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An Analytical Investigation
of the Trapeze Effect Acting
on a Thin Flexible Ribbon
This paper systematically explores the extensional–torsional coupling due to the trapeze
effect acting on a thin flexible ribbon subjected to combined tension and torsion. Kine-
matic relationships as well as expressions for the restoring torque associated with this
effect are analytically derived. Additionally, the locus of points about which the cross
sections of a twisted ribbon under tension rotate is derived. These points, called torsional
centers, are found to be coincident with the centroids of the axial stress field at each sta-
tion along the ribbon. More generally, it is shown that when a flexible slender member is
in tension, combined transverse forces must act at the centroid of the axial stress field to
produce pure bending and no twist. As a result, the elastic axis (EA) of the member shifts
from the locus of shear centers to the locus of centroids of the axial stress field. A numeri-
cal model is developed to investigate the effect of the position of the EA on the prediction
of steady-state deformations and natural frequencies of a rotating ribbon with tip mass.
By assuming the EA to be the locus of the shear centers, the tip twist is overpredicted by
a factor of 2 for small twist angles, and up to 2.5 for large twist deformations. In addition,
assuming the EA to be the locus of shear centers results in an error of up to 60% in the
predicted natural frequencies at large twist angles. [DOI: 10.1115/1.4028781]

1 Introduction

The trapeze effect, or bifilar effect, can be described as the
tendency of a member subjected to an axial load to resist torsion.
Or equivalently, it is the tendency of a pretwisted member to
untwist under the action of an axial load. This effect was first
observed experimentally by Campbell [1] and Pealing [2], who
studied the torsional rigidity of phosphor bronze strips in vibration
galvanometers. The first theoretical explanation was given by
Buckley [3], who showed that the geometric change of direction
of the twisted fibers of a member induces a foreshortening
responsible for the increase in torsional rigidity. Relying on this
result, referred to as “Buckley’s hypothesis,” rotor dynamicists
developed equations to analytically capture the increase in tor-
sional rigidity caused by centrifugal forces acting on rotor blades.
Of particular significance are the works by Houbolt and Brooks
[4], Fulton and Hodges [5], and Kaza and Kielb [6]. More
recently, general purpose treatments of the effect were offered
by researchers such as Borri and Merlini [7] following an
initial-stress approach, and Popescu and Hodges [8] using a non-
linear asymptotic analysis. A comprehensive literature review on
the trapeze effect can be found in Ref. [9].

The extensional–torsional coupling resulting from the trapeze
effect plays an important role in the torsional dynamics of ribbons
with negligible structural stiffness, experiencing large torsional
deformations. In this paper, the contribution of the trapeze effect
to the torsional dynamics of thin flexible ribbons is explored ana-
lytically. First, the kinematic relationship and restoring torque
associated with the trapeze effect are derived. Then, the spanwise
locus of points, called torsional centers, about which the cross sec-
tions of a twisted ribbon rotate when it is subjected to an axial
load is derived. The curve connecting the torsional centers is the
torsional axis. Finally, the general case of combined axial load,
transverse load, and torque acting on a flexible ribbon is

considered. The locus of points at which transverse loads must be
applied to induce bending only, called elastic centers, is investi-
gated. In addition, a numerical model is derived to investigate the
influence of the position of the EA on the prediction of deforma-
tion and natural frequencies.

2 Physical Principles

In this section, the coupled extensional–torsional kinematic
relationships associated with the trapeze effect are derived. In
addition, the expression for the restoring torque arising from this
effect is formulated. Finally, the position of the torsional axis is
investigated.

2.1 Kinematics

2.1.1 Classical Trapeze. To describe the kinematics of the
trapeze effect, it is natural to consider first the extension–torsion
behavior of a simple trapeze, consisting of a rigid bar suspended
from its ends by inextensible cables (see Fig. 1). The width of the
undeformed trapeze is c and the length of the cables is R. When
twisted, the tip of the trapeze makes an angle relative to the root
equal to h. Because the cables are inextensible, the twisting results
in a shortening of the trapeze by an amount uF; this displacement
is called axial foreshortening. Points P and Q, at distances equal
to x and R, respectively, from the root, displace to P0 and Q0 after
deformation. The expression for the variation of the axial dis-
placement uF as a function of the tip twist angle h is derived
below.

The position of P0 relative to A, projected in the Newtonian
coordinate system {x, y, z}, is given by

AP0 ¼ ðx� uFðxÞÞiþ yP0 �
c

2

� �
jþ zP0k (1)

where i, j, and k are unit vectors directed along the x, y, and
z-directions, respectively. In addition, because the cables forming
the trapeze are inextensible, it can be deduced that

AP0k k ¼ APk k ¼ x (2)
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Combining Eqs. (1) and (2), a quadratic equation in uF is obtained.
Only one of the two roots of this polynomial is physically mean-
ingful. This root is given by

uFðxÞ ¼ x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

P0 � z2
P0 �

c2

4
þ cyP0

r
(3)

Then, to relate yP0 and zP0 to the variables x and h, the condition
that AP0 and AQ0 are always collinear is enforced. The compo-
nents of AQ0 projected in {x, y, z} are

AQ0 ¼ ðR� uFðRÞÞiþ
c

2
cos h� 1ð Þjþ c

2
sin hk (4)

From the inextensible cables assumption, it can be deduced that
AQ0k k ¼ R, hence,

uFðRÞ ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � c2

2
1� cos hð Þ

r
(5)

Since AP0 and AQ0 are collinear, we must have

AP0 � AQ0 ¼ 0 (6)

which results in a system of three equations. Two of these three
equations are independent and give expressions for yP0 and zP0 as

yP0 ¼
c R� xþ x cos hð Þ

2R
(7)

zP0 ¼
cx sin h

2R
(8)

Finally, substituting Eq. (7) into Eq. (3), the foreshortening at any
location x is given by

uFðxÞ ¼ x� x

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � c2

2
ð1� cos hÞ

r
for h 2 ½0; p� (9)

This formula is geometrically exact and valid for any arbitrarily
large angle h. However, when h¼p, the two cables come in con-
tact and the kinematics of the trapeze changes. If one assumes that
the diameter of the cables is infinitesimally small, then the motion
of the trapeze outboard of the contact point is a pure rotation
about a fixed point, which induces no additional foreshortening.

The tip displacement uF(R) normalized by the trapeze length R
is plotted in Fig. 2 as a function of the tip twist h, for various tra-
peze geometries. It can be seen that the axial foreshortening, and
consequently the trapeze effect, increases as c/R increases. In
addition, for c/R> 1, the maximum twist angle at the end of the
trapeze is kinematically limited to a value less than 180 deg. Note
also that for c¼R, the total foreshortening when h¼ 180 deg is
equal to the trapeze length.

In the case treated above, the two cables, when deformed, are
free to penetrate a virtual cylinder of diameter equal to the width
at the root of the trapeze. However, if instead of a trapeze, a rib-
bon is considered, then the deformation of each longitudinal fiber
is constrained because of the presence of neighboring fibers. In
Sec. 2.1.2, the kinematics of a thin flexible ribbon in torsion is
investigated.

2.1.2 Thin Ribbon. A thin ribbon composed of an infinite
number of fibers, aligned parallel to each other, is considered.
When a torque is applied at a given section of the ribbon, that sec-
tion rotates about a point called the torsional center. The loci of
torsional centers at every section constitute the torsional axis [10].
In the case of a ribbon of rectangular cross section under pure tor-
sion, the torsional axis is coincident with the middle axis. Hence,
when the ribbon is twisted, the central fiber remains straight while
the outer fibers take a helicoidal shape, as shown in Fig. 3. The
radius of the helix made by a deformed fiber is equal to the dis-
tance from the fiber to the torsional axis, denoted by g in Fig. 3. If
the end of the ribbon is prevented from warping, then tensile
stresses are created in the outer fibers, and compressive stresses
occur in the inner fibers. One fiber on both sides of the torsional
axis is strain-free. Enforcing the free-end condition at the tip of
the ribbon, it can be shown that the resultant normal stress must
be zero. From this condition, the foreshortening of the torsional
axis can be deduced. In the following derivation, the

Fig. 1 Undeformed (dashed lines) and deformed (solid lines)
shape of a trapeze in torsion

Fig. 2 Kinematic foreshortening induced in a twisted trapeze,
for various chord over length ratios
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foreshortening displacement uF(x) is expressed in terms of the
twist angle h(x).

The compressive strain in the central fiber, coincident with the
torsional axis (see Fig. 3), is given by

e0 ¼
M0N0k k � MNk k

MNk k (10)

¼ xþ dxþ uFðxþ dxÞð Þ � xþ uFðxÞð Þ½ � � dx

dx
(11)

Taking the limit of Eq. (11) as dx! 0 gives

e0 ¼ u0FðxÞ (12)

In addition, the strain in the fiber located at a distance g from the
torsional axis is

eðgÞ ¼ ds� dx

dx
(13)

Using the parametric expression for the length of a helix, it can be
shown that

ds ¼ hðxþ dxÞ � hðxÞ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ b2

p
(14)

where b is the pitch of the helix. Thus, for small dx

eðgÞ ¼ h0ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ b2

p
� 1 (15)

The pitch of the helix can be expressed as a function of e0 as

b ¼ e0 þ 1

h0
(16)

Therefore, Eq. (13) becomes

eðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0gð Þ2þ e0 þ 1ð Þ2

q
� 1 (17)

which, for small strains, further simplifies as

eðgÞ ¼ e0 þ
1

2
h02g2 þOðe2

0Þ (18)

Since the ribbon is under pure torsion, the net axial force inte-
grated over the ribbon cross section should be zero. Hence,

ðc=2

�c=2

eðgÞdg ¼ 0 (19)

which gives the strain in the central fiber as

e0 ¼ �
c2

12

h02

2
(20)

Finally, substituting Eq. (20) into Eq. (12), it can be shown that

uFðxÞ ¼ �
ðx

0

c2

12

h02

2
dx (21)

Note that the neutral fiber (or strain free fiber) is located at a dis-

tance equal to
ffiffiffiffiffiffiffiffiffiffiffiffi
c2=12

p
on each side of the torsional axis, which

corresponds to the radius of gyration of the ribbon about its
midline.

Generalizing the above derivation to the case of a ribbon of
thickness t, it is straightforward to show that the longitudinal
strain in a fiber located at distances g and n from the torsional
axis, in the edgewise and flatwise directions, respectively, is

eðg; nÞ ¼ e0 þ
1

2
h02 g2 þ n2
� �

(22)

In addition, in the absence of net axial force, the strain becomes

eðg; nÞ ¼ h02

2
g2 þ n2 � k2

A

� �
(23)

where kA is the polar radius of gyration of the ribbon about the
torsional axis. For a ribbon of rectangular cross section

k2
A ¼

c2 þ t2

12
(24)

Finally, the expression for the foreshortening due to the trapeze
effect is

uFðxÞ ¼ �
ðx

0

k2
A

h02

2
dx (25)

The kinematic relationship derived above can be used to compute
the restoring torque due to the trapeze effect.

2.2 Restoring Torque. The longitudinal tensile stress in a
fiber of the twisted ribbon shown in Fig. 3, subjected to zero net
axial force, can be deduced from Eq. (23) as

rðg; nÞ ¼ E
h02

2
g2 þ n2 � k2

A

� �
(26)

where E is the Young’s modulus of the fiber. If the cross section
of the ribbon is rectangular, the maximum tensile stress occurs in
the fiber most distant from the torsional axis (g¼ c/2, n¼ t/2).
Thus,

rmax ¼
Eh02 c2 þ t2ð Þ

12
(27)

The minimum stress (compressive stress) occurring in the middle
fiber (g¼ 0, n¼ 0) is

rmin ¼ �
Eh02 c2 þ t2ð Þ

24
(28)

The magnitude of these longitudinal stresses can be compared to
the maximum shear stress which also arises in the twisted ribbon,
predicted by Saint–Venant theory. For a narrow rectangular cross
section, it can be shown that [11]

Fig. 3 Undeformed and deformed shape of a thin ribbon in
torsion
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smax ¼ tGh0 (29)

Substituting h0 into Eqs. (27) and (28), we obtain

rmax ¼
Es2

max

12G2

c2

t2
þ 1

� �
(30)

rmin ¼ �
Es2

max

24G2

c2

t2
þ 1

� �
(31)

As noted by Timoshenko in Ref. [11], the above longitudinal
stresses, which arise due to the trapeze effect, are proportional to
s2

max; hence, the importance of these stresses increases with
increasing smax, i.e., with increasing angle of twist. For most
metallic materials, such as aluminum or steel, smax is always very
small in comparison with G, and the magnitude of rmax is there-
fore small in comparison with smax. However, for a composite
material with low shear modulus on the order of a few megapas-
cals, smax may be of the same order of magnitude as G. Hence, r
must be taken into consideration. Note also that the ratio E/G
is approximately equal to 2.6 for isotropic and homogeneous
materials with a Poisson’s ratio of 0.3. But it can be significantly
larger for anisotropic materials, around 21 for a carbon/epoxy
(AS4/3501-6) unidirectional composite. Finally, Eq. (30) shows
that the magnitude of rmax, or in other words the importance of
the trapeze effect, increases when c� t.

The longitudinal stresses in the deformed fibers create a restor-
ing torque about the midline of the ribbon, as shown in Fig. 4. The
projection of r on a plane perpendicular to the midline is

rt ¼ r sin c (32)

where c is the angle the displaced fiber makes with the vertical.
From Fig. 4, it can be seen that

sin c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ n2

q
h0 (33)

Hence, the restoring torque produced by the stretched fiber, about
the midline is

dMt ¼ E
h03

2
g2 þ n2 � k2

A

� �
g2 þ n2
� �

dgdn (34)

Integrating over the ribbon cross section, the torque due to the tra-
peze effect is

Mt ¼ E
h03

2
B1 � Ak4

A

� �
(35)

where B1 ¼
ÐÐ

A
g2 þ n2
� �2

dA. Combining this torque with
the torque TSV due to the shear stress (predicted according to
Saint–Venant’s theory), the total restoring torque acting on the
ribbon is

Mt ¼ TSV þ E
h03

2
B1 � Ak4

A

� �
(36)

This last result was specialized by Timoshenko [11] and Biot
[12,13] to the case of a narrow rectangular cross section and it
was shown that in this case

Mt ¼
ct3

3
Gh0 þ 1

360
Etc5h03

¼ ct3

3
Gh0 1þ 1

120

E

G

c4

t2
h02

� �
(37)

It can be seen that when c� t and the angle of twist is large, the
restoring torque associated with the trapeze effect may contribute
an important portion of the total torque.

Finally, the influence of a uniform axial load (equal to r0A) on
the restoring torque due to the trapeze effect is considered. With
this new boundary condition, the equilibrium equation given by
Eq. (19) becomes ðð

A

Eeðg; nÞdA ¼ r0A (38)

from which

e0 ¼
r0

E
� k2

A

h02

2
(39)

The expression for the longitudinal stress becomes

rðg; nÞ ¼ E
h02

2
g2 þ n2 � k2

A

� �
þ r0 (40)

And the total restoring torque acting on the ribbon cross section,
including the Saint–Venant’s torque TSV, is

Mt ¼ TSV þ E
h03

2
B1 � Ak4

A

� �
þ r0Ak2

Ah0 (41)

Consequently, it can be seen from Eq. (41) that the action of the
tensile stress r0 is to increase the restoring torque and reduce the
twist per unit length h0. In addition, we note that the untwisting
effect due to the axial load is purely linear in the twist per unit
length h0, unlike the restoring torque due to the change in fibers
shape and geometry, which is proportional to h03. Finally, the
Saint–Venant restoring torque is also a linear term in h0.

Fig. 4 Restoring torque induced by longitudinal stresses in
the fibers
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In summary, for a ribbon with low shear modulus and small
thickness-to-width ratio, non-negligible longitudinal stresses arise
in the deformed fibers as a result of the trapeze effect. In addition,
the restoring torque produced by these stresses is nonlinear.
Finally, an external axial force tends to decrease the twist of the
ribbon in a linear fashion.

Note that these results were developed for the case of a homo-
geneous twisted ribbon subjected to an axial load resulting in a
uniform axial stress state. Under these conditions, it was assumed
that the torsional axis is coincident with the midline of the ribbon.
In Sec. 2.3, it is shown that the torsional axis is actually defined
by the centroid of the axial stress field at each spanwise location.

2.3 Position of the Torsional Axis. The objective is to com-
pute the locus of torsional centers for the general case where the
axial stress field is not distributed uniformly along the cross sec-
tion of the ribbon. Accordingly, we consider the structure shown
in Fig. 5, comprised a soft ribbon of rectangular cross section
rotating at the angular velocity X, and stiffened by centrifugal
forces. At the root, elastic displacements and rotations are pre-
vented. At the tip, a solid rod is secured such that its longitudinal
axis is parallel to the width of the ribbon, defined by the body-
fixed axis g. The position of the center of gravity of the tip body
along the g-axis relative to the midline of the ribbon (x-axis) is
defined by the parameter �gm. Additionally, the torsional center of
each cross section is assumed to be located at a distance �gcðxÞ
from the x-axis. For clarity, the locus of torsional centers is shown
by a straight dashed-line in Fig. 5. However, the following analy-
sis is derived for the general case, and does not assume that the
torsional axis is straight.

From equilibrium, the internal normal force and bending
moment acting at a distance x from the axis of rotation are

NðxÞ ¼ m0X
2 R2 � x2

2
þMmX2R (42)

MðxÞ ¼ �MmX2�gmx (43)

where m0 is the mass of the ribbon per unit length and Mm is the
tip mass.

Using the superposition principle, the axial stress at any
location x and distance �g from the midline of the ribbon is

rðx; �gÞ ¼ NðxÞ
A
�MðxÞ�g

I�n
(44)

In addition, it was shown in Eq. (32) that the tangential compo-
nent of the stress in a deformed ribbon fiber responsible for a
restoring torque about the torsional axis is

rtðx; gÞ ¼ rðx; gÞ sin c (45)

¼ rðx; �gÞð�g� �gcÞh0 (46)

where g is the distance from the torsional axis to the fiber and c is
the angle made by the deformed fiber relative to the torsional axis.
Multiplying Eq. (46) by the width of a fiber, the force responsible
for the restoring torque due to the trapeze effect, directed perpen-
dicularly to the g-axis, is obtained as

dFtðx; �gÞ ¼ rðx; �gÞð�g� �gcÞh0d�g (47)

But it can be seen from Fig. 5 that the resultant transverse force
along the direction perpendicular to the g-axis equals zero.
Therefore,

ðc=2

�c=2

dFtðx; �gÞd�g ¼ 0 (48)

Substituting Eqs. (44) and (47) into Eq. (48), we obtain

�gcðxÞ ¼ �
MðxÞ
NðxÞ

A

I�n

c2

12
(49)

Thus, Eq. (49) shows that the torsional center is coincident with
the centroid of the axial stress distribution, which is derived as

�gcðxÞ ¼

ðc=2

�c=2

�grðx; �gÞd�g

ðc=2

�c=2

rðx; �gÞd�g

(50)

¼ �MðxÞ
NðxÞ

A

I�n

c2

12
(51)

For a given set of design parameters (m0¼ 13 g�m�1, Mm¼ 2 g,
X¼ 1200 rpm, R¼ 0.23 m), we can plot the centroid of the axial
stress field along the span of the ribbon (see Fig. 6). First, it can
be seen from Eq. (49) that the result is independent of the rota-
tional speed. Second, one can verify that the torsional axis passes
through the midline of the ribbon at the root and the center of
gravity of the tip mass. Finally, note from Eq. (49) that the shape
of the curve describing the torsional axis is a second-order polyno-
mial in x; if the mass of the ribbon was negligible compared to the
tip mass (i.e., m0� 0 in Eq. (42)), then it is trivial to show that the
torsional axis would be a straight line passing through the midline
of the ribbon at the root and the center of gravity of the tip mass.
The latter outcome was also observed, but not proven, by Roeseler
in Ref. [14].

The result shown by Eq. (50) and plotted in Fig. 6 is a new
contribution of this paper. A direct consequence of this result is a
new definition of the EA (which is conventionally defined as the
spanwise locus of elastic centers) for slender beams subjected to
combined axial and transverse forces. Let us recall that for the
case of a beam under pure shear, the elastic center at each cross
section is coincident with the shear center, which is the point
where transverse forces must be applied to induce pure bending
and no twist. In contrast, when axial loading is combined with the
transverse forces, the elastic center is shifted to the centroid of
the axial stress field at each spanwise location, point about which
the cross section twists.

When modeling rotating slender members, such as helicopter
blades for instance, it is typical to make the Euler–Bernoulli beam
assumptions. In this case, the one-dimensional beam elements are
assumed to coincide with the blade EA. In Sec. 3, we investigate
the effect of the new modeling of the EA described above on the
predictions of deformation and natural frequencies.

Fig. 5 Free-body-diagram of the forces and moments applied
to a rotating ribbon with tip mass Fig. 6 Spanwise locus of centroid of the axial stress field
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3 Analytical Study

An analytical model was developed to predict the steady-state
deformation and the natural frequencies of the soft ribbon with tip
mass, rotating in vacuum, shown in Fig. 5.

3.1 Description of the Model. Equations of motion were
derived using Hamilton’s principle, written for N degrees of free-
dom as

if dqi t1 ¼ dqij jt2
¼ 0, (i¼ 1,…, N) then

ðt2

t1

dT � dUð Þdt ¼ 0 (52)

where dqi are generalized coordinates and dT and dU are the var-
iations in the kinetic energy and strain energy. For the structure
shown in Fig. 5, Eq. (52) becomesðt2

t1

½ dT � dUð Þbþ dTð Þm�dt ¼ 0 (53)

where the subscripts ( )b and ( )m indicate energies of the ribbon
and the tip mass, respectively.

By modeling the ribbon as an Euler–Bernoulli beam, Eq. (53)
becomes one dimensional in space. Furthermore, the beam defor-
mations are described by the axial displacement of the EA u and
the angle of twist h. In previous analyses derived for stiff rotating
beams [15–17], the EA was commonly chosen to be passing
through the locus of shear center at each cross section of the
beam. The motivation for this approach was to decouple twist
deformations from the action of transverse loads. In the present
model, the EA is defined as the spanwise locus of centroid of the
axial stress field. Introducing �hðxÞ ¼ h0 þ hðxÞ as the total pitch
angle at the spanwise location x, it can be shown (see Ref. [18])
that to second-order

ðt2

t1

dTð Þbdt ¼
ðt2

t1

ð
R

	
fm0X

2x� m0 €u� 2m0X _hdg sin �hgdu

þ



2m0X _udg sin �h� 1

2
m0X

2 k2
mn � k2

mg

� �
sin 2�h

� m0k2
m

€h

�
dh

�
dxdt (54)

ðt2

t1

dUð Þbdt ¼
ðt2

t1

ð
R

	

EAu0 þ EA

k2
A

2
h02
�

du0

þ



EAk2
Au0h0 þ EB1

2

� �
h03 þ GJh0

�
dh0
�

dxdt (55)

ðt2

t1

dTð Þmdt ¼
ðt2

t1

	
fMmX2R� 2MmX _hmgm sin �hmgdum

þ



2MmX _umgm sin �hm �Mm
€hm g2

m þ
c2

12

� �

�MmX2 g2
m þ

c2

12

� �
sin �hm cos �hm

�
dhm

�
dt (56)

Then, the steady-state deformations are obtained by solving the
time-invariant part of Eq. (53), using the finite element method.
Additionally, the natural frequencies are computed by perturbing
the equations of motion about the steady-state and by performing
an eigenanalysis of the free response.

3.2 Results and Discussion. The objective of the analysis
presented in this paper is to investigate the effect of two different
approaches regarding the modeling of the EA of a ribbon

subjected to combined axial and transverse loads, on the predic-
tions of deformation and natural frequencies. First, the predictions
obtained when the EA is assumed to pass through the shear center
(which is located at the midline of the uniform ribbon) are pre-
sented. Then, these predictions are compared to that obtained
when the EA is assumed to pass through the centroid of the axial
stress field.

A 50 cm long, 5 cm wide, flexible rotating ribbon, stiffened by
the centrifugal forces acting on a tip body was studied. The ribbon
was assumed to be made of unidirectional fibers of Young’s mod-
ulus equal to 200 GPa, aligned in the spanwise direction. The tip
body was placed such that its center of gravity was not coincident
with the ribbon midline, effectively creating a nonuniform distri-
bution of axial stresses at each cross section. In addition, the mass
of the tip body was chosen to be an order of magnitude greater
than the mass of the ribbon. The whole assembly was assumed to
be rotating at 1500 rpm, in vacuo. Additional parameters are given
in Table 1.

The deformation and the natural frequencies of the ribbon with tip
mass were predicted using the numerical model described in Sec.
3.1. The results were obtained for root pitch angles (angles between
the horizontal plane and the g-axis) varying from 0 to 90 deg. The
centroid of the axial stress field was computed according to Eq. (49),
in which were substituted the following expressions:

NðxÞ ¼
ðR

x

ðc=2

�c=2

qtX2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ðvþ uÞ2 þ g2

s
ðvþ uÞdgdv

þ
ð�gmþLm

2

�gm�Lm
2

Mm

Lm

X2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ uRÞ2 þ g2 cos2 �hR

ðRþ uRÞ2 þ g2

s
ðRþ uRÞdg

(57)

MðxÞ ¼ �
ðR

x
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�
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s
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(58)

where uR¼ u(R) and �hR ¼ �hðRÞ. Note that Eqs. (57) and (58) are
generalizations of Eqs. (42) and (43) which include the geometric
changes due to the elastic deformations (extension and twist).
However, it can be seen that for a slender ribbon (g � R),
Eqs. (42) and (43) are very good approximations.

Figure 7 shows the variation of internal normal force and bend-
ing moment along the span of the rotating ribbon. We can verify
that the normal force at the tip is equal to the axial load due to the
centrifugal forces acting on the tip mass (i.e., the second term of
Eq. (42)). In addition, the position of the centroid of the axial

Table 1 Parameters of the simulation

Geometric properties

Length (m) 0.5
Width (m) 0.05
Thickness (m) 0.001
Material properties
Linear density (kg�m�1) 0.01
Young’s modulus (GPa) 200
Tip mass properties
Mm (kg) 0.05
Lm (m) 0.05
�gm (m) 0.025
Operating conditions
X (rpm) 1500
Environment in vacuo
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stress field relative to the middle axis is plotted in Fig. 8. In this
case, the EA appears to be almost linear in the spanwise coordi-
nate x, which is due to the large magnitude of the tip mass relative
to the mass of the ribbon.

The twist and the elongation at the tip of the ribbon are plotted
in Figs. 9 and 10, respectively, for various root pitch angles, and
for both cases where the EA is assumed to be passing through the
shear centers or the centroids of the axial stress field. It can be
seen that by assuming the EA to pass through the shear centers,
the tip twist is generally overpredicted by a factor of 2 for small
root pitch angles and over 2.5 for large root pitch angles. In addi-
tion, while the tip twist appears to vary linearly with the increase
in root pitch for the case where the EA is coincident with the locus
of shear centers, it is asymptotic to a limit approximately equal to
�15 deg when the EA is coincident with the centroids of the axial
stress field.

Similar observations can be made regarding the variation of tip
axial deflection shown in Fig. 10. When the root pitch angle
equals 0 deg, the ribbon is untwisted, therefore the foreshortening

of the EA due to the trapeze effect vanishes and the elongation is
solely due to elastic deformation. In this case, both simulations
predict a tip elongation equal to 32 lm. As the root pitch
increases, the ribbon experiences twist deformations which induce
foreshortening (i.e., negative axial displacement) because of the
trapeze effect. Since the total elongation is the result of the sum of
the elastic elongation, which is constant, and the kinematic
extension–torsion coupling due to the trapeze effect, we can
observe that the elongation varies with the root pitch angle in a
similar fashion as the twist variation with root pitch.

The total pitch angle �h is plotted as a function of the spanwise
coordinate x in Fig. 11. When h0 equals 0 or 90 deg, the centrifu-
gal twisting moment acting on the ribbon and the tip mass
vanishes, thus the predictions show zero twist. As the root pitch
increases, it can be seen that in the case where the EA is passing
through the shear centers, the spanwise variation of elastic twist is
linear. In contrast, when the EA is defined as the locus of centroid
of the axial stress field, the elastic twist distribution flattens out
toward the tip of the ribbon.

For completeness, the spanwise variation of axial elongation is
plotted in Fig. 12 for the case where the EA is passing through the

Fig. 7 Spanwise variation of internal normal force N and inter-
nal bending moment M

Fig. 8 Spanwise locus of the EA relative to the middle axis of
the ribbon

Fig. 9 Variation of the tip twist with root pitch angles

Fig. 10 Variation of the tip axial deflection with root pitch
angles
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centroids of the axial stress field. The solid black curve corre-
sponding to zero root pitch angle shows the elastic elongation
experienced by the untwisted ribbon. As the twist increases, the
total elongation decreases as explained earlier. It is interesting to
note that the smallest magnitudes of elongation are obtained for
the case where h0¼ 60 deg. When h0¼ 80 deg, the magnitude of
the centrifugal nose-down moment, which is proportional to
sinð2�hÞ [19] decreases. Consequently, the extension–torsion
coupling effect which induces the foreshortening also decreases.

Finally, the natural frequencies corresponding to the first five
modes of vibration of the rotating ribbon were predicted (see
Fig. 13). It can be seen that in the case where the EA is assumed
to be coincident with the shear centers, natural frequencies are
always overpredicted. Although the error relative to the frequen-
cies computed when the EA is passing through the centroids of
the axial stress field is negligible for root pitch angles less than 15
deg, it reaches up to 60% for large pitch angles above 40 deg.

We can also note that the mode shapes corresponding to the
first five modes of vibration, for both approaches regarding the
modeling of the EA, exhibit pure extension–torsion coupled

motions (see Fig. 14). Therefore, it can be concluded that these
modes of vibration are all associated with to the trapeze effect.

4 Conclusion

An analytical investigation of the trapeze effect acting on flexi-
ble twisted ribbons was presented. This effect, characterized by an
increase of the torsional rigidity of a member subjected to an axial
load, is a consequence of the geometric change of direction of the
twisted fibers in the member.

First, the amount of foreshortening due to the extension–torsion
coupling was derived as a function of the twist angle. In addition,
the magnitude of the restoring torque associated with the trapeze
effect was computed for a ribbon with arbitrary cross section. In
particular, it was shown that for a ribbon with low shear modulus
and small thickness-to-width ratio, the restoring torque produced
by longitudinal stresses in the deformed fibers is of the same order
of magnitude as the torque induced by the action of the shear
stresses, classically predicted by Saint–Venant’s theory.

Additionally, this paper showed that torsional centers, which
are the points at each cross section about which the ribbon twists

Fig. 11 Spanwise variation of total pitch angles

Fig. 12 Spanwise variation of axial elongation (EA at centroid
of the axial stress field)

Fig. 13 Natural frequencies of the flexible ribbon rotating at
1500 rpm

Fig. 14 Natural mode shapes
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when subjected to a torque, are coincident with the centroids of
the axial stress field. More generally, it was shown that transverse
forces must also be applied at the centroid of the axial stress field,
for the ribbon to experience pure bending and no twist. This result
redefines the location of the EA of a slender member subjected to
combined axial force, transverse force and a torque.

A numerical model was developed to compute the steady-state
deformation and natural frequencies of a ribbon whose EA is
defined by the centroids of the axial stress field. For comparison,
the deformation and natural frequencies obtained when the EA
passes though the shear centers were also calculated. It was found
that a model which assumes the EA to be coincident with the
shear centers overpredicts the tip twist by a factor of 2 for small
twist angles, and up to 2.5 for large twist deformations. In addi-
tion, the twist appeared to decrease linearly with both the increase
in root pitch angles and the spanwise coordinate when the EA was
coincident with the locus of the shear centers. In contrast, when
the EA was defined by the centroids of the axial stress field, the
slope of the spanwise twist distribution decreased with increasing
root pitch.

Finally, it was found that the natural frequencies of the twisted
ribbon computed by the model which assumed EA and shear
centers to be coincident were well predicted for small twist defor-
mations, less than 15 deg. For larger twist angles, the error relative
to the predictions obtained when the EA passed through the cent-
roids of the axial stress field was up to 60%.

Nomenclature

A ¼ cross-sectional area of ribbon (m2)
B1 ¼ cross-sectional constant (m6)

c ¼ width of ribbon (m)
dg ¼ edgewise distance from torsional center to mass cent-

roid (m)
E ¼ Young’s modulus (Pa)
G ¼ shear modulus (Pa)
In ¼ area moment of inertia about the torsional axis (m4)
J ¼ polar moment of inertia about the torsional axis (m4)

kA ¼ polar radius of gyration about torsional axis (m)
km ¼ mass radius of gyration about torsional axis (m)

kmg, kmn ¼ mass radii of gyration about g and n axes (m)
LM ¼ length of the tip mass (m)
M ¼ internal bending moment (N�m)

Mm ¼ tip body mass (kg)
Mt ¼ restoring torque (N�m)
m0 ¼ mass of ribbon per unit length (kg�m�1)
N ¼ internal normal force (N)
R ¼ length of ribbon (m)
t ¼ thickness of ribbon (m)

T ¼ kinetic energy (N�m)
TSV ¼ restoring torque predicted by Saint–Venant’s theory

(N�m)
u ¼ axial displacement (m)
U ¼ strain energy (N�m)
uF ¼ axial displacement associated with foreshortening (m)
e ¼ longitudinal strain
g ¼ edgewise distance from torsional axis (m)
�g ¼ edgewise distance from midline of ribbon (m)

�gc ¼ edgewise distance from midline to torsional axis (m)
gm ¼ edgewise distance from torsional axis to center of

gravity of tip body (m)
�gm ¼ edgewise distance from midline to center of gravity of

tip body (m)
h ¼ twist angle (rad)
�h ¼ local pitch angle (�h ¼ h0 þ h) (rad)

h0 ¼ root pitch angle (rad)
n ¼ flatwise distance from torsional axis (m)
�n ¼ flatwise distance from midline of ribbon (m)
r ¼ longitudinal stress (Pa)
s ¼ shear stress
X ¼ angular velocity (rad�s�1)

References
[1] Campbell, A., 1911, “On Vibration Galvanometer With Unifilar Torsional Con-

trol,” Proc. Phys. Soc. London, 25(1), pp. 203–205.
[2] Pealing, H., 1913, “On an Anomalous Variation of the Rigidity of Phosphor

Bronze,” Philos. Mag. Ser. 6, 25(147), pp. 418–427.
[3] Buckley, J. C., 1914, “The Bifilar Property of Twisted Strips,” Philos. Mag.

Ser. 6, 28(168), pp. 778–787.
[4] Houbolt, J. C., and Brooks, G. W., 1957, “Differential Equations of Motion for

Combined Flapwise Bending, Chordwise Bending, and Torsion of Twisted
Nonuniform Rotor Blades,” Langley Aeronautical Laboratory, National
Advisory Committee for Aeronautics, Langley Field, VA, Technical Note No.
3905.

[5] Fulton, M. V., and Hodges, D. H., 1993, “Aeroelastic Stability of Composite
Hingeless Rotor Blades in Hover—Part I: Theory,” Math. Comput. Modell.,
18(3–4), pp. 1–17.

[6] Kaza, K. R. V., and Kielb, R. E., 1984, “Effects of Warping and Pretwist on
Torsional Vibration of Rotating Beams,” ASME J. Appl. Mech., 51(4), pp.
913–920.

[7] Borri, M., and Merlini, T., 1986, “A Large Displacement Formulation for
Anisotropic Beam Analysis,” Mecanica, 21(1), pp. 31–37.

[8] Popescu, B., and Hodges, D. H., 1999, “Asymptotic Treatment of the Trapeze
Effect in Finite Element Cross-Sectional Analysis of Composite Beams,” Int. J.
Non Linear Mech., 34(4), pp. 709–721.

[9] Hodges, D. H., 2006, Nonlinear Composite Beam Theory (Progress in
Astronautics and Aeronautics), American Institute of Aeronautics and Astro-
nautics, Inc., Reston, VA, Vol. 213.

[10] Young, W. C., Budynas, R. G., and Sadegh, A. M., 2012, Roark’s Formulas for
Stress and Strain, 8th ed., McGraw-Hill, New York.

[11] Timoshenko, S. P., 1976, Strength of Materials, Part II, Advanced Theory and
Problems, Van Nostrand Reinhold Company, Inc., New York.

[12] Biot, M. A., 1939, “Non-Linear Theory of Elasticity and the Linearized Case
for a Body Under Initial Stress,” Philos. Mag. Ser. 7, 27(183), pp. 468–489.

[13] Biot, M. A., 1939, “Increase of Torsional Stiffness of a Prismatical Bar Due to
Axial Tension,” J. Appl. Phys., 10(12), pp. 860–864.

[14] Roeseler, W. G., 1966, “The Effect of Ribbon Rotor Geometry on Blade
Response and Stability,” M.S. thesis, Massachusetts Institute of Technology,
Cambridge, MA.

[15] Hodges, D. H., and Dowell, E. H., 1974, “Nonlinear Equations of Motion for
the Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades,” Ames
Research Center and U.S. Army Air Mobility R&D Laboratory, Moffett Field,
CA, Technical Note No. NASA TN D-7818.

[16] Kaza, K. R. V., and Kvaternik, R. G., 1977, “Nonlinear Aeroelastic Equations
for Combined Flapwise Bending, Chordwise Bending, Torsion and Extension
of Twisted Nonuniform Rotor Blades in Forward Flight,” Langley Research
Center, National Aeronautics and Space Administration, Hampton, VA, Techni-
cal Memorandum No. NASA TM 74059.

[17] Rosen, A., and Friedmann, P. P., 1978, “Nonlinear Equations of Equilibrium
for Elastic Helicopter or Wind Turbine Blades Undergoing Moderate
Deformation,” Lewis Research Center, National Aeronautics and Space Admin-
istration, Cleveland, OH, Contractor Report No. NASA CR 159478.

[18] Sicard, J., and Sirohi, J., 2014, “Modeling of the Large Torsional Deformation
of an Extremely Flexible Rotor in Hover,” AIAA J., 52(8), pp. 1604–1615.

[19] Johnson, W., 1994, Helicopter Theory, Dover, New York.

Journal of Applied Mechanics DECEMBER 2014, Vol. 81 / 121007-9

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 10/30/2014 Terms of Use: http://asme.org/terms

http://dx.doi.org/10.1088/1478-7814/25/1/320
http://dx.doi.org/10.1080/14786440308634177
http://dx.doi.org/10.1080/14786441208635264
http://dx.doi.org/10.1080/14786441208635264
http://dx.doi.org/10.1016/0895-7177(93)90101-4
http://dx.doi.org/10.1115/1.3167746
http://dx.doi.org/10.1007/BF01556314
http://dx.doi.org/10.1016/S0020-7462(98)00049-3
http://dx.doi.org/10.1016/S0020-7462(98)00049-3
http://dx.doi.org/10.1063/1.1707272
http://dx.doi.org/10.2514/1.J052617

	s1
	s2
	s2A
	s2A1
	E1
	E2
	cor1
	l
	E3
	E4
	E5
	E6
	E7
	E8
	E9
	s2A2
	F1
	F2
	E10
	E11
	E12
	E13
	E14
	E15
	E16
	E17
	E18
	E19
	E20
	E21
	E22
	E23
	E24
	E25
	s2B
	E26
	E27
	E28
	F3
	E29
	E30
	E31
	E32
	E33
	E34
	E35
	E36
	E37
	E38
	E39
	E40
	E41
	F4
	s2C
	E42
	E43
	E44
	E45
	E46
	E47
	E48
	E49
	E50
	E51
	F5
	F6
	s3
	s3A
	E52
	E53
	E54
	E55
	E56
	s3B
	E57
	E58
	T1
	F7
	F8
	F9
	F10
	s4
	F11
	F12
	F13
	F14
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19

