The Features of Canaanite: A Reevaluation*

By Na'ama Pat-El and Aren Wilson-Wright, Austin

Summary: The Canaanite subgroups is defined on the basis of four features, most of which are vocalic; however, the attested Canaanite dialects, with the exception of Biblical Hebrew, are unvocalized. It is, therefore, difficult to ascertain the genealogical affiliation of new or even existing texts based on these features. In this paper we propose two new morpho-syntactic features, which can be identified in texts written primarily in consonantal orthography. These features will help with the correct linguistic identification of texts discovered in the future.

1. Introduction

The Canaanite subgroup is one of the better-studied branches of Semitic due primarily to interest in one of its members, Hebrew. The position of this subgroup in relation to other Semitic languages is a matter of almost unanimous consensus, the result of many detailed studies. All of the features that distinguish Canaanite from the other Northwest Semitic languages are essentially vocalic, that is they appear only in vocalized forms. But most members of the Canaanite subgroup are written in an alphabetic script that had not yet developed the orthographic means to mark vowels; except for Biblical Hebrew and Amarna Canaanite, vowels are hard to detect in all other Canaanite languages. This means that if a new text comes to light, it may be difficult to verify its genealogical affiliation based on the features listed below. Given the epigraphic nature and the vocally opaque orthography of these languages, morphological and syntactic features are more reliable criteria because they can be detected in Iron Age orthography. One drawback to this approach is that in languages, whose attestation is solely epigraphic, syntactic features are rare and morphology is only partially attested. Nevertheless, it is worthwhile to shift our attention to features that will help us deal with the material we have and are likely to have in the future, rather than with an idealization.

* We would like to thank John Huehnergard for comments on an earlier draft. His many seminal works on classification form the background for this paper. Needless to say, all remaining errors are strictly our own. The following abbreviations will be used in this paper: Bib. = Biblical; Ep. = epigraphic.
The following grammatical features unify the Canaanite sub-branch and set it apart from the other sub-branches of Northwest Semitic:

1. The "Canaanite shift" (*ā > ə). The shift of Proto-Semitic *ā to ə is attested in Hebrew, Phoenician, and Amarna Canaanite. In some dialects there is evidence that *ā is realized as a high back vowel, either ə or u: Hebrew beʾerōt 'wells', Phoenician a-bu-ut-mi-il-ki 'sister of Milk' (ADD 894:5; GARR 2004, p. 30). In Amarna *ā is represented as /u/, which likely reflects /ọ/ in lexical items, such as sū-ki-ni 'agent' (EA 256:9, cf. Hebrew sōkēn, Is. 22:15). There is also additional but less certain evidence that other Canaanite dialects went through a similar shift (GARR 2004, pp. 30–31): Ammonite Ḥammōn (cf. Arabic Ḥammad), Edomite Ḥkbūr 'personal name' (Gen. 36:38; cf. Hebrew ḥkbūr 'mouse'; BAUER 1930, p. 74). This shift also affects any ā vowel, which developed prior to the operation of the shift, e.g., through compensatory lengthening (Hebrew *maʾēš > *rāš > rōš, Amarna Canaanite ru-ṣu-nu; J. FOX 1996, p. 40) (i.e., it was an unconditional sound change). The shift must be earlier than the 14th century BCE, as it is attested in Amarna Canaanite. But it is not a particularly strong feature, given that it is attested in various non-Canaanite languages, for example in Western Neo-Aramaic (ARNOLD 1990, p. 22) and some Syrian Arabic dialects (ARNOLD/BEHNSTEDT 1993, p. 67–68).

2. Perfect 1cs *-ti > -ti. In most Semitic languages the first person subject suffix on the Suffix Conjugation (or stative in the case of Akkadian) has a final -u vowel (e.g., Akkadian -ā-ku, Goʾaz -ku, Arabic -tu, etc.), probably corresponding to the ending of the personal pronoun *anāku. In the Canaanite languages, however, this suffix has a final -i vowel: Hebrew kātab-ti, Punic cora-thi (Poen 940a/930), Moabite mlk-ty (KAI 181:2), Amarna Canaanite na-ad-na-ti (EA 73:38). This innovation is assumed to be related to the Canaanite shift and the changes in the pronominal system of the Canaanite languages: PS *anākū > P-Can. *anōkū > Can. ʾanōkī (after dissimilation). The final -i vowel then spread to the other

1 Although Canaanite has been recognized as a unique sub-branch for well over a century, the linguistic features listed here were first explicitly identified as diagnostic features of the sub-branch in HUEHNERGARD (1991).

2 For Punic evidence, see FRIEDRICH/RÖLLIG et al. (1999, p. 41).

3 It is also a very common sound change cross-linguistically, one that happened, for example, in the history of English between Old and Middle English as a part of the famous Great Vowel Shift; e.g. bān > bone (VAN GELDEREN 2014, p. 166); for a similar change between Indo-European and proto-Germanic, e.g. PIE *hṛātēr > Goth. brōpar 'brother', see SALMONS (2012, p. 57). Such common typological features, while still relevant, are not very strong because of the likelihood that they developed independently rather than having been inherited. In this case, we do not doubt that the Canaanite shift is a diagnostic feature.
1cs pronoun *unā > Hebrew 'ānâ and to the 1cs suffix on the Suffix Conjugation.

3. The Suffix Conjugation of the D and C stems. The Suffix Conjugation of the D and C verbal stems in Canaanite can be reconstructed as *qittila and *bqittila (Huehnergard 1992): Hebrew D qîṭṭel, C bqiṭṭil and Phoenician D *qîṭṭil, C *yiqṭil. Amarna Canaanite shows similar forms like C hiḥ-bē-e (EA 256:7), which is normalized to hibbi'e. Other NWS languages, by contrast, exhibit the patterns *qattila and *baqtilla, for example Ugaritic D ša-li-ma, Aramaic D *qattil (e.g., manni 'he appointed’ Dan. 2.22), C *baqtîl (e.g., ʿaqîm-ēb 'he constructed it’ Dan. 3:1). In other West Semitic languages the pattern is *qattal and *baqtal (e.g., Gēʾez D nassara 'he guarded', C ā'kaya 'make bad'; Arabic D kâṣara 'he broke', C ā'âlāma 'he instructed, imparted information').

4. Generalization of 1cp suffix -nā. In Hebrew and Phoenician, the 1cp suffix on Suffix Conjugation verbs is -nā (as in Hebrew šāmārnu 'we guarded'), corresponding to the ending of the personal pronoun *nîbnū. The Canaanite languages generalized this suffix to other, non-subject positions, namely object and possessive suffixes. Thus, Hebrew sâlmê-nā 'our image' (Gen. 1:26) and yôṣallah-ē-nā 'he sent us' (Gen. 19:13). The form in Phoenician can only be estimated; the only indication of a vowel is a later Greek transcription of RBTN 'our lady,' ρὐβαθών (KAI 175:2), which may reflects -nū (Friedrich/Röllig et al. 1999, p. 67; but Hackett 2004, p. 375 is far more cautious). A similar distribution of this suffix is also attested in Amarna Canaanite: ru-šu-nu (EA 264:18) 'our head' and ti-mi-tu-na-nu (EA 238:33) 'you kill us'. Other NWS languages do not show this generalization. Aramaic generalized the suffix -nā (bôde-te-nā 'you informed us' Dan 2:23; ʾêlāba-ā 'our god’ Dan 3:17) as did Ge’ez and Arabic. There is no information about the vowel of this pronoun in Ugaritic.

4 A reviewer suggested that *-tu > -ti is supported by the rhyme of the oblique 1cs suffix –i. We find this unlikely: these suffixes occupy different syntactic slots (nominative vs. oblique). In other words, they are never part of the same paradigm and hence are unlikely to affect each other.

5 Phoenician D appears in Greek as (βαλ)σιλλη (Friedrich/Röllig et al. 1999, p. 89); Phoenician C is written with initial y- rather than the expected h-, which is likely a result of palatalization: *bihqîl > yiqṭil (Garr 2004, p. 59). See also Huehnergard (1992, p. 219, n. 42).

6 See also Greenstein (2004), who suggests that he-te-qû (Horowitz 2000, p. 17, line 19) is a causative form of the root 'q' 'move away', which reflects Canaanite /hi’tiqû/ and provides further support for Huehnergard's reconstruction.

7 Tropper (2000, p. 214) assumes that Ugaritic generalized -nā or alternatively *-ni. The only clear evidence that this suffix in Ugaritic was not -nā is the syllabic writing LUGAL En-na-ā 'the king, our lord' (PRU 3 41ff.:19).
While we accept the validity of these features and their usefulness, we would like to suggest two additional morpho-syntactic features, which are more easily identified in primarily consonantal texts: 1) a relative marker derived from a grammaticalized form of *'atar- ‘place’, and 2) a systematic morphological and syntactic distinction between two infinitives, known in Hebrew as “infinitive absolute” and “infinitive construct”, at least in the G stem.

Our proposal is not meant to detract from earlier studies or from features that have already been identified, and certainly not to imply that one cannot identify vowel-based innovations in vowel-less orthographies. We believe that the features outlined above are robust; what we aim to achieve here is to add more features and to allow better identification of the current group of dialects, and, hopefully, more accurate identification of any new texts that may be unearthed in the future.8

2. Relative particle

As is well known, Hebrew abandoned the inherited relative pronoun zV and replaced it with an innovative form ʿāšer. While the older form is sporadically attested in biblical poetry, ʿāšer is the most common relative particle in the Bible, contemporary epigraphic material, and post Biblical texts, such as Qumran Hebrew (Gogel 1998, pp. 168–172; Qimron 1986, p. 82).9 The same particle is attested in the Moabite Mesha inscription (KAI 181:29) and in an Edomite ostracton (Horvat ‘Uza, line 4; see most recently Vanderhooft 1995, p. 142 for Edomite and Israel 2003 for Canaanite in general). Other Canaanite dialects attest to slightly different forms. There is one attestation of ʾ in an Ammonite seal, and some instances are documented in 4th century Phoenician (Friedrich/Röllig et al. 1999, pp. 72–73). Another form, ʾ, is attested in Ammonite, and Punic, and the inscribed incense altar from Khirbet el-Mudeiyineh.10 There are no attestations of the form in

8 An application of the features suggested in this paper, has yielded a more nuanced classification of the Deir ‘Allā plaster inscriptions, which we have suggested are Canaanite. Due to different publication schedules our Deir ‘Allā paper was published before our original proposal here. See Pat-El and Wilson-Wright (2015) for the details.

9 Hebrew preserves the inherited relative zV in its earliest layers (e.g., Ex 15:13). It is highly likely that there was a time where both zV and ʾ replaced zV completely.

10 Old Byblian z could be interpreted as a demonstrative or a relative marker, and the context of the inscriptions where it is found provides no clue as to its function (Gzella 2013, p. 185, fn. 37). Nevertheless, most scholars are of the opinion that it is a relative pronoun.
Amarna Canaanite, which uses the Akkadian relative pronoun. Examples of these relative particles include:¹¹

Ep. Hebrew:
\[kl \ spr \ 'sr \ yb' \ 'l-y \]
all document REL reach.IMPF.3MS to-me
‘Any document which may reach me’ (Lachish 3:11)

Bib. Hebrew:
\[b\o\t\ 'et h\o\-i\o\ 'd\o\-\o\-r b\o\ 'el b\o\-t-\o\-k\o\]
take out.IMPV.2MS DO DEF-man REL come.PF.3MS to house-your
‘Surrender the man who entered your house’ (Judg. 19:22)

Moabite:
\[w\o\-n\o k\o m\o\-k\o y\o\-l\o m\o\-t \ b\o\-q\o\-n \ 'sr \ y\o\-s\o\-t\o y\o\-l \ b\o\-\o\-\o\-s \]
and-I rule.PF.1CS hundred in-cities REL add.PF.1CS on DEF-land
‘And I ruled over hundreds of cities which I have annexed to the land’
(KAI 181:28–29)

Edomite:
\[w\o\-t \ 'n \ 't \ b\o\-\o\-k\o \ 'sr \ 'm\o \ 'h\o\-m\o\]
And-deliver.IMPV.3MS NOW DO DEF-food REL with PN
‘And deliver the food of ‘A\o\-i\o\-m\o’ (VANDERHOOF 1995, p. 142)

Ammonite:
\[l\o\-b\o\-\o\-s\o\] ksp 50 \ 's \ ntn \ l\o\/
\[to-PN silver 50 REL give.PF.3MS to \]
‘To Ba\o\-s\o, 50 shekels of silver which he gave to …’ (AHITUV 2008, p. 372)

Phoenician:
\[kl \ 'dm \ 's \ tpq \ 'yt b\o\-\o\-r n \ 'l \ 'l \ tptb \]
any person REL move DO def-coffin DEM NEG NEG open.IMPF.2MS
‘Any man who comes upon this coffin, do not open!’ (KAI 13:3)

Mudeiyinich:
\[mqtr \ 's \ 's \ 'l\o\-m\o\]
incense altar REL make.PF.3MS PN
‘The incense altar that Elishama made …’ (DION/DAVIAU 2000, p. 5)

Two questions need to be addressed before the relative marker can be treated
as a grammatical feature of the Canaanite languages: first, whether other Se-
mitic languages use a similar form; second, whether all these particles in the
Canaanite dialects are related to the same historical form. In other words,
we need to ascertain whether the form is innovative and whether it is shared
and therefore likely inherited from proto Canaanite.

¹¹ There is no syntactic difference between the dialects regardless of the form of the relative. See also HOLMSTEDT (2008).
With the exception of most Arabic dialects, the Semitic languages typically use relative particles based on the inherited proto Semitic relative pronoun *δV. *$\dot{a}t\dot{a}r$ is attested as a subordinating particle in Akkadian and possibly in Ugaritic; however, the function of the particle in Akkadian and Ugaritic is primarily to mark locative adverbial clauses, i.e. "where", not relatives, which in both languages are marked with a reflex of *δV:\footnote{Huehnergard (2006) did not commit to the voicing of the dental fricative, since the Akkadian pronoun is a reflex of *$\theta\dot{u}$, while the West Semitic pronoun is a reflex of *$\delta\dot{u}$.} Akkadian δV and Ugaritic δV. Similarly, the function of $\dot{a}s\dot{a}r$ in Mari (A.806:6) is not fully comparable to Hebrew (contra Durand 1988, p. 81), since it is used as an indefinite relative ('whatever, whoever'), not as a modifier of nouns, the sentential equivalent of an adjective. The Hebrew relative marker primarily marks attributes of nominal heads, mostly specific, and that is probably an innovation. Its function as an indefinite relative, while occasionally attested (e.g., Gen. 7:23), is rare and infrequent. The relative function in Hebrew is likely a development from a relative clause whose head is a construct noun, i.e., the place ("$\dot{a}t\dot{a}r$) that ... Such patterns regularly give rise to subordinating particles in Semitic (Pat-El forthcoming; contra Givón 1991) and other language families (Hendery 2012, p. 59).

Holmstedt (2007, pp. 179–180) claims that Akkadian does use $\dot{a}s\dot{a}r$ as a relative particle; however, as he himself notes, all the examples in Akkadian which could conceivably be interpreted as relatives are what he terms "null-head" or "headless", which means they never modify an overt nominal head.\footnote{Holmstedt follows a linguistic theoretical approach, which allows for zero-expression of features, in this case the nominal head of the relative clause. Since there is never a nominal antecedent in these clauses in Akkadian, we treat them as having no nominal head, rather than assuming that such a head is not expressed.} This could be explained by understanding $\dot{a}s\dot{a}r$ as a substantive and the (construct) head of its clause. Indeed, the Akkadian pattern is quite different from the one found in Canaanite where the relative particle has no other function but to mark a relative clause (Pat-El/Treiger 2008); in other words, unlike in Akkadian, in Canaanite, $\dot{s}r$ is not a head, but rather a grammatical marker. This particle is therefore only attested in Canaanite languages as a relative marker.

The origin of $\dot{s}r$ has been reconstructed to a substantive in construct *$\dot{a}l\dot{a}r$ ‘place’ (see Kraetzschmär 1890, p. 298, for the initial proposal, and Israel 2003 and Huehnergard 2006, p. 107, for later scholarship). This substantive is not attested as such in Hebrew, but is found in Arabic, Classical Ethiopic, Akkadian, Old Aramaic, and Punic (Hoptijzer/Jongeling 1995, pp. 125–26, $\dot{s}t\dot{r}$; Huehnergard 2006, p. 122 fn. 102), and can be therefore reconstructed to Proto-Semitic. The etymology of the particle \dot{s}, however, is a matter of some disagreement. Several scholars suggested that Phoenician \dot{s} should be
derived from the word for ‘man’, Hebrew 'āš (GARBINI 1985). This suggestion is quite unlikely. As ISRAEL (2003, p. 340) notes, this noun is used as an indefinite marker in Hebrew, for example 'āšā 'almānā 'ānī 'I am a widow' (2Sam: 15:5), which could be perceived as a generic noun (See WALTKE/O’CONNOR 1990, pp. 252, 317 fn. 2); however, in order for a generic noun to be reanalyzed as a relative marker it needs to function as a head of a relative clause. In its indefinite function, 'āš is always pre-nominal: it is either positioned before a substantive (Gen. 13:8), or before a nominal attribute (adjective, e.g., Gen. 6:9, or a participle, e.g., Gen. 25:27). In other words, 'āš could not have introduced a relative clause, because it cannot appear after nouns.

HUEHNERGARD (2006, p. 123) suggests that 'ā is an intermediary form between the full form 'āš and the reduced and clipped form šē. This connects Phoenician and Ammonite to the development in other Canaanite languages, rather than assuming a completely unrelated development. Additionally, the syntax of the relative in all these dialects, as far as we can ascertain for the attested evidence is identical; the relative can minimally introduce full sentences and prepositional phrases. Hebrew can additionally use it as a genitive marker (PAT-EL 2010). The alternative solution, which relates East Semitic ša to Hebrew še and Phoenician š, either through borrowing or inheritance (HOLMSTEDT 2007, p. 182), should be rejected, as it cannot account for the phonological behavior of Hebrew šē, and for the syntactic differences between Akkadian ša and the Canaanite forms (PAT-EL 2012). It is therefore, highly likely that Phoenician and Ammonite š are related to Hebrew, Moabite and Edomite šr.

It seems that the relative function of 'āš is an innovation of the Canaanite languages, and we can therefore consider it a diagnostic feature of the branch. Its grammaticalization and eventual replacement of the inherited Canaanite šV happened concurrently with the marginalization and subsequent loss of the older relative pronoun, as the situation in early Biblical Hebrew and Old Byblian show. Since its identification is based on consonants and syntax, it is a reliable feature and can be more easily identified in epigraphic material.

3. Infinitives: morphology and syntax

The Proto-Semitic form *qatāl is used as an infinitive in several Semitic branches, such as Akkadian, Ugaritic, and Hebrew and is therefore reconstructed as the original G infinitive stem (J. Fox 2003, p. 179). In Hebrew,
however, two infinitives are used throughout the stem paradigm, known as the "infinitive construct" and the "infinitive absolute" (SOLÁ-SOLÉ 1961, pp. 69–104; FASSBERG 2007, pp. 427–428):

Table: Hebrew infinitives

<table>
<thead>
<tr>
<th></th>
<th>Construct</th>
<th>Absolute</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>qətāl</td>
<td>qətāl</td>
</tr>
<tr>
<td>D</td>
<td>qattēl</td>
<td>qattēl (qattēl)</td>
</tr>
<tr>
<td>C</td>
<td>baqēl</td>
<td>baqēl</td>
</tr>
<tr>
<td>N</td>
<td>bīqqātel</td>
<td>niqtōl, bīqqātel</td>
</tr>
<tr>
<td>Dpass</td>
<td>?</td>
<td>? gunnob (Gen. 40:15)</td>
</tr>
<tr>
<td>Cpass</td>
<td>hoqṭālā, buqṭēlet</td>
<td>hoqṭēl</td>
</tr>
</tbody>
</table>

These infinitives are reconstructed to two different morphological patterns. The infinitive absolute goes back to the original G infinitive *qatāl, and the construct to *qutul, which is a fairly rare pattern in Semitic in general, and is not used as an infinitive in other languages (J. Fox 2003, p. 203; HUEHNERGARD 2015, p. 45). Some scholars argue that it is not necessary to reconstruct *qutul, as the attested form in Biblical Hebrew can be derived from a construct form of *qatāl (A. Fox 1984; KIM 2012). This may be a legitimate morphological interpretation of infinitives of sound roots, but weak roots show the use of two distinct patterns, which cannot be interpreted as independent and construct:

Table: The infinitives of weak roots

<table>
<thead>
<tr>
<th></th>
<th>Inf. construct</th>
<th>Inf. absolute</th>
</tr>
</thead>
<tbody>
<tr>
<td>I weak (yōb)</td>
<td>šebet (< *qitl)</td>
<td>yāšōb (< *qatāl)</td>
</tr>
<tr>
<td></td>
<td>tēt / tīt (< qitl)</td>
<td>nātōn (< *qatāl)</td>
</tr>
<tr>
<td>II weak (mwr)</td>
<td>mūt (< *qutul)</td>
<td>mōt (< *qatāl)</td>
</tr>
<tr>
<td>III weak (bnū)</td>
<td>bōnōt (< *bināt)</td>
<td>bānō (< *qatāl)</td>
</tr>
</tbody>
</table>

The infinitive absolute of weak roots is reconstructible to *qatāl, but the infinitive construct cannot be derived from a single source. I-weak (as well as ḥlk and qlḥ) reflect a rare segolate pattern usually found in biradical nouns.

15 A. Fox (1984) suggests that there was an analogy with I-weak roots, but it is unclear what would motivate such an analogy. Additionally, it does not explain the additional -t, given that nominal patterns where the last syllable is *-Cā(C) are masculine.
(cf. *delet* < *ydl*; HUEHNERGARD 2015, p. 31). II-weak roots (both original II-γ and II-w) seem to reflect a regular derivation from *qutul*. Note that even synchronically the infinitive construct of II-weak roots cannot be interpreted as the construct form of the absolute.

A. Fox (1984, pp. 133, 137) suggests that the segolate forms of the infinitive construct are secondary, and developed by analogy after the infinitive construct forms were no longer understood as construct.\(^{16}\) While we agree that these forms are secondary, we fail to see how that substantiates a single verbal pattern for both infinitives. Indeed, since these “secondary” segolates are attested in other Canaanite languages, they most likely developed before any dialectal split, and certainly before Biblical Hebrew. Additionally, the infinitive construct of ηtn reflects a pre-Hebrew form, i.e., a form reflecting the original *qitl*, rather than the expected Hebrew *qetel* or even an earlier form with an anaptyctic vowel breaking the final cluster,\(^{17}\) which means that it is pre-proto-Hebrew. We therefore find the II-weak roots to be a conclusive argument against A. Fox’s interpretation, as they reflect the existence of two distinct morphological forms for each root.

The appellation “construct” is used in grammars and reference works because the infinitive construct could be interpreted synchronically as a construct of the infinitive absolute, but its distribution is only rarely that of a construct form (SOLÁ·SOLÉ 1962, pp. 69–104).\(^{18}\) Several scholars of Biblical Hebrew have noted that calling the infinitive “construct” is a mismeasure and have consequently suggested other terms; SOLÁ·SOLÉ used A for “construct” and B for “absolute”, while BAUER/LEANDER (1962) refer to the infinitive absolute as the “uninflected infinitive” (starren Infinitiv). KIM (2012, pp. 32–33) argues that the non-construct functions of the infinitive construct are a result of analogy, but does not specify what form could provide context for an analogy, which would allow a bound form to behave like an independent form. FASSBERG (2007) suggests that the functional conflation of the two infinitives in Late Biblical Hebrew is the result of a synchronic analysis of them as being derived from the same pattern (so too WALTKE/O’CONNOR 1990, p. 597), namely, this is not a result of a historical dependency of a synchronic speaker analysis. Indeed, given the variation in the weak root paradigm, it

\(^{16}\) See SUCHARD (2015). A. Fox assumes that forms reflecting “biconsonantal stems” are older. This line of reasoning is required, because A. Fox assumes that both infinitives are based on the same original nominal pattern and therefore he needs to account for those stems, which clearly reflect two original nominal patterns.

\(^{17}\) *tīnt* > construct tīt; cf. the expected *ʾiṣṭ* > construct *eṣet*. The presumed historical process of segolation in Hebrew is summarized in HUEHNERGARD (2013), and see the bibliographical references there. Cf. ʾeḥ ‘time’ < *ʿint.*

\(^{18}\) See also BAUER/LEANDER (1962, p. 317), who call the term misleading (irreführend).
seems more likely that the sound root paradigm reflects an accidental and synchronic relation between the forms, while the morphological unrelatedness of the infinitives of weak roots maintains the original situation. The weak root, therefore, constitutes conclusive evidence that two distinct morphological patterns were used for distinct functions, and are not two reflexes of the same morphological pattern.

Additionally, irregular infinitive construct patterns, e.g. 'ahābā, have construct forms, e.g. 'ahābat, which indicates that they are regular nominal patterns, rather than construct forms. The duality of the infinitive is clear in the derived stems as well. The N stem infinitive construct billāhēm (Ex 17:10), for example, cannot be derived from the corresponding infinitive absolute nilhōm (Judg 11:25).

In the end, the types of morphological patterns that are used for these two infinitives are less important to our point than the existence of two distinct infinitive patterns each with its own syntactic function. Some of these functions can be found in other Semitic languages, but no other Semitic language uses distinct morphological forms of the same root and stem for different syntactic functions.

In the Canaanite languages, the infinitive construct is used in distinctly nominal functions, as the object of prepositions and the bearer possessive pronominal suffixes:

Ep. Hebrew:
3\(^{-}\)k-š't-y
as-leave.INF.CNST-1GS
'when I leave your house' (Arad 16:3–4)

Bib. Hebrew:
lē'-obd-āb
to-work.INF.CNST-3PS
'to work it (f.) and to guard it' (Gen 2:15)

Phoenician\(^{20}\):
l-mlk-\(\)y
to-rule.INF.CNST-1GS
'For me to rule' (KAI 14:1)

\(^{19}\) Compare, for example, the synchronic lack of distinction between the subjunctive (*yaqţul) and indicative (*yaqţul) imperfect in Hebrew in the sound verb (yiktōb – yiktōb) versus the retention of such a distinction in the weak verb (yāqām – yāqām).

\(^{20}\) There is ample evidence that the infinitive construct of weak roots in Phoenician was based on *qīl (Hackett 2004, p. 380). The sound infinitive construct is attested in Latin transcription as *li-ful *to do* (apud Plautus, *Poen* 945; Friedrich/Röllig et al. 1999, p. 83), which corresponds to Hebrew li-p'ol < *la-pu'ul.
Moabite:
\[b-hltbm-b \quad b-y \]
in-fight.INF.CST-3MS \quad IN-1CS
‘when he was fighting me’ (KAI 181:19)

Ammonite:
\[^{2}w-\acute{t} \quad s^{\prime}r\acute{r}t \quad t^{\prime}n \quad ^{3}l-k \quad s^{\prime}rt \quad l-\acute{s}bt \]
and-now she-goat give.IMPF.1CS to-you she-goat to-dwell.INF.CNST
‘And now, as for the she-goat,\(^{21}\) I will give to you the she-goat to remain ...’
(YASSINE/TEIXIDOR 1986, p. 47)

The infinitive absolute, by contrast, behaves more like an adverb or verb. It can (a) modify a finite verb (‘tautological infinitive’) and (b) can be used independently as the main verbal predication in a sentence:

(a) Modify a verb:

Ep. Hebrew:
\[l^{\prime}l\acute{h} \quad s^{\acute{b}b} \quad t \quad s^{\acute{b}m} \quad b^{\acute{y}t-k} \]
send.INF.ABS \quad send.PF.1CS \quad DO \quad greetings \quad house-2MS
‘I hereby send greetings to your household’ (papMur 17a:1)

Bib. Hebrew:
\[b\acute{a}rek \quad ^{\prime}\acute{a}b\acute{a}rek\acute{o}-k\acute{a} \]
bless.INF.ABS \quad bless.IMPF.1CS-2MS
‘I will surely bless you (ms)’ (Gen. 22:17)

Phoenician:
\[m \quad n^{\acute{b}l} \quad t^{\acute{b}l} \]
if \quad inherit.INF.ABS \quad inherit.IMPF.2MS
‘If you indeed inherit’ (KAI 3:3)

Moabite:
\[w-\acute{y}\acute{s}r\acute{l} \quad ^{3}b^{\acute{d}} \quad y^{\prime}b^{\acute{d}} \]
and-Israel \quad perish.INF.ABS \quad perish.IMPF.3MS
‘And Israel will surely perish’ (KAI 181:7)

Ammonite\(^{22}\):
\[^{2}k-kl \quad m^{\acute{b}b} \quad l-k \quad m^{\acute{t}-}\quad \acute{y}mtn \]
as-all \quad surround.PTCP.L.MS \quad to-you \quad die.INF.ABS \quad die.IMPF.3MP
\[^{3}h^{\acute{j}}k^{\acute{b}d} \quad ^{k^{\acute{b}d-m}} \quad k^{\acute{b}d-m} \]
destroy.INF.ABS \quad destroy.IMPF.1CS-3MP
‘For all who surround you will surely die, I will surely destroy them’
(AHITUV 2008, pp. 357–362)

\(^{21}\) YASSINE/TEIXIDOR (1986) suggest various interpretations for this word; none of the possible readings affect the matter under discussion here.

\(^{22}\) The form \(s^{\acute{b}t} \) in this example matches the consonantal structure of the corresponding Hebrew infinitive \(s^{\acute{b}h} \)et (cf. the absolute form \(y^{\acute{a}s^{\acute{o}}b} \)).
(b) Used as a main verb:

Ep. Hebrew:
\[w-t \text{ non} l-ktym yyn b III \]
and-now give.INF.ABS to-Kittim wine bats 3
‘And now, give to the Kittim 3 bats of wine’ (Arad 1:2)

Bib. Hebrew:
\['akol wo-satô ki mähâr nâmût \]
eat.INF.ABS and-drink.INF.ABS for tomorrow die.IMPF.1CP
‘Let us eat and drink because tomorrow we die’ (Isa. 22:13)

Phoenician:
\[w-qr 'nk \]
and-call.INF.ABS I
‘and I called’ (KAI 10:2)

A similar distinction may be operative in Amarna Canaanite, but unfortunately the Akkadian infinitive *qatal (Rainey 1996, II pp. 367–375) masks the form of the native Canaanite infinitives. Syntactically, however, the infinitive may act like an infinitive absolute, i.e., be used in adverbial function, ašābu là ašib (92:10) ‘he surely does not sit’ and as an independent verb šabāthmi ninū ālānī āl gubla (129:32–33) ‘If we take the cities of Byblos’ (Moran 1950a, pp. 54–56; 1950b).

Many Semitic languages use different patterns for specific roots, but do not systematically assign each root two distinct infinitives with a distinct syntactic function. We may therefore suggest a cluster of innovations here: the introduction of a new pattern, primarily *qutul but also others, to the verbal system, and a complementary functional distribution between the new pattern and the inherited *qatal pattern. This holds minimally for the G stem. The lack of credible evidence, with the exception of Biblical Hebrew, makes it difficult to be certain that this duality operated in the derived stems.\footnote{Functional variation is in fact attested for the G stem but not for the derived stems, in a number of features in West Semitic: thematic vowel in the perfect and its relation to the imperfect thematic vowel, a correlation between the prefix and the thematic vowel in the imperfect (Barth-Ginsberg law), regularity of infinitival forms for the derived stems, but not for the D stem etc. Thus, a possibility for a functionally distinct infinitives to be a feature of the G stem alone is not improbable.} Thus, at least for the G stem, the Canaanite languages innovated two distinct infinitives for every root; these infinitives differed in their morphology as well as syntax.
4. Summary and conclusions

Many of the Canaanite languages are only attested in predominantly vowelless orthographies. But the features used to identify and distinguish Canaanite languages from other Northwest Semitic languages are dependent on our ability to identify vocalized forms. We have noted that although these features are robust, it may be difficult to use these diagnostic features on newly discovered texts.

We have proposed, therefore, two new innovative features, which can be identified based on their consonantal structure and syntactic behavior: 1) a relative marker derived from a grammaticalized form of *ₐṯₐr- ‘place (cnst)’; and 2) a systematic morphological and syntactic distinction between two infinitives at least in the G stem. Hopefully, these features will help in classifying other Iron Age texts that may be recovered in the future.

References

ARNOLD, W./P. BEHNSTEDT 1993: *Arabisch-aramäische Sprachbeziehungen im Qalamūn (Syrien)*. Wiesbaden.

Sonderdruck aus:

Zeitschrift der Deutschen Morgenländischen Gesellschaft

Im Auftrag der Gesellschaft herausgegeben von
Florian C. Reiter
unter Mitwirkung von
Christian Bauer, Desmond Durkin-Meisterernst, Lutz Edzard,
Patrick Franke, Jürgen Hanneder, Herrmann Jungraithmayr,
Karénina Kollmar-Paulenz, Jens Peter Laut,
Joachim Friedrich Quack und Michael Streck

Band 166 – Heft 1
2016

Harrassowitz Verlag