain loss on the entire finetuning dataset

But one could have it be the median of the mini-batch, a running / online median, etc.

Relationship to DRO

Our form is evocative of distributionally robust optimization

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\pi} \in \Delta_n} \sum_{i=1}^n \pi_i f_i(\boldsymbol{\theta}) - \tau \sum_{i=1}^n \pi_i \log \pi_i.$$

Except that ours is the exact opposite.

In particular, DRO will give $\pi_i^* \propto \exp\left(\frac{f_i(\boldsymbol{\theta})}{\tau}\right)$

DRO focuses on the hard samples, and so would accentuate forgetting

Experiment Setup

Recall: we want to measure the degradation in general capability when we finetune for a specific downstream task

Two pretrained models: Gemma 2 2B and LLAMA 3.2 3B

Downstream task:

fine-tune on MetaMathQA, measure on GSM8K

use CommonSense, MMLU and MBPP as proxies for general capability

Evaluations using 1m-evaluation-harness

We follow the setup used in both “LoRA learns less and forgets less” and “MoFO”

Results

Method	General Capability Acc.			Target Acc.		
	Commonsense	MMLU	MBPP	GSM8K	Average	
Gemma 2 2B	Pre-trained	<u>57.23</u> (+0.00)	<u>49.59</u> (+0.00)	28.40 (+0.00)	24.49 (-38.89)	40.79
	Standard Fine-tuning	55.07 (-2.16)	45.59 (-4.00)	16.80 (-11.60)	63.38 (+0.00)	46.31
	WiSE-FT ($\alpha = 0.5$)	57.28 (+0.05)	50.13 (+0.54)	25.60 (-2.80)	53.30 (-10.08)	47.60
	LoRA ($r = 64$)	55.67 (-1.56)	44.28 (-5.31)	25.80 (-2.60)	60.43 (-2.95)	47.05
	ℓ_2 -Regularization	57.01 (-0.22)	48.43 (-1.16)	24.80 (-3.60)	<u>62.85</u> (-0.53)	<u>49.19</u>
	FLOW (Ours)	57.59 (+0.36)	49.31 (-0.28)	<u>26.80</u> (-1.60)	62.55 (-0.83)	49.98
Llama 3.2 3B	Pre-trained	<u>54.48</u> (+0.00)	54.34 (+0.00)	38.00 (+0.00)	26.01 (-40.94)	44.28
	Standard Fine-tuning	50.68 (-3.80)	45.29 (-9.05)	17.80 (-20.20)	66.95 (+0.00)	46.10
	WiSE-FT ($\alpha = 0.5$)	54.54 (+0.04)	53.33 (-1.01)	34.60 (-3.40)	57.01 (-9.94)	50.75
	LoRA ($r = 64$)	53.10 (-1.38)	50.95 (-3.39)	34.00 (-4.00)	63.84 (-3.15)	51.66
	ℓ_2 -Regularization	53.60 (-0.88)	51.28 (-3.06)	33.60 (-4.40)	<u>66.87</u> (-0.08)	<u>52.30</u>
	FLOW (Ours)	54.30 (-0.18)	51.86 (-2.48)	<u>36.00</u> (-2.00)	65.58 (-1.37)	52.87

Additiveness to ℓ_2 and LoRA

	Common Sense	MMLU	MBPP	GSM8K	
Method	A1	A2	A3	B1	Avg.
ℓ_2	57.01	48.43	24.80	62.85	49.19
ℓ_2+	57.53	49.38	26.60	62.02	49.79
LoRA	55.67	44.28	25.80	60.43	47.05
LoRA+	56.74	47.68	28.80	61.49	49.31

What about task-specific heads ?

In many applications (e.g. image classification) we may only borrow the Body/trunk of a pretrained model, and then add on a new prediction head

E.g. take a model trained on Imagenet, add on a prediction head for CIFAR-100, and then Linear probe or fine-tune

In this case, FLOW operates as follows:

1. Make a **linear probed** prediction head (on frozen pretrained body) for the downstream dataset
2. Use this to determine the weights
3. Weighted fine-tuning of this head + un-frozen body

Expt Setup

Pretrained models: ResNets trained on Imagenet 1K by [Russakovsky et. al.]

Datasets. We select six widely-used image classification datasets: CIFAR-10 [Krizhevsky, 2009], CIFAR-100 [Krizhevsky, 2009], Flowers102 [Nilsback and Zisserman, 2008], Caltech101 [Li et al., 2022], Cars [Krause et al., 2013], and Dogs [Parkhi et al., 2012].

For each method, we finetune on a per-dataset basis and then report average scores

Results

	Method	IN-1K Acc.	Target Acc.	Average
ResNet-18	Pre-trained	69.76 (+0.00)	—	—
	Standard FT	19.58 (-50.18)	89.07 (+0.00)	54.60
	Linear Probe	69.76 (+0.00)	73.57 (-15.50)	<u>71.63</u>
	ℓ_2 -Reg.	34.78 (-34.98)	<u>88.12</u> (-0.95)	61.45
	WiSE-FT	54.15 (-15.61)	80.23 (-8.84)	67.19
	FLOW (Ours)	<u>65.21</u> (-4.55)	83.93 (-5.14)	74.57
ResNet-50	Pre-trained	79.02 (+0.00)	—	—
	Standard FT	36.91 (-42.11)	91.78 (+0.00)	64.34
	Linear Probe	79.02 (+0.00)	76.45 (-15.33)	<u>77.73</u>
	ℓ_2 -Reg.	44.78 (-34.24)	<u>91.58</u> (-0.20)	68.18
	WiSE-FT	61.65 (-17.37)	81.38 (-10.40)	71.52
	FLOW (Ours)	<u>76.09</u> (-2.93)	86.25 (-5.53)	81.17

Additivity

	Method	IN-1K Acc.	Target Acc.	Average
ResNet-18	WiSE-FT	54.15	80.23	67.19
	WiSE-FT+	68.71	74.03	71.37
ResNet-50	WiSE-FT	61.65	81.38	71.52
	WiSE-FT+	78.29	73.80	76.04

Theory Summary

We analyze FLOW for the linear setting, and find the minimal set of conditions on four quantities:

covariance matrix of the finetuning data $\tilde{\Sigma}$

covariance matrix of the pretraining data Σ

parameters of the pretrained model θ_*

optimal parameters of the model for downstream task only $\tilde{\theta}_*$

Under which FLOW provably outperforms model averaging and ℓ_2

Theory Summary

$$\text{err}_1(\boldsymbol{\theta}) := \mathbb{E}_{\mathcal{D}} \left[(\mathbf{y} - \langle \boldsymbol{\theta}, \mathbf{x} \rangle)^2 \right] = (\boldsymbol{\theta} - \boldsymbol{\theta}_*)^\top \boldsymbol{\Sigma} (\boldsymbol{\theta} - \boldsymbol{\theta}_*),$$

$$\text{err}_2(\boldsymbol{\theta}) := \mathbb{E}_{\widetilde{\mathcal{D}}} \left[(\widetilde{\mathbf{y}} - \langle \boldsymbol{\theta}, \widetilde{\mathbf{x}} \rangle)^2 \right] = (\boldsymbol{\theta} - \widetilde{\boldsymbol{\theta}}_*)^\top \widetilde{\boldsymbol{\Sigma}} (\boldsymbol{\theta} - \widetilde{\boldsymbol{\theta}}_*)$$

$$\mathbf{e} := \boldsymbol{\theta}_* - \widetilde{\boldsymbol{\theta}}_*,$$

Theorem 7.2 (FLOW). *Let $\mu = \left(\frac{\tau}{\tau + 2\|\mathbf{e}\|_2^2} \right)^{1/2}$. Then:*

$$\widehat{\boldsymbol{\theta}}_K = \widetilde{\boldsymbol{\theta}}_* + \left(\mathbf{I}_d - 2\widehat{\eta}\widetilde{\boldsymbol{\Sigma}}' \right)^K \mathbf{e},$$

where $\widetilde{\boldsymbol{\Sigma}}' := \mu(\mathbf{I}_d - \mathbf{Q})$ with

$$\mathbf{Q} = (1 - \mu^2)\overline{\mathbf{e}}\overline{\mathbf{e}}^\top + \rho^2(1 - \mu^2)\overline{\mathbf{e}}_\perp\overline{\mathbf{e}}_\perp^\top - \rho\mu^2(\overline{\mathbf{e}}\overline{\mathbf{e}}_\perp^\top + \overline{\mathbf{e}}_\perp\overline{\mathbf{e}}^\top).$$

By controlling \mathcal{T} we can find a \mathbf{Q} that can stall convergence to $\widetilde{\boldsymbol{\theta}}_*$ in bad directions

Summary

Selecting samples is a cheap and complementary way to mitigate model
Forgetting

Solving catastrophic forgetting is a crucial step in continual learning