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This paper describes the refinedmodeling of the large torsional deformation of extremely flexible rotor bladeswith

negligible structural stiffness. Equations of motion including flap bending and torsion, specifically tailored toward

unconventional blades with a tip mass and experiencing large elastic twist angles, are derived using the extended

Hamilton’s principle. In particular, the foreshortening of the twisted blade arising from the trapeze effect (also called

bifilar effect) is explicitly included. Quasi-steady aerodynamic forces are calculated using the blade element momen-

tum theory. The nonlinear coupled equations of motion are solved using a finite-elementmethod. The analysis is used

to predict the thrust as well as the spanwise distribution of flap bending and twist of an 18-in.-diam rotor with

extremely flexible blades rotating at 1200 rpmat various collective pitch angles. These predictions are correlatedwith

the measurement of loads obtained using a load cell, and the measurement of the deformation obtained using a

noncontact optical technique called digital image correlation. It is found experimentally and analytically that tip twist

angles in the range of 10 to 40 deg, depending on the blade design, are attained. This torsional deformation is dictated

by the combined action of the propeller moment and the trapeze effect. A detailed explanation of the contribution of

the trapeze effect to the equations of motion is presented, and it is shown that omitting the axial foreshortening due to

the trapeze effect leads to a 50% error in the computation of blade-tip twist.

Nomenclature

A, Am = blade and tip mass cross-sectional area,
respectively

B1, B2, B3 = blade cross-sectional integral constants
Ca = blade camber
Cl = lift coefficient
Cm = pitching moment coefficient
c = blade chord
D = drag force
dη, dξ = chordwise and flatwise offsets ofmass centroid

of blade cross section from elastic axis
(positive when in front of elastic axis)

E = Young’s modulus
eη, eξ = chordwise and flatwise offsets of area centroid

of blade cross section from elastic axis (positive
when in front of elastic axis)

FZ = resultant of the aerodynamic forces along the
Z axis

G = shear modulus
g = gravitational acceleration
H0
i �x�, H1

i �x� = Hermite cubic polynomials
Iξ, Iη = blade area moments of inertia about η and ξ

axes, respectively
Iηξ = blade area product of inertia
J = blade polar moment of inertia
Ki = Jacobian matrix at the ith iteration
kA = polar radius of gyration of blade cross-

sectional area about elastic axis

km = polar radius of gyration of blade cross-
sectional mass about elastic axis

kmξ
, kmη

= mass radii of gyration about η and ξ axes,
respectively

kβ = torsional flapping spring stiffness
L = lift force
Li�x� = Lagrange quadratic polynomials
L1, L2 = distances between tip mass ends and tip mass

attachment point
M = number of degrees of freedom
Mϕ = resultant of the aerodynamic moments about

the elastic axis
m0, mT = blade mass and tip mass per unit length,

respectively
N = number of finite elements
qi = elemental vector of generalized coordinates
R = rotor radius
Ri = residue vector at the ith iteration
Rec = chord Reynolds number
r0, r1 = position vector of a blade particle before and

after deformation, respectively, projected in the
fX; Y; Zg reference frame

T = kinetic energy
T0 = time-invariant kinetic energy
t = blade thickness
U = strain energy
UP = air velocity of blade section, perpendicular to

the disk plane
UT = air velocity of blade section, tangent to the

disk plane
uF = radial foreshortening of the elastic axis
ui = global displacement vector at the ith iteration
V = potential energy
Vg = gravitational potential energy
Wa = work done by aerodynamic forces
Wnc = work done by nonconservative forces
w = flap bending deflection
fXI; YI; ZIg = inertial reference frame
fX; Y; Zg = hub fixed reference frame
fX; YT; ZTg = tip mass fixed reference frame
fX; η; ξg = blade fixed reference frame
xA = aerodynamic center offset from elastic axis

(positive when in front of elastic axis)
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x0 = blade root cutout
ϵij = strain tensor in a Lagrangian sense
ϵ = parameter of the order of the normalized flap

bending deflection
ηT , ξT = chordwise and flatwise offsets of tip mass

attachment point from elastic axis (positive
when in front of elastic axis)

θ = local pitch angle
θ0 = collective pitch angle
θind = index angle between tip mass longitudinal axis

and blade chord
λi = line-search algorithm constant at the ith

iteration
νβ = rotating flap frequency
νθ = rotating torsional frequency
ρ, ρm = blade and tip mass density, respectively
σ = rotor solidity
ϕ = elastic twist angle
χ, λ = bound variables
ψ = induced angle of attack
Ω = rotational speed

Subscripts

b, m = quantity corresponding to the blade and the tip
mass, respectively

R = quantity is evaluated at blade tip

Superscript

0 = space derivative

I. Introduction

ROTARY-WING micro aerial vehicles (MAVs) have become
increasingly popular over the past decade because they are

capable of performing missions that conventional manned vehicles
or larger unmanned aerial vehicles cannot [1–3]. Specifically, their
unique ability to take off and land vertically, hover, and fly at very low
advance ratios makes them perfectly suited to indoor surveillance or
reconnaissance missions. Flight in these cluttered environments
poses several challenges, such as increased danger of blade impact
with obstacles and limited access to confined areas due to the large
rotor diameter.
The extremely flexible morphing rotor was proposed as a potential

solution to some of these issues. This rotor features blades that are
so flexible that they can be rolled up and stowed in the rotor hub.
In this way, the rotor diameter can be changed in flight; increasing
the diameter can increase the hover endurance and decreasing the
diameter can allow access to confined spaces. The full retraction of
the blades is also advantageous for storage and ground transportation
of the MAV. Furthermore, the probability of survival of the vehicle
upon collision with an object is increased by the high compliance of
the rotor blades. In such an event, the rotor blade can experience large
deformations and elastically recover its original shape. Sicard and
Sirohi [4] designed and tested several prototypes of 18-in.-diam
extremely flexible rotors in hover.
The prototypes featured constant chord blades with a thin circular-

arc airfoil section. The blades were fabricated using a carbon-fiber
composite with a polyurethane epoxy resin. By choosing resins of
different shear stiffness and by varying the orientation of the compos-
ite plies, rotor blades with different bending and torsional flexibility
were realized. A two-bladed rotor with blades that are extremely
flexible in flap bending and torsion is shown in Fig. 1a. Elastic flexi-
bility in flap bending does not have a major impact on the behavior
of the rotor due to the stiffening effect of centrifugal forces (as in the
case of an articulated rotor, for example). However, torsional
flexibility plays a key role in the steady-state as well as dynamic
behavior of a rotor blade. Decreasing the torsional stiffness makes a
rotor blade prone to pitch–flap flutter. Therefore, the flexible rotor
blade featured a tip mass designed to provide stiffness and

stabilization through the action of centrifugal forces. However, the
propeller moments acting on the rotor blade and tip mass induced a
large, spanwise negative twist. Although a limited amount of nega-
tive twist, on the order of 12 to 15 deg per rotor radius, can be
favorable for the hover efficiency of amicrohelicopter [5], Sicard and
Sirohi [4] showed that flexible blades experienced twist rates of up to
40 deg per rotor radius at high blade loading, leading to poor figures
of merit. They experimentally investigated several designs of tor-
sionally soft rotors by varying the orientation of the tip mass. They
showed that the negative induced twist could be alleviated by
orienting the tip mass chordwise and introducing an index angle
between the blade chord and the minor principal axis of inertia of the
tip body. This blade, termed as the “design BP”, is shown rotating at
1500 rpm in Fig. 1b. Further optimization of the flexible rotor
requires accurate prediction of its deformation given a set of geomet-
rical parameters.
The objective of this paper is to describe an aeroelastic analysis

specifically developed tomodel the large, steady-state deformation of
a torsionally soft rotor. Thismodel can be used to analytically explore
the effect of design parameters on these unconventional rotor blades,
with the goal of optimizing specific performance metrics.

II. State of the Art and Present Approach

The analytical study of rotating beams has sparked a great deal of
interest throughout the second half of the last century, particularly to
support the development of rotorcraft aeromechanics analyses. One
of the initial studies was conducted by Houbolt and Brooks [6] who

a) Flexible rotor at rest, mounted on hover test stand

Tip body

Index angle

b) Flexible blade rotating at 1500 RPM

Fig. 1 18-in.-diam rotor (design BP) with extremely flexible blades [4].

SICARD AND SIROHI 1605

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
X

A
S 

A
T

 A
U

ST
IN

 o
n 

Se
pt

em
be

r 
17

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
26

17
 

http://arc.aiaa.org/action/showImage?doi=10.2514/1.J052617&iName=master.img-000.jpg&w=237&h=177


derived the partial differential equations of motion for the coupled
bending and torsion of twisted nonuniform beams using a linear
analysis. As the significance of nonlinear terms in the aeroelasticity
of rotary-wings was discovered, nonlinear equations of motion for
combined flap bending, lead–lag bending, torsion, and extension of
twisted nonuniform rotor blades were derived independently by
several authors [7–9]. These theories, based on truncation schemes
and accurate to second order, relied on the restriction that normalized
bending deflections and angles of twist were small with respect to
unity. The equations of motion were derived assuming a displace-
ment field, and the rotor blades were modeled as beam elements for
which the cross-sectional constants were calculated at the elastic
axis. Then, in the mid-1990s, studies addressing the arbitrarily large
displacements and rotations of composite rotor blades were derived,
using a geometrically exact beam theory [10,11] or a multibody
formulation [12]. Nowadays, most modern rotor blade aeromechan-
ics analyses stem from one of these two approaches. More details on
the development of structural dynamics modeling of rotor blades can
be found in a review by Datta et al. [13] and a report by Johnson [14].
Although it is understood that the deformation of rotor blades with

negligible structural stiffness can be accurately predicted using an
analysis valid for large displacements and large rotations (seeHodges
[11] or Bauchau and Kang [12] for instance), the purpose of the
present work is to show that good predictions can be obtained by
using a model based on a Hamiltonian formulation along with an
appropriate ordering scheme, including typical physical effects
associated with large angles of twist. In particular, for blades that are
extremely flexible in torsion, the elastic twist angles can be large, and
the trapeze effect becomes important. A limited number of aeroelastic
analyses have been developed in the past to specifically address
rotor blades with negligible structural stiffness. Goldman [15] and
Winston [16,17] analyzed and tested flexible rotor blades constructed
of a thin fabric airfoil supported by cables at the leading and trailing
edges. Preliminary stability results were obtained using a simplified
analyticalmodel and assuming the first coupled flapwise bending and
torsional mode shapes of the blade.
The present paper has two goals. The first objective is to demon-

strate how an aeroelastic analysis with two degrees of freedom (flap
bending and twist), and whose equations are truncated consistently
with an ordering scheme, can accurately predict the deformations
of a rotor blade with negligible torsional stiffness. The second
objective is to investigate the importance of the terms arising from
the trapeze effect for torsionally soft rotors and their contribution to
the calculated twist and overall deflection predictions. Accordingly,
the nonlinear, steady-state aeroelastic equations for combined flap
bending and twist of a rotor blade are derived. Throughout the
derivation, special attention is given to the terms associated with large
twist angles. In particular, the truncation scheme is chosen such that the
elastic twist angle is considered to be of the sameorder ofmagnitude as
the collective pitch angle. In addition, the foreshortening due to the
trapeze effect is explicitly included. The analysis also includes the
kinetic and potential energies of a tip body that is required to ensure
stability. The equations of motion are solved using the finite-element
method. Analytical predictions of flap bending and twist deformation
are correlatedwithmeasurements obtained using a noncontact, optical
technique called digital image correlation [18,19].

III. Experimental Setup

A digital image correlation (DIC) system was used to measure the
deformation of the flexible rotor blades spinning at 1200 rpm on a
hover test stand.

A. Digital-Image-Correlation Measurement Setup

DIC is a noncontact, opticalmeasurement technique that combines
photogrammetry and image correlation. In the DIC technique, two
digital cameras are arranged to capture stereoscopic images of an
object. The positions of the cameras are calibrated with a target of
known geometry, yielding a photogrammetric mapping function.
Images of the object are captured before and after loads are applied.
Cross-correlation of the images, along with the mapping function,

yields a three-dimensional deformation map of the object. Details of
this technique applied to measure rotor blade deformation are given
in [18,19]. From the DICmeasurements, the spanwise distribution of
flap bending of the rotor blade elastic axis as well as the elastic twist
were extracted.
In the present study, the flexible rotor was tested in hover, on a 1.2-

m-tall rotor test stand (Fig. 2), designed and fabricated in-house (see
details in [4]). Two digital cameras, Imager ProX 2M charge-
coupled-device (CCD) cameras, were arranged so that they focus
on a rotor blade at a specific azimuthal angle. Each camera had a
resolution of 1600 × 1200 pixels, a maximum imaging frequency of
29.9 frames per second, and an exposure time varying from 500 ns to
1000 s. Their 14 bit CCD sensor had a sensitivity of 16,384 gray
levels. The lenses mounted on the cameras were Nikon AF Nikkor
50mm f∕1.8D, with an aperture varying between f∕1.8 and f∕22. A
Scheimpflug adapter was also added to the lens to keep the entire
rotor blade span in focus. A signal from a 1∕rev sensor on the rotor
shaft was used to synchronize the image capture with the rotor
rotation. This signal was also sent to a 10 W xenon stroboscope,
effectively illuminating the rotor once per revolution. The camera
shutters were kept open over several rotor revolutions, creating
multiple exposures of the rotor blade on the CCD sensor. The capture
of multiple exposures resulted in a higher-intensity image than
possible with only one exposure of the rotor blade. A commercially
available DIC software (LaVision DaVis 7.2 — StrainMaster 3D)
was used to process the images and to calculate surface heights as
well as deformation maps. A postprocessor written in-house was
used to extract the flap bending and torsional deformations along
the blade span. The rotor test stand also featured a six-component
strain gauge load cell (ATI Mini40E), with a full-scale rating of 5 lb
in the thrust direction, that continuously recorded rotor forces and
moments in the fixed frame.

B. Flexible Rotor

The flexible rotor blades used in this study were fabricated
out of composite material comprising two plies of a carbon-fiber
fabric (CST CF-131-1k, 2.9 oz∕yd2 0∕90 deg plain weave) and a

Fig. 2 Hover test stand equipped with CCD cameras, stroboscope, and
laser for root pitch angle measurement.
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polyurethane matrix (Aircraft Spruce AlphaPoxy). Each ply was
arranged such that the fibers of the cloth made an angle of �45∕ −
45 deg relative to the blade span. This combination of ply orientation
andmaterial shearmoduluswas found to be themost favorable to reel
the blade into a cylinder with minimal radius of curvature. Although
the choice of the matrix resulted in a blade soft in torsion, the angle
of the fibers lowered the bending stiffness to accommodate the roll-up
of the blade. The composite was cured at room temperature in a
compression mold that had the desired airfoil shape and blade
planform. The blades had a constant chord, thin circular-arc airfoil
section, and a chordwise-oriented cylindrical mass attached at the
blade tip (see Fig. 3; this design is labeled as blade BP in [4]). The
chordwise position of the tipmass attachment point could be adjusted
between the two rod ends, varying the lengths L1 and L2. A two-
bladed rotor was created by attaching the flexible blades to a rigid
hub. Table 1 summarizes the parameters of the flexible rotor. Normal-
ized flap bending stiffness, lead–lag bending stiffness, and torsional
stiffness are shown in Table 2. For comparison, the normalized
torsional stiffness of a blade having the same cross section but
fabricated out of AGP370-5H/3501 carbon-fiber composite is equal
to 6.64. Therefore, the low-shear-modulus polyurethane matrix
results in a decrease in torsional stiffness by three orders of magni-
tude. Also shown in Table 2 are the first rotating torsional and flap
frequencies of the extremely flexible blade. Note that a clamped
condition of the pitch degree of freedom at the root, as it is imposed in
the present study, typically leads to high torsional frequencies for
conventionally stiff, full-scale rotor blades. However, it can be seen in
Table 2 that the rotating torsional frequency of the flexible rotor blade
is on the order of 3.3∕rev.
The bottom surface of each blade was painted with a high-contrast

random speckle pattern for the DIC measurements (Fig. 4). The

speckle size ranged from approximately 0.15 to 1.95 mm, chosen for
optimum accuracy based on the resolution of the digital cameras used
in DIC.

IV. Analytical Model

The analytical model was derived using the extended Hamilton’s
principle. A structural model based on engineering beam theory was
used to determine the kinetic energy and strain energy of the rotor
blade as well as the tip mass. The blade deformation was assumed
to have only two degrees of freedom: flap bending and torsion.
Extensional elongation was neglected; however, the axial displace-
ment, or foreshortening of the elastic axis, induced by the combined
action of bending and torsion, was explicitly included. Coordinate
systems were defined with respect to the undeformed and deformed
positions of the blade, and an ordering scheme was proposed to
eliminate higher-order terms. The aerodynamic model included only
quasi-steady forcing terms. Finally, the equations of motion were
solved using the finite-element method.
The extended Hamilton’s principle states that
If

δqijt1 � δqijt2 � 0; for i � 1; : : : ;M

then Z
t2

t1

�δT − δV � δWnc� dt � 0 (1)

where δqi are the generalized coordinates; δT and δV are the
variations of kinetic and potential energies, respectively; and δWnc is
the virtual work done by nonconservative forces. By retaining only
time-invariant terms, and including the kinetic and potential energy
associatedwith a tipmass,we obtain the equation governing the static
(or steady-state) equilibrium of the rotor blade:

�δT0 − δU − δVg � δWa�b � �δT0 − δVg�m � 0 (2)

where δT0, δU, and δVg are the variations of time-invariant kinetic
energy, strain energy, and gravitational potential energy, respectively.
δWa is the virtual work done by aerodynamic forces. The subscriptsb
and m indicate the quantities corresponding to the blade and the tip
mass, respectively.

A. Coordinate System

Three coordinate systems were used in the present analysis.
Figure 5a shows the schematic of a rotor blade before and after flap
bending and torsional deformation. fXI; YI; ZIg is an inertial reference
frame. fX; Y; Zg is attached to the undeformed position of the blade,
with X coincident with the elastic axis and Z aligned with the rotor
shaft. Finally, fX; η; ξg (Fig. 5b) is attached to the circular-arc airfoil
cross section, rotated by the angle θ with respect to fX; Y; Zg.
Throughout this analysis, the flap bending deflection w was

defined as the displacement, projected on theZ axis, of points located
along the elastic axis of the blade. The local pitch angle θwas the sum
of the blade collective pitch θ0 and the local elastic twist ϕ:

Fig. 3 Planform of flexible-blade BP.

Table 1 Flexible rotor parameters

Airfoil Circular arc

Rotor radius R, in. (m) 9 (0.229)
Root cutout x0, in. (m) 2.323 (0.059)
Chord c, in. (m) 0.9 (0.023)
Camber Ca, % of c 7.5
Thickness t, % of c 1.39
Rotor solidity σ 0.064
Total mass m, oz (g) 0.160 (4.53)
Mass per unit length (m0), oz · in:

−1 (kg · m−1) 0.0116 (0.013)
Tip mass mT , oz (g) 0.072 (2.03)
Length of the tip mass LT , in. (m) 1 (0.0254)
Chordwise coordinate of the tip mass
attachment point (ηT ), % of c

12

Tip mass end offset from attachment
point (L1), % of LT

30

Rotational speed Ω, rpm 1200
Tip Reynolds number Rec 46,160

Table 2 Flexible-blade normalized stiffnesses

Flap bending stiffness
EIη

m0Ω2R4 9.65 × 10−2

Lead–lag bending stiffness
EIξ

m0Ω2R4 2.54 × 101

Torsional stiffness GJ
m0Ω2R4 1.00 × 10−3

First rotating torsional frequency, /rev νθ 3.3
First rotating flap frequency, /rev νβ 1.1

Fig. 4 High-contrast random pattern on the bottom surface of flexible
rotor blade.
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θ�x� � θ0 � ϕ�x� (3)

B. Structural Model

The structural model of the rotor blade was based on engineering
beam theory. Kinetic and potential energies of the rotor blade as well
as tip mass were found based on the deformations, in conjunction
with an ordering scheme. The key aspect of the structural model is the
inclusion of the trapeze effect due to the low torsional stiffness of the
rotor blade.

1. Trapeze Effect

Conventional helicopter rotor blades are relatively stiff in torsion,
due to the skin of the blade acting as a closed torque box. The
flexibility in torsion is due predominantly to the control system stiff-
ness. Therefore, propeller moments dominate the torsional deforma-
tion of a conventional blade. In contrast, the flexible rotor blade
under consideration has a thin circular-arc airfoil and is composed
of a carbon-fiber composite with a low-shear-modulus matrix.
Consequently, the flexible blade has a very low torsional stiffness,
and twisting of the rotor blade results in a kinematic radial
foreshortening. This nonlinear effect is called the trapeze (or bifilar)
effect [20]. It plays an important role in the torsional dynamics of a
flexible rotor. The relation between the angle of twist and the induced
radial displacement can be illustrated by considering the case of a
rotor blade composed of two inextensible cables at the leading and
trailing edges, connected at the tip by a rigid link, as shown in Fig. 6.
The Pythagorean theorem applied to Fig. 6b gives

dx2�
�
c

2
ϕ�x�dx�−c

2
ϕ�x�

�
2

��dx�uF�x�−uF�x�dx��2 (4)

Dividing through by dx and applying theTaylor–Lagrange expansion
for small ϕ 0, we get

u 0F � 1 −
�
1 −

c2

8
ϕ 0 �O�ϕ 02�

�
(5)

Integration along the blade span leads to the radial foreshortening due
to twist:

uF �
Z
x

0

c2

8
ϕ 02 dx (6)

Although this expression will vary depending on the exact geometry
of the rotor blade, we assume it to hold for the present case.

2. Ordering Scheme

As the Hamilton principle is applied [Eq. (2)], it is important to
verify that the orders of approximation of the kinetic and potential
energies, as well as the work done by nonconservative forces, are the
same. Along the lines of previous studies [7–9], we defined an
ordering scheme, where each physical quantity was compared to the
normalized flap bending deflection w∕R, assumed to be of order ϵ.
However, in the present analysis, the elastic twist angle ϕ was
assumed to be of the same order as the collective pitch angle θ0 (i.e.,
of order 1). The ordering scheme is summarized in Table 3.

3. Strain Energy

The general formulation for the variation of the rotor blade strain
energy is

�δU�b �
Z
R

ZZ
A
�Eϵxxδϵxx � 4Gϵxηδϵxη � 4Gϵxξδϵxξ� dη dξ dx

(7)

The integrand is a function of the strain tensor �ϵ� associated with the
flap bending and torsional deformation of the rotor blade, which can
be defined in a Lagrangian sense as

dr1 · dr1 − dr0 · dr0 � 2fdxdηdξg�ϵ�fdxdηdξgT (8)

where dx, dη, and dξ are increments along the elastic axis and the
cross-section axes of the blade in its undeformed position. dr0 and
dr1 are the differentials of the position vectors r0 and r1 of a blade
particle in the undeformed and deformed configurations, respec-
tively, projected in the fX; Y; Zg reference frame. A very detailed
derivation of these position vectors is shown in [8,21], and it can be

Z, ZI

Y

X

w
uF

XI

Ωt

a) Blade coordinate systems b) Cross-section coordinate systems
Fig. 5 Coordinate systems.

Ω

c

dx

x

UF

a) Top view

dx

x

b) Side view

c/2

c/2 φ

c/2 φ(x+dx) φ

c) Front view

elastic twist: φ

Deformed position

Undeformed position

Fig. 6 Torsion of a rotor composed of two cables and a rigid tip body.
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shown that the differences resulting from the order in which the flap
and pitch transformations are imposed vanish under an appropriate
change of variables [21]. For the present case, a "flap–pitch" se-
quence was chosen, and the position vectors are

r0 �
(
x0
y0
z0

)
�
(

x
η cos θ0 − ξ sin θ0
η sin θ0 � ξ cos θ0

)
(9)

and

r1 �
(
x1
y1
z1

)
�

8><
>:
x − uF − w 0�η sin θ� ξ cos θ�

η cos θ − ξ sin θ

w�
�
1 − w 02

2

�
�η sin θ� ξ cos θ�

9>=
>; (10)

where uF is the radial displacement due to flap bending and torsional
foreshortening, given by

uF�x� �
Z
x

0

�
w 02

2
� c

2

8
ϕ 02
�
dx (11)

Substituting the position vector relations into Eq. (8), we obtain the
following radial and in-plane shear strains:

ϵxx�−w00�η sinθ�ξcosθ��ϕ02

2
�η2�ξ2�−c

2

8
ϕ02�O�ϵ4� (12)

ϵxη � −
ϕ 0ξ

2
�O�ϵ3� (13)

ϵxξ �
ϕ 0η

2
�O�ϵ3� (14)

The first term in ϵxx is the typical component of strain proportional to
w 0 0, associated with flap bending. On the neutral axis, this term
equals zero. Similarly, for an untwisted blade and no collective pitch,
this component of the strain vanishes on any point along ξ � 0. The
second and third terms account for the normal strains that arise when
the rotor blade is twisted. The third termdoes not appear in studies [7–
9]. In these studies, it is instead implicitly included to the axial
displacement degrees of freedom (u).
Given the form of the strain tensor, and replacing the integrals over

the blade cross section by the constants defined in Table A1, we can
write the variation of strain energy as

The double-underlined, dashed-underlined, and wave-underlined
terms of Eq. (15) were not always retained in previous studies for
various reasons. The double-underlined terms were sometimes
considered as higher-order terms, for rotor blades experiencing small
angles of elastic twist. Note that Hodges and Dowell [7] also
identified them as higher-order terms but mentioned their importance
for the torsion equation of motion of blades with low torsional
stiffness. The terms with dashed-underline must be kept for arbitrary
nonsymmetric cross sections. Finally, the wave-underlined terms are
associated with the foreshortening of the blade due to the trapeze
effect.
Additionally, a localized pinching of the rotor blades was observed

during operation, due to the clamping force of the blade grips (see
Fig. 1b). This pinching resulted in a local discontinuity in flap
bending stiffness at the root andwas also seen inmeasurements of the
flap bending deflection. To model these observations, a discrete
torsional flapping spring was included at the root of the flexible rotor
blade, and its effect was included in the strain energy as follows:

δVsp � kβw 0�x0�δw 0�x0� (16)

where kβ is the torsional flapping spring stiffness.

4. Time-Invariant Kinetic Energy

Next, the variation of the kinetic energy can be written as

�δT�b �
Z
R

ZZ
A
ρ
dr1
dt

· δ

�
dr1
dt

�
dη dξ dx (17)

where

δ

�
dr1
dt

�
�

8<
:

δ _x1 −Ωδy1
δ _y1 �Ωδx1

δ_z1

9=
; (18)

Expanding the scalar product and retaining only the time-invariant
terms, we can obtain the variation of time-invariant kinetic energy as

�δT0�b �
Z
R

ZZ
A
ρΩ2�x1δx1 � y1δy1� dη dξ dx (19)

Integrating over the blade cross section and introducing the cross-
sectional constants defined in Table A1, we get

Table 3 Ordering scheme

Term Order
x
R, θ0, ϕ,

∂
∂x,

∂
∂t O�1�

w
R,

η
R,

ξ
R,

c
R,

ηT
R ,

ξT
R O�ϵ�

E
m0Ω2,

G
m0Ω2 O�ϵ−2�
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Terms resulting from asymmetry of the blade cross section are
identified by a dashed-underline and those associated with the
trapeze effect are wave-underlined.

5. Gravitational Potential Energy

The contribution of the gravitational potential energy to the steady-
state deformation of a rotor blade is small compared to the deforma-
tion due to centrifugal and aerodynamic forces. Nevertheless, the
gravitational energy plays a major role during the deployment of an
extremely flexible rotor at startup. Therefore, it was included in the
present analysis. The definition of the variation of gravitational
potential energy is

�δVg�b �
Z
R

ZZ
A
ρgδr1 · ZI (21)

Using Eq. (10) and the section integral constants defined in Table A1,
we obtain

�δVg�b �
Z
R

x0

m0gδw − fm0gw
0�dη sin θ� dξ cos θ�gδw 0

�
�
m0g

�
1 −

w 02

2

�
�dη cos θ − dξ sin θ�

�
δϕ (22)

6. Kinetic and Gravitational Potential Energies of the Tip Mass

To complete the structural model, the kinetic energy and
gravitational potential energy arising from the presence of the tip
massmust be included. The tipmasswasmodeled as a uniform rod of
mass per unit length mT , secured to the tip of the blade and oriented
with an index angle θind relative to the chord of the blade (Fig. 7a).
The distances between the tip mass attachment point and the elastic
axis are ηT and ξT along the η and ξ axes, respectively (Fig. 7b).
The position vector r1m of a particle along the longitudinal axis of

the tipmass was deduced from the expression found for r1 [Eq. (10)],
in which we substituted

x � R (23)

η � ηT � λ cos�θind� (24)

ξ � ξT − λ sin�θind� (25)

Then, the time-invariant variation of kinetic energy of the tip mass is
given by

�δT0�m �
Z
L2

−L1

ZZ
Am

ρmΩ2�x1mδx1m � y1mδy1m� dAm dλ (26)

whereAm and ρm are the cross-sectional area and the density of the tip
mass, respectively. Taking the variations of the position vector r1m,
assuming λ, ηT , and ξT to be of order ϵ, and retaining first- and
second-order terms only, we get

The subscript �·�R indicates that the quantity is evaluated at the tip of
the blade.
Finally, the variation of gravitational potential energy of the tip

mass is

�δVg�m �
Z
L2

L1

ZZ
Am

ρmg�δr1m · ZI�

� mTgδwR −mTgw 0R
�
ηT sin θR � ξT cos θR

� L2 − L1

2
sin�θR − θind�

�
δw 0R

�mTg
�
1 −

w 02R
2

��
ηT cos θR − ξT sin θR

� L2 − L1

2
cos�θR − θind�

�
δϕR (28)

C. Aerodynamic Model

A quasi-static model was used to calculate the aerodynamic forces
on the rotor blade. The model was based on blade element momen-
tum theory (BEMT)with a table lookup for the lift coefficients. These
data were obtained from published literature of the low-Reynolds-
number lift coefficients of a thin circular-arc airfoil [22]. The constant
moment coefficient Cm0

was also included. Figure 8 shows the
aerodynamic forces (lift and drag) and moment applied to a blade
cross section. The local angle of attack α was defined as the angle
between the chord of the airfoil and the resultant velocity vector U
and is a function of the radial position along the blade. The induced
angle of attack ψ�x� was calculated using BEMT. Consequently, the
local angle of attack was

a) Position of the tip mass on the flexible 
blade BP

b) System of axis attached
to the tip mass

Fig. 7 Position and orientation of the tip mass for the flexible-blade BP.
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α�x� � θ0 � ϕ�x� − ψ�x� (29)

Because the air velocity of the blade section perpendicular to the
disk plane (UP) is small compared to the air velocity tangent to the
disk plane (UT), the induced angle of attackψ is small. In addition, by
projecting the aerodynamic forces on the Z axis, the virtual work
done by the aerodynamic forces on the blade section can bewritten as

δWa �
Z
R
dFzδw� dMϕδϕ

�
Z
R

x0

�
1

2
ρair�Ωx�2cCl

�
δw

�
�
1

2
ρair�Ωx�2cxACl �

1

2
ρair�Ωx�2c2Cm0

�
δϕ (30)

where xA is the distance between the aerodynamic center and the
elastic axis.In summary, the final formulation of the blade equation of
motion in integral form is given in Appendix B.

D. Solution Procedure

The equations of motion derived as described previously were
solved using a finite-element formulation. The rotor blade was
discretized into 20 beam elements. Each beam element had seven
degrees of freedom, distributed over three nodes (Fig. 9), which
forms an elemental vector of generalized coordinates

qi � fw1w
0
1w3w

0
3ϕ1ϕ2ϕ3gT (31)

Assembly of the elemental vectors of generalized coordinates
yields the global displacement vector

u � fw1w
0
1w3w

0
3w5w

0
5 · · · ϕ1ϕ2ϕ3ϕ4ϕ5 · · · gT (32)

Between the elements, there is continuity of displacement and slope
for the flap bending deflection as well as continuity of displacement
for the twist angles. Using appropriate shape functions (Hermite
cubic and Lagrange quadratic polynomials for the bending and twist
degrees of freedom, respectively), we can express the bending
displacement w�x� and twist ϕ�x� over one element as a function of
the generalized coordinates as follows:

w�x� �
X2
i�1

wiH
0
i �x� �w 0iH1

i �x� (33)

ϕ�x� �
X3
j�1

ϕjLj�x� (34)

Upon discretization, the steady-state formulation of the extended
Hamilton’s principle [Eq. (2)] becomes

XN
i�1
�δT0i − δUi − δVgi � δWai�b � �δT0 − δVg�m � 0 (35)

whereN is the total number of elements, and the subscript i indicates
the contribution of the ith element to the total energy. Arbitrariness of
the δqi in Eq. (35) leads to the formation of a system ofM nonlinear
equations, whereM is the number of degrees of freedom. This system
of equations can be solved iteratively by the Newton–Raphson
method.
At the ith iteration, substituting the global displacement vector ui

in the system of nonlinear equations leads to a residue vector Ri on
the right-hand side. Taking the partial derivatives of the residuevector
with respect to the displacement vector ui, we obtain the Jacobian
matrix

Ki � ∂Ri

∂ui
(36)

In the present model, the components of the Jacobian matrix were
calculated analytically, which led to better stability of the algorithm.
Then, the Newton–Raphson method determines the displacement
vector for the next iteration as

ui�1 � ui − λi�K−1R�i (37)

where λi is a constant calculated using a line-search algorithm [23].

V. Results and Discussion

The steady-state aeroelastic analysis was first validated with
experimental measurements of the rotor loads, the spanwise flap
bending, and the twist distribution of the rotor blade. The validated
analysis was then used to explore the effect of refined torsional
modeling, specifically, the contribution of the terms associated with
the trapeze effect.

A. Correlation of the Model with Experiment

The extremely flexible rotor spinning at 1500 rpm was tested over
a range of collective pitch angles from 0 to 25 deg. The thrust
generated by the rotor and measured by the load cell is plotted as a
function of the pitch angle in Fig. 10. It can be seen that the thrust
coefficient computed from the experimental data was well predicted
by the present analysis. The flexible rotor generates a blade loading
(CT∕σ) equal to 0.203 at a high collective pitch angle of approxi-
mately 30 deg.

0 5 10 15 20 25 30 35 40
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Collective pitch, deg

T
hr

us
t c

oe
ff

ic
ie

nt

Predicted results
Experimental measurements

Fig. 10 Predicted and measured thrust coefficient of the extremely
flexible rotor, at 1500 rpm.

Fig. 8 Aerodynamic forces on a blade cross section.

Fig. 9 Finite element.
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Furthermore, the spanwise distribution of flap bending as well as
spanwise twist of the rotor blades spinning at 1200 rpm were
extracted from theDICmeasurements and are shown in Figs. 11a and
11b. Also shown for comparison are the deformations predicted by
the steady-state aeroelastic analysis.
We observe that there is very good correlation between the

experimentalmeasurements of pitch and the analytical predictions. In
addition, we can see that that the slope of the flap bending deflection,
in the measured data, is not zero at the root. This observation
motivated the inclusion of a flapping spring at the blade root. The
value of this spring stiffness was adjusted so that the predicted
flap bending deformation at the lowest collective pitch matched the
measurements; this value was then used for the predictions at the
other collective pitch angles. There is some discrepancy between
measurements and analytical predictions of bending deflection near
the blade tip, where the tip mass is located. The chordwise offset of
the tipmass from the elastic axis creates significant bendingmoments
in the lead–lag direction. To properly capture this effect, a lead–lag
degree of freedommust be added to the analysis; this refinement is the
subject of futurework. In addition, it should be noted that, because of
the low structural stiffness of the rotor blade, it is likely that the
deformations lead to a modification of the airfoil cross section,
particularly of the airfoil camber. Consequently, these chordwise
deformations affect the aerodynamic coefficients as well as the flap
bending deflection. The addition of a lead–lag degree of freedom to
the analysis alongwith correlations with measurements of chordwise
deformations will be investigated in the future. Based on the compar-
ison between experimental measurements and predictions, we
concluded that the analytical model was validated and could be used
to investigate the aspects of refined modeling of the torsional
deformation of unconventional flexible blades.

B. Importance of Refined Torsion Modeling

The trapeze effect plays a minor role in conventional analyses
developed for torsionally stiff rotor blades. Additionally, it is
typically appropriate to assume the elastic twist to beOϵ) (same as the
normalized flap bending deflection, w∕R). However, in the present
analysis, the trapeze effect is explicitly included, and the elastic twist
is assumed to beO�1� to capture the effect of low torsional stiffness.
The effect of adding these larger torsional deformations in the present
analysis is investigated. In addition, the lowest value of torsional
stiffness that can be modeled by an analysis omitting these additional
terms is explored.

1. Influence of the Trapeze Effect

The trapeze effect acting on a twisted beam with axial loading is
responsible for a torsionalmoment (the trapezemoment) that tends to
restore the beam to its untwisted position. In the case of a rotating
blade, the axial loading is the centrifugal force. The propellermoment
acting on a rotor blade tends to align the rotor blade chord with the
plane of rotation. Therefore, in the case of a torsionally soft rotor
blade with a positive root pitch, the propeller moment at the blade tip
(nose-down) acts in opposition to the trapeze moment (nose-up,
untwisting the blade).
To quantify the magnitude of the trapeze moment compared to the

other pitching moments acting on a torsionally soft rotor blade, each
term related to the trapeze effect in the equations ofmotion, identified
by a wave-underline in Eqs. (15,20,27), was removed, and the
resulting flap bending and twist deformations were calculated.
Figures 12a and 12b show the contribution of the trapeze effect terms
on the deformations of the flexible blade rotating at 1200 rpm. The
spanwise distribution of twist shows larger negative (nose-down)
pitch angles for the casewhere the trapeze moment is ignored. As the
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a) Flap bending deflection
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b) Pitch angle

Fig. 12 Influence of the trapeze effect on the deformations of an extremely flexible rotor blade, at 1200 rpm, θ0 � 18 deg.

a) Flap bending deflection b) Pitch angle

Fig. 11 Predicted and measured deformations of the extremely flexible rotor blade, at 1200 rpm.
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trapeze moment is neglected, its effect of acting against the negative
propeller moment and negative aerodynamic pitching moment
disappears, and the resultant twist along the blade is greater. The
effect is also seen on the flap bending curves; when the trapeze
moment is considered, the magnitude of the nose-down blade twist is
decreased, and hence the angle of attack at each section is larger
leading to higher lift and greater flap bending deflection.
To better understand the origin of the trapeze effect, the

contribution of each term arising from this effect in the equations of
motion was investigated. Four cases were studied, each case
separately including a trapeze effect term in the equations of motion.
The terms included in each casewere one strain energy term and three
kinetic energy terms: 1) coupling terms between torsion and centrif-
ugal stress in the strain energy from Eq. (15); 2) coupling terms
between torsion and centrifugal stress in the kinetic energy of the tip
mass from Eq. (27); 3) coupling terms between torsion and centrif-
ugal stress in the kinetic energy of the airfoil from Eq. (20); and
4) coupling terms between torsion and total centrifugal stress (cases 1
and 2).
From Fig. 13a, it can be seen that the main contribution to the

trapeze moment comes from the trapeze effect terms included in the
kinetic energy. It is interesting to note that because of the nonlinear
nature of the trapeze effect, the solution including all the trapeze
effect terms is not equal to the sum of the solutions where the trapeze
effect terms are included individually. In addition, it can be seen in
Fig. 13b that the trapeze restoring pitching moment acting on the tip
mass is larger than that acting on the blade. Finally, we see that all the
trapeze effect termsmust be included to obtain an accurate prediction
of the spanwise twist distribution.

2. Influence of the Higher-Order Twist Terms

In the present analysis, the twist angles were assumed to be
arbitrarily large, or in other words, O�1�. This assumption led to
additional terms in the equations of motion, double-underlined in
Eq. (15). The importance of the double-underlined terms is such that,
by neglecting them and linearizing the trigonometric functions for
small angles ϕ, the analysis does not converge for the blade
parameters shown in Table 1. Mathematically, this lack of conver-
gence means that the equivalent stiffness matrix was ill-conditioned,
and a solution could not be calculated by the solver. Physically, this
lack of convergence means that the equations of motion with omitted
terms do not capture the behavior of an extremely flexible rotor. In
fact, it was verified that the analysis without the double-underlined
terms was only able to converge for normalized stiffnesses of

EIη

m0Ω2R4
� 2.70 × 10−1 (38)

EIξ
m0Ω2R4

� 7.12 × 101 (39)

GJ

m0Ω2R4
� 2.66 × 101 (40)

These values correspond to a blade of the same geometry as the
blade described in Table 1 but fabricated out of aluminum. We
conclude that the assumption of small elastic twist angle is reasonable
for a relatively stiff rotor blade but leads to a singular problem for
the computation of the deformation of an extremely flexible
rotor blade.

VI. Conclusions

An analytical model of the torsional deformation of an extremely
flexible rotor in hover was presented. The model included flap
bending and twist degrees of freedom. Compared to typical analyses
based on ordering schemes and derived for conventional rotors, the
present model included additional terms related to the presence of
large elastic twist angles. First, the magnitude of the elastic twist was
assumed to be of one order of magnitude greater than the normalized
flap bending deflection. Second, the foreshortening of the twisted
rotor blade resulting from the trapeze effect was included to the
position vector explicitly.
The nonlinear coupled equations of motion were derived using the

extendedHamilton’s principle andwere solved using a finite-element
approach. Nonlinear terms were linearized using a Newton–Raphson
scheme and were incorporated into the stiffness matrix and force
vector. The predictions of the flap bending and twist deformations of
a flexible rotor blade rotating at 1200 rpm showed good agreement
with experimental measurements obtained by stereoscopic DIC.
Then, an extensive investigation on the importance of the trapeze

effect in the aeroelastic modeling of bladewith low torsional stiffness
was conducted. It was found that omitting the terms due to trapeze
effect led to a 50% error in the computation of the blade-tip pitch
angle. It was also shown that, among the terms arising from the
trapeze effect, kinetic energy terms were predominant over the strain
energy terms.
Finally, to verify the large twist angle assumption made for this

analysis, a model derived for small angle and neglecting all higher-
order twist terms was developed. This model could not converge or
find steady-state equilibrium positions for a rotor blade with
normalized torsional stiffness of the order of 10−3. This observation
confirmed the necessity of considering elastic twist angles as
arbitrarily large.
Future plans involve the refinement of the analysis by the addition

of lead–lag degrees of freedom. The aeroelastic model will also be
expanded to include the dynamic analysis of extremely flexible
rotors. The objective of the dynamic analysis will be to analytically
identify stability boundaries and correlate the results with experi-
mental observations.
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a) Influence of the trapeze effect terms contained in
the kinetic energy vs. the strain energy
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Fig. 13 Investigation of the influence of terms corresponding to the trapeze effect on the twist deformation of an extremely flexible rotor blade, at
1200 rpm, θ0 � 18 deg.
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Appendix A:

Appendix B: Steady-State Equilibrium Equation for an
Extremely Flexible Blade with Tip Mass

�δT0 − δU − δVg � δWa�b � �δT0 − δVg�m � 0 (B1)

where

�δT0�b �
Z
R

x0

�
w 0
�Z

R

x
−m0Ω2χ dχ

�

−m0Ω2x�dη sin θ� dξ cos θ�gδw 0

�
�
−m0Ω2xw 0�dη cos θ − dξ sin θ�

−m0Ω2
1

2
�k2mξ

− k2mη
� sin 2θ −m0Ω2k2mηξ

cos 2θ

�
δϕ

�
�
c2

4
ϕ 0
�Z

R

x
−m0Ω2χ dχ

��
δϕ 0 (B2)

�δU�b �
Z
R

x0

�
�EIξ sin2 θ� EIη cos2 θ� EIηξ sin 2θ�w 0 0

−
�
EB2

2
sin θ� EB3

2
cos θ

�
ϕ 02

� EAc
2

8
ϕ 02�eη sin θ� eξ cos θ�

�
δw 0 0

�
�
1

2
�EIξ − EIη�w 0 02 sin 2θ� EIηξw 0 02 cos 2θ

−
�
EB2

2
cos θ −

EB3

2
sin θ

�
w 0 0ϕ 02

�EA c
2

8
w 0 0ϕ 02�eη cos θ − eξ sin θ�

�
δϕ

�
��
EB1

2
− EAk2A

c2

4
� EA c

4

32

�
ϕ 03

− �EB2 sin θ� EB3 cos θ�w 0 0ϕ 0 0 �GJϕ 0 0

� EAc
2

4
w 0 0ϕ 0�eη sin θ� eξ cos θ�

�
δϕ 0 (B3)

�δVg�b � m0g

Z
R

x0

δw − fw 0�dη sin θ� dξ cos θ�gδw 0

�
��

1 −
w 02

2

�
�dη cos θ − dξ sin θ�

�
δϕ (B4)

�δWa�b �
Z
R

x0

�
1

2
ρair�Ωx�2cCl

�
δw

�
�
1

2
ρair�Ωx�2cxACl �

1

2
ρair�Ωx�2c2Cm0

�
δϕ (B5)

�δT0�m�
�Z

R

x0

−mTΩ2R

�
w 0δw 0 �c

2

4
ϕ 0δϕ 0gdx

�

−mTΩ2R

�
ηT sin θR�ξT cos θR�

L2−L1

2
sin�θR−θind�

�
δw 0R

−mTΩ2

�
Rw 0R

�
ηT cos θR− ξT sin θR�

L2−L1

2
cos�θR−θind�

�

�
�
η2T
2
−
ξ2T
2

�
sin 2θR�ηTξT cos 2θR�

L3
1�L3

2

6�L1�L2�
sin 2�θR−θind�

�L2−L1

2
�ηT sin�2θR−θind��ξT cos�2θR−θind��

�
δϕR (B6)

�δVg�m�mTg
�
δwR−w 0R�ηT sin θR�ξT cos θR

�L2−L1

2
sin�θR−θind��δw 0R

�
�
1−

w 02R
2

�
�ηT cos θR−ξT sin θR�

L2−L1

2
cos�θR−θind��δϕR

�
(B7)

Note that θ�x� is the sum of the collective pitch and the elastic twist
angle:

θ�x� � θ0 � ϕ�x� (B8)
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