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A B S T R A C T

This paper describes the static and dynamic aeroelastic behavior of a thin ribbon that is used as
an extremely flexible helicopter rotor blade. The non-dimensional torsional stiffness of this rotor
blade is three orders of magnitude lower than that of a conventional helicopter rotor blade. As a
result, the rotor blade undergoes large torsional deformation and its static and dynamic behavior
are dominated by centrifugal forces. An aeroelastic analysis is developed based on Euler–
Bernoulli beam theory including large twist angles and unsteady aerodynamics including the
effect of returning wake. The flow is assumed to be attached at all times, and only classical
divergence and flutter stability are evaluated. The analysis is validated with deformation
measurements of a 23 cm diameter rotor with ribbon blades. Divergence and flutter stability
boundaries are identified, and the effects of rotational speed, rotor diameter, location of blade
center of gravity and blade pitch are discussed. The analysis can be used as a design tool for
flexible ribbon rotors in a variety of missions.

1. Introduction

Conventional helicopter rotor blades are typically long, slender structures constructed out of stiff materials such as metals or
composites, with a closed-cell cross-section. This paper describes the aeroelastic behavior of an unconventional rotor blade
comprised of a thin ribbon with a mass at the tip. The cross-section of the ribbon is a circular arc, and the ribbon is constructed out
of a low shear modulus carbon fiber layup. This ribbon rotor blade has negligible structural stiffness. Its dynamic behavior is
dominated by centrifugal and aerodynamic forces, and hence it is prone to aeroelastic instability.

In the 1960's, ribbon rotor blades were explored for heavy lift helicopters with large diameter rotors. These early flexible rotor
blades consisted of a thin membrane (e.g. mylar, fabric or metal) supported by cables running spanwise and stabilized by a tip mass
(Winston, 1968b, 1968a; Roeseler, 1966; Goldman, 1960; Linden, 1972). Simplified analyses of such blades indicated that stability
boundaries were independent of rotational speed (Roeseler, 1966; Goldman, 1960) and limited experiments were performed to
quantify their dynamic response. In addition, these analyses showed that divergence stability was assured when the elastic axis was
ahead of the aerodynamic center, and flutter was prevented when the blade center of gravity was ahead of the elastic axis. These
conclusions contrast with the classical criterion for aeroelastic stability of a conventional rigid rotor blade (Johnson, 2013), which
only requires the blade to be mass balanced in such a way that the center of gravity is ahead of the aerodynamic center, and where
the location of the elastic axis is of relatively minor importance.

Recently, Sicard and Sirohi (2014b) investigated extremely flexible, ribbon blades for a 46 cm diameter micro-helicopter rotor.
These blades consisted of a thin flexible matrix composite ribbon, with a circular arc cross-section that served as the airfoil profile. A
cylindrical tip body oriented chordwise at an index angle to the blade provided centrifugal stiffening and created a passive twist
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distribution. Fig. 1(a) shows a picture of the flexible ribbon rotor at rest with the rotor blades hanging under their own weight. A
picture of the rotor spinning at 1200 rpm (Fig. 1(b)) taken under stroboscopic illumination shows the rotor blade stiffened by
centrifugal force, and the blade planform is shown in Fig. 1(c). The parameters of this rotor are listed in Table 1 and the material
properties of the ribbon are listed in Table 2. Note that the non-dimensional torsional stiffness of this ribbon rotor blade is three
orders of magnitude lower than that of a conventional rotor blade.

Experiments in hover showed that these blades could generate the same thrust and efficiency as rigid rotor blades with the same
planform. However, in contrast to previous analytical predictions, the stability boundaries of these rotor blades was found to depend
on rotational speed and collective pitch (blade root pitch angle). Therefore, guided by these experiments, a more refined aeroelastic

Fig. 1. Experiments on 46 cm diameter flexible ribbon rotor.

Table 1
Ribbon rotor parameters.

Airfoil Circular arc
Rotor radius R 22.86 cm
Ribbon blade length L 17 cm
Chord c 2.286 cm
Camber Ca 7.5% of c
Thickness t 1.39% of c
Total blade mass MB 4.53 g
Tip mass Mm 2.04 g
Tip mass index angle θind −22°
Rotational speed Ω 1200 rpm
Tip Reynolds number Rec 46,160

Table 2
Ribbon rotor blade material properties and normalized stiffnesses.

Young's modulus E 25 GPa
Shear modulus G 1 MPa
Flap bending stiffness EI

m Ω R
η

0 2 4
9.65 × 10−2

Lead-lag bending stiffness EI
m Ω R

ξ

0 2 4
2.54 × 101

Torsional stiffness GJ
m Ω R0 2 4

1.00 × 10−3
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analyses was developed by the authors to capture the dynamic response of flexible ribbon rotor blades and to predict the stability
boundary. This paper describes the aeroelastic analysis, its experimental validation, and discusses some key results.

2. Aeroelastic analysis

An aeroelastic analysis was developed to explore the stability boundaries of this flexible ribbon rotor blade in hover. The
structural model of the blade is based on one-dimensional beam theory and the aerodynamic model is two-dimensional strip theory
including unsteady effects. The present study only investigates classical aeroelastic instabilities, i.e., divergence and flutter that are
based on small perturbations for which the flow can be assumed attached at all times. This assumption considerably simplifies the
analysis. Because of the negligible structural stiffness of the rotor blade, centrifugal stiffening plays a key role. Of particular interest
is the torsional dynamics of the rotor blade, specifically the effect of centrifugal force on a thin ribbon undergoing large twist
deformation. The resulting restoring moment, or equivalently, the axial foreshortening due to twisting of the ribbon, is called the
trapeze effect and has a significant effect on the structural response. The trapeze effect on a thin ribbon is discussed in detail by
Sicard and Sirohi (2014a).

First, the equations of motion are derived using the extended Hamilton's principle:

∫ δT δU δV δW δT δV t[( − − + ) + ( − ) ]d = 0
t

t
g a b g m

1

2

(1)

where δT , δU and δV are the variations of kinetic, strain and potential energies respectively. The subscripts ()b and ()m indicate
energies of the blade airfoil and the tip mass respectively, and δWa accounts for the virtual work done by aerodynamic forces. Solution
of the time invariant terms in Eq. (1), along with quasi-steady aerodynamic forces, results in the steady-state equilibrium
deformation of the rotor blade. The equations of motion are then linearized to obtain a system of equations for small perturbations
Δq about the equilibrium position.

M M Δq G C Δq K K Δq 0( − ) ¨ + ( − ) ˙ + ( − ) =a a a (2)

where M, G, C and K are the mass, gyroscopic, damping and stiffness matrices respectively, and the superscript ‘a’ refers to
aerodynamic terms. The equations of motion are discretized using the finite element method, with each element consisting of 14
degrees of freedom (3 axial displacements, 4 bending displacements, 4 bending slopes and 3 twist angles) distributed over three
nodes. Divergence and flutter instabilities are identified using the p k− method (Hodges and Pierce, 2002), using an efficient
numerical scheme proposed by Hassig (1971). Details of the structural and aerodynamic models of the rotor blade are given below.

2.1. Blade coordinate system and displacement variables

The rotor blade is modeled as an Euler–Bernoulli beam, where each cross-section undergoes three elastic displacements u, v and
w, representing the extensional, lead-lag bending (in the rotor plane x y− ) and flap bending (normal to the rotor plane) deflections
of points located on the elastic axis (Fig. 2). Each cross-section can also undergo a rotation θ about the deformed elastic axis. It can
be shown that, for small strains, this rotation can be expressed in terms of the pitch angle at the root of the rotor blade θ0, the elastic
twist deformation ϕ and the bending deflections as

⎛
⎝⎜

⎞
⎠⎟∫θ θ ϕ w

v w
v v w w

w
dχ= + − ′

1 − ′ − ′
″ + ′ ′ ″

1 − ′

x
0

0 2 2 2
(3)

where the primes denote a spatial derivative with respect to x. Note that the sectional angle of incidence, i.e., the pitch angle, that
determines the aerodynamic loads is θ θ θ= − 0.

Fig. 2. Blade rotating at a constant angular velocity Ω with coordinate systems and deflections.
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2.2. Ordering and truncation scheme

To simplify the equations of motion, the terms in Eq. (1) are first ordered by their relative magnitudes and then truncated to
retain second-order accuracy. When combining kinetic and potential energies in the Hamiltonian, the relative magnitude of inertial
terms with respect to structural terms must be considered and an appropriate ordering scheme must be chosen such that all
physically significant terms are retained. A consistent truncation scheme retains the self-adjoint property of the structural and
inertial operators, i.e., the mass and stiffness matrices must remain symmetric and the gyroscopic matrix must remain anti-
symmetric after the truncation.

Along the lines of previous studies (Hodges and Dowell, 1974; Kaza and Kvaternik, 1977; Bir et al., 1990), an ordering scheme is
defined where each physical quantity is compared to a small parameter ϵ < 1 that is on the order of the normalized flap bending
deflection w R/ . The ordering scheme is summarized in Table 3. Note that the present scheme specifically includes arbitrarily large
pitch angles θ of order (1), to capture the large twist deformation observed in experiments.

Two types of truncation strategies can be found in the literature. One strategy identifies an order of magnitude of terms to retain
in the kinetic and potential energies (Hodges and Dowell, 1974; Bir et al., 1990) and subsequently makes some exceptions to include
terms specific to physical phenomena of interest, such as blade warping and the trapeze effect. In the other strategy, the extensional,
bending and torsional equations of motion are truncated to different orders (Kaza and Kvaternik, 1977), which can lead to loss of the
self-adjoint property of the operators. A rigorous truncation strategy is employed in the present study: all strain energy terms of
order greater than (ϵ )5 and all kinetic energy terms of order greater than (ϵ )3 are eliminated. This strategy automatically retains
all terms associated with the torsional dynamics, i.e., the trapeze effect (strain energy (ϵ )4 , kinetic energy (ϵ )3 ) and the propeller
moment (no strain energy, kinetic energy (ϵ )2 ).

2.3. Structural model

The structural model yields the rotor blade strain energy, kinetic energy, and gravitational energy based on the assumed blade
deformations (Section 2.1). Models of the nonlinear deformation of nonuniform rotating beams undergoing combined flap bending,
lead-lag bending, torsion and extension have been developed by several researchers based on energy truncation schemes (Hodges
and Dowell, 1974; Kaza and Kvaternik, 1977; Rosen and Friedmann, 1978) and geometrically exact theories (Hodges, 1985, 2006).
The present study is based on an energy truncation scheme specifically tailored towards flexible rotor blades with large pitch angles,
as described in Section 2.2.

Based on the ordering scheme, the sectional pitch angle can be written as

∫ ∫θ ϕ v w dχ ϕ v w dχ= − ″ ′ + (ϵ ) ∼ − ″ ′
x x

0
4

0 (4)

The total axial displacement can be written as a sum of the elongation ue and the kinematic displacement, or foreshortening, due
to bending and the trapeze effect (detailed derivation by Sicard and Sirohi (2014a)) as

∫u u v w k θ dχ= − 1
2

( ′ + ′ + ′)e
x

A
0

2 2 2
(5)

The variation in the strain energy is

∫ ∬δU E δ G δ G δ dη dξ dx= ( ϵ ϵ + 4 ϵ ϵ + 4 ϵ ϵ )
R A

xx xx xη xη xξ xξ (6)

The variation in the strain energy, with some key terms highlighted, is shown in Appendix A. The expression for variation in the
strain energy can be linearized by first-order Taylor expansion about the equilibrium (or trim) position and written as

δδU δU q K Δq( ) = ( ) +b Lin b
T

0 (7)

where K is the contribution of the blade strain energy to the linearized stiffness matrix of the system.
The variation in the blade kinetic energy is given by

⎛
⎝⎜

⎞
⎠⎟∫ ∬δT ρ d

dt
δ d

dt
dη dξ dxr r= ·

R A

1 1

(8)

where r1 is the position vector of a particle on the deformed blade. The variation in this position vector and the variation in kinetic

Table 3
Ordering scheme.

θ0, θ, ϕ,
x
R
,

x
∂
∂

,
t

∂
∂

= (1)

v
R
,

w
R
,

η
R
,

ξ
R
,

c
R

= (ϵ)

u
R

= (ϵ )2
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energy are shown in Appendix A. The variation in kinetic energy can be linearized about the equilibrium position as

δ δ δδT δT q K Δq q G Δq q M Δq( ) = ( ) + + ˙ + ¨b Lin b
T T T

0 (9)

This K matrix is added to the stiffness matrix obtained from the strain energy, and G and M are the gyroscopic matrix and the
mass matrix respectively.

Finally, the variation in the blade gravitational potential energy is

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭∫δV g m δw m w d θ d θ δw m w d θ d θ δθ( ) = − { ′( sin + cos )} ′ + 1 −

′
2

( cos − sin )g b R
η ξ η ξ0 0 0

2

(10)

where dη and dξ are the offsets of the blade sectional center of gravity from the elastic axis, along and perpendicular to the blade
sectional chord, respectively. The tip mass also contributes to the total kinetic energy and gravitational energy; these can be derived
by following a similar procedure as described above and are given in Appendix A. The work done by aerodynamic forces on the tip
mass is ignored.

2.4. Aerodynamic model

The virtual work done by aerodynamic forces and moments is calculated from 2-D strip theory assuming incompressible flow.
Assuming that the blade airfoil of chord c experiences harmonic pitching α t( ) and heaving h(t) motion, and that the flow remains
attached, the unsteady aerodynamic forces (lift per unit length L and pitching moment per unit length M) can be written as

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎫
⎬
⎭

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥L C ρU cC ρUcC h Uα x c α ρC c h Uα x c α= ′ 1

2
+ 1

2
( ˙ + ) + +

2
˙ + 1

2 4
( ¨ + ˙) + +

4
¨lo lα A lα A

2
2

(11)

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎫
⎬
⎭

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎤
⎦
⎥⎥

M C ρU c C ρU cC x ρUcC x h Uα x c α

ρC c x c h Uα c Uα c x
c

x
c

α

= ′ 1
2

− 1
2

− 1
2

( ˙ + ) + +
2

˙

+ 1
2 4

− +
4

( ¨ + ˙) −
4

˙−
4

3
8
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(12)

where C′ is the Theodorsen lift deficiency function including Loewy's correction to model the unsteady effect of the returning wake
shed by blades in previous revolutions (Johnson, 2013), U is the resultant blade velocity and xA is the distance of the aerodynamic
center aft of the elastic center (see Fig. 3). The reduced frequency (k) for the unsteady aerodynamics is calculated at the 75% rotor
radius. A profile drag force per unit length D is also included in the model, based on a constant profile drag coefficient Cdo. The lift
coefficients (Clα, Clo) and pitching moment coefficient (Cmo) are obtained from a lookup table, which was calculated using ANSYS
Fluent for the circular arc airfoil at a representative Reynolds number (at 75% rotor radius). Fig. 3 shows a schematic of the
aerodynamic forces acting on the airfoil section. Note that the effective lift and pitching moment act at the aerodynamic center (AC)
and include circulatory as well as non-circulatory components. The origin of the airfoil-fixed coordinate system (ξ–η) is at the elastic
center (EC) of the section; the heaving and pitching motion of the airfoil is defined with respect to this point. The steady inflow of the
rotor is calculated from classical blade element-momentum theory (BEMT).

The angle of attack is given in terms of the tangential (in the rotor plane) and normal components of incident velocity, UT and
U h Uα= −( ˙ + )P respectively. In terms of the blade deformations, these can be written as

U Ωx v θ w V θ Ωvv θ Ωvw θ Ωu θ Ωx v θ= ( + ˙)cos + ( ˙ + )sin + ′ cos + ′ sin + cos −
′
2

cos + (ϵ )T i

2
3

(13)

U w V θ Ωx v θ Ωvv θ Ωvw θ Ωu θ Ωx v θ= ( ˙ + )cos − ( + ˙)sin − ′ sin + ′ cos − sin +
′
2

sin + (ϵ )P i

2
3

(14)

Also, the rate of change of angle of attack can be expressed to second order as

α θ v w Ωw˙ = ˙ + ˙′ ′ + ′ (15)

Finally, the virtual work done by the aerodynamic loads is

∫δW a δv a δw a δθ dx( ) = ( + + ) + (ϵ )a b
R

v w θ
5

(16)

Fig. 3. Aerodynamic forces on 2D-section.

J. Sicard, J. Sirohi Journal of Fluids and Structures 67 (2016) 106–123

110



where the generalized forces av and aw, and the generalized moment aθ are listed in Appendix B. After linearization, these terms
contribute to the global mass, stiffness and damping matrices.

2.5. Sectional properties

The aerodynamic forces are transformed to the aerodynamic center (AC in Fig. 3), assumed to be located at the quarter-chord of
the airfoil, which is justified for attached flow. The center of gravity of the blade is determined by the chordwise location of the tip
mass, however, the center of gravity of each blade section is located at mid-chord because of the constant blade chord and thickness.
The location of the elastic center (EC) is very important for the structural model. For conventional rotor blades, the elastic axis is the
blade feathering axis, which is coincident with the pitch bearings. Typically, the elastic axis, which is the locus of the elastic centers,
is located along the quarter-chord of the blade. For a thin ribbon (symmetric about mid-chord), the elastic axis is coincident with the
mid-chord line. However, it can be shown that for thin ribbons under the influence of centrifugal force, i.e. for flexible blades
undergoing large elastic twist, the elastic axis is the locus of the centroids of the radial stress field at each spanwise location (Sicard
and Sirohi, 2014a). The shape of this elastic axis is illustrated in Fig. 4. Note that the position and shape of this axis changes as the
blade deforms, however for simplicity, the present study calculates the elastic axis based on an undeformed geometry (ribbon with
no bending or twist deformation) and assumes it does not change.

3. Results and discussion

First, the torsional dynamics of the rotor blade with tip mass is described. Then, the analysis is used to calculate the divergence
and flutter boundaries of the blade at various collective pitch angles. Finally, the effect of a change in chordwise position of the tip
mass, or in the rotor blade length on the stability boundaries is investigated.

3.1. Flexible blade dynamics

The analysis was used to calculate the rotating frequencies and mode shapes of the flexible blade. Fig. 5 shows a fan plot of the
first five rotating natural frequencies of the flexible blade at 5° and 15° collective pitch. The dashed lines indicate multiples of rotor
harmonics (denoted as /rev), which make it convenient to interpret the natural frequencies in terms of the nominal rotor speed
(1200 rpm).

The mode shapes are labeled “F” for flap bending, “L” for lead-lag bending and “T” for torsion, to indicate the participation of the
degree of freedom. This can be identified visually by plotting the mode shapes as in Fig. 6. It can be seen that:

Fig. 4. Elastic axis determined by locus of the centroids of the radial stress field along the blade span.

Fig. 5. Rotating natural frequencies of flexible rotor blade at 5° and 15° collective.
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(a) The first eigenmode (F/L/T) fully couples the flap, lag and pitch deformations.
(b) The second eigenmode (T1) and third eigenmode (T2) are predominantly torsional modes.
(c) The fourth mode (L/T) involves lag-torsion coupling. This mode is the most sensitive to the collective pitch, with the increased

collective resulting in a decrease in frequency.
(d) The fifth mode (T3) (not shown in Fig. 6) is also predominantly a torsional mode.

A closer look at the lowest predominantly torsional mode (T1) of the flexible blade indicates the nature of the torsional dynamics.
Fig. 7 plots the rotating torsional frequency of the flexible blade in vacuum as a function of blade material shear modulus. As the
shear modulus decreases, i.e., the blade structural stiffness decreases, the importance of centrifugal stiffening becomes apparent. The
rotating torsional frequency νθ of the flexible blade is on the order of 3.3/rev. As the shear modulus of the material approaches zero,
it can be seen that the torsional frequency tends to 2/rev.

3.2. Validation with experiments

The aeroelastic analysis was validated with experimental measurements of the bending and twist deformation of a ribbon rotor
blade in hover. The experimental setup and procedure are described in detail by Sicard and Sirohi (2013). Fig. 8 shows the
experimentally measured blade pitch as a function of span for a ribbon rotor blade at 1200 rpm, at different collective pitch (θ0)
angles. Also shown for comparison are the numerical predictions from the aeroelastic model. Very good agreement can be seen over

Fig. 6. Flexible blade rotating mode shapes (θ = 0°0 , Ω=1000 rpm).

Fig. 7. Torsional natural frequency (in vacuum) of the flexible rotor blade as a function of blade shear modulus, at 1200 rpm and 15° collective pitch.
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the span at all the collective pitch angles. The effect of different assumptions in the aeroelastic analysis was also explored, and it was
found that neglecting the higher order twist terms resulted in a 50% error in the prediction of blade tip pitch angle. The validated
aeroelastic analysis was then used to investigate the divergence and flutter boundaries of the ribbon rotor blade.

3.3. Divergence boundary of the ribbon rotor blade

Divergence occurs when the equilibrium position calculated by the trim analysis is statically unstable, i.e., if the determinant of
the effective stiffness matrix becomes negative.

K K| − | < 0a (17)

In conventional rotor blades, the divergence boundary depends on the chordwise position of the center of gravity with respect to the
aerodynamic center. Therefore, the sign of the determinant in Eq. (17) was computed for various chordwise positions of the tip mass.
First, the divergence stability was evaluated for the configuration experimentally tested in previous work (Sicard and Sirohi, 2012)
(tip mass CG ahead of the AC by 34% chord). Then, the center of gravity of the tip mass was moved aft until divergence occurred.
This procedure was repeated at four different rotational speeds (1200, 1500, 2000 and 3000 rpm) and the results are shown in Fig. 9.
It can be seen that the torsional frequency of the rotor blade depends upon the position of the tip mass, as well as the rotational
speed.

Moreover, Fig. 9 indicates that the blade is free from divergence when the center of gravity of the tip mass is located 0.34c ahead
of the aerodynamic center, as in the experimental study. When the center of gravity of the tip mass is moved close to or aft of the
aerodynamic center, the divergence boundary depends upon the rotational speed. For example, taking the case where the tip mass
center of gravity is located at the aerodynamic center, we can see that the rotor blade is free from divergence at 1200 and 1500 rpm
and becomes unstable at 2000 rpm. These results qualitatively agree with experimental observations of the rotor blade stability
boundaries (Sicard and Sirohi, 2012).

Fig. 8. Comparison of experimentally measured blade pitch with numerical predictions.

Fig. 9. Divergence stability boundary of ribbon rotor blade as a function of location of the tip mass and rotational speed.
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3.4. Flutter boundary of the ribbon rotor blade

Typically, the coalescence of two eigenmodes indicates the possibility of classical flutter. The fan plot in Fig. 5 shows coalescence
between the eigenmodes T2 and L T/ , for blade rotational speeds greater than 1100 rpm and for a collective pitch of 5°. The stable or
unstable nature of a particular eigenmode can be determined by examining the real part of its eigenvalue p, which is related to the
damping coefficient γ of that eigenmode by

γ p
k

= ( )R

(18)

A change in the sign of γ, from negative to positive, indicates the onset of flutter. The damping coefficients are plotted for the
lowest eigenmode and the coalescing modes as a function of the rotational speed in Figs. 10 and 11.

Fig. 10 shows that the F L T/ / mode is unconditionally stable over the range of rotational speeds simulated (0–1400 rpm). The
torsional modes (T1, T2 and T3) show similar behavior. However, the L T/ mode becomes unstable at a rotational speed of
Ω=1100 rpm (see Fig. 11). In this case, the onset of flutter is due to a coalescence between the L T/ mode and the T2 mode, leading to
unstable oscillations at approximately 8/rev. An important conclusion from this analysis is that the stability boundary is a function of
the rotational speed. This result correlates with experimental observations of the blade in hover. It can also be seen (Fig. 11(a)) that
at Ω=1250 rpm, the blade is predicted to be stable when θ = 15°0 and unstable when θ = 5°0 . This result also agrees with previous
experiments (Sicard and Sirohi, 2012), in which the blades were unstable at collective pitch lower than 10° when spinning at
1200 rpm.

3.5. Influence of the chordwise position of the tip mass

The aeroelastic analysis can be used to investigate ways of enhancing the flutter stability of the flexible ribbon rotor blades. One
of the design parameters is the chordwise position of the tip mass. As discussed in Section 3.3, this parameter has a significant effect
on the divergence boundary. The analysis is now used to investigate the effect of moving the tip mass aft on the natural frequencies,
damping ratio and mode shapes of the ribbon rotor blade.

Fig. 12 shows that the change in position of the tip mass predominantly affects the first two torsional modes of the rotor blade
(modes T1 and T2). However, a decrease of the frequencies is observed, which is due to the change in the location of the elastic axis
that results from the change in center of gravity of the tip mass. Nevertheless, by decreasing the frequencies associated with the third
mode (T2) while keeping those of the fourth mode (L T/ ) relatively constant, coalescence of these two modes is avoided. Moreover,
because the damping coefficients remain negative at all rotational speeds (Fig. 13), it can be inferred that moving the tip mass aft
eliminates classical flutter and enables stable operation over a larger range of rotational speeds. Note that this result is counter-
intuitive; in a conventional rotor blade a decrease in stability margin is expected when the blade center of gravity is moved aft.

3.6. Effect of a change in rotor diameter

The analysis is also used to investigate the effect of a change in rotor blade length on the stability boundaries, for example, if the
ribbon rotor blade changes its diameter in flight. In such a case, the rotor must still produce the same thrust and so, the rotational
speed is adjusted such that the product Ω R2 3 remains constant. For example, if a rotor is initially spinning at 1200 rpm and its
diameter is doubled, it must spin at 425 rpm to create the same thrust. Fig. 14(a) shows the natural frequencies of the extended rotor
blade at 15° collective pitch and for rotational speeds up to 300 rpm. Note that due to the slower rotational speeds, the magnitudes of

Fig. 10. Damping coefficient of flap-lag-torsion mode.
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Fig. 11. Damping coefficient of coupled lag-torsion and second torsional mode.

Fig. 12. Influence of the tip mass chordwise position on the natural frequencies.
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the natural frequencies of the deployed rotor are well under those corresponding to the original rotor. For clarity, only the
frequencies of the extended rotor blade are shown. It can be seen that the change in rotor diameter affects predominantly the first
torsional mode (T1) whose natural frequency increases and becomes closer to that of the second torsional mode (T2). Coalescence of
the modes T2 and L T/ is avoided, however the damping coefficient of the T2 mode becomes positive, resulting in an instability at
around 220 rpm (Fig. 14(b)).

Overall, the change in rotor diameter leads to shifts in the natural frequencies and results in new stability boundaries. Therefore,
for a variable-diameter ribbon rotor, the stability boundaries must be investigated for every rotational speed or rotor diameter that is
possible during operation.

4. Summary and conclusions

The aeroelastic behavior of an flexible helicopter rotor blade was described. The ribbon rotor blade is comprised of a thin flexible
matrix composite strip with a circular arc airfoil section and a cylindrical tip mass. Ribbon rotor blades have potential applications in
heavy lift helicopters, variable-diameter morphing rotors and damage tolerant rotors. The non-dimensional torsional stiffness of this
rotor blade is three orders of magnitude lower than that of a conventional helicopter blade. As a result, the ribbon rotor blade
undergoes large twist deformation, and torsional as well as bending dynamics are dominated by centrifugal forces. In addition, such
a rotor blade with negligible structural stiffness is prone to aeroelastic instabilities.

A numerical aeroelastic analysis of the ribbon rotor blade was developed specifically including the effects of large twist
deformation. The analysis was validated with experimental measurements of deformation of a ∼23 cm radius ribbon rotor. The
validated aeroelastic analysis was then used to predict the divergence and flutter boundary of the rotor blades in hover, and
investigate the effect of design and control parameters on the stability margins. The analysis was based on the nonlinear coupled

Fig. 13. Influence of the tip mass chordwise position on the damping of the second torsional mode and the coupled lag-torsion mode.
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equations of motion of rotor blades with extension, lag, flap and torsion degrees of freedom. The blades were modeled as second-
order isotropic Euler–Bernoulli beams experiencing small bending deflections but large twist angles. The aerodynamic model
included unsteady effects based on Theodorsen's theory and equations were discretized and solved following a finite element
approach. Onset of classical flutter instability was determined by the p k− method, considering a typical section at the 75% radius
location. The flutter analysis was conducted for various collective pitch angles and over a range of rotational speeds.

Classical flutter was observed to occur at the coalescence between the second torsional mode and the first coupled lag/torsion
mode of oscillation of the rotor blade. It was found that changing the blade root pitch or the rotational speed affected the stability
boundary, which agrees with experimental observations. In addition, it was shown that by moving the chordwise position of the tip
mass center of gravity aft, the torsional frequencies of the new blade were uncoupled from the lag/torsion mode and flutter
instability was avoided. However, the divergence stability margin was also reduced. In contrast, for conventional rotor blades,
moving the blade center of gravity aft has a destabilizing effect.

Finally, the effect of a change in rotor diameter on the stability boundaries was investigated. Analytical predictions of frequencies
and damping coefficients showed that a change in rotor diameter leads to shifts of the natural frequencies and therefore new stability
boundaries. The results depend on the specific rotor parameters being kept constant during the change in diameter, for example,
total rotor thrust. This result indicates that when designing a variable-diameter flexible ribbon rotor, the stability boundaries must
be investigated for every operating rotor diameter. Note that this study only considered classical divergence and flutter; a complete
stability analysis would require solution of the equations of motion in the time domain to investigate the presence of other

Fig. 14. Influence of the rotor diameter on the stability boundaries.
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instabilities or limit cycle oscillations.

Appendix A. Variations of strain energy, kinetic energy and gravitational potential energy

A.1. Blade strain energy

From the blade strains, the variation in the strain energy can be derived as

⎛
⎝⎜

⎞
⎠⎟∫δU s δu s δv s δv s δw s δw s δθ s δθ dx( ) = ′ + ′ + ″ + ′ + ″ + + ′ + (ϵ )b

R
u v v w w θ θ′ ′ ″ ′ ″ ′

6

(A.1)

where
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The terms with a double underline correspond to the extension-torsion coupling due to the trapeze effect. The terms with a single
underline are related to bending–torsion coupling; these terms vanish for rotor blades with small angles of twist, and hence, they do
not appear in conventional rotor blade studies (Hodges and Dowell, 1974; Kaza and Kvaternik, 1977; Bir et al., 1990). The terms
with a dashed underline must be kept for arbitrary non-symmetric cross-sections. Finally, the wavy underlined terms are retained
due to the consistent ordering scheme; these terms are arbitrarily neglected in other rotor blade analyses (Hodges and Dowell, 1974;
Bir et al., 1990). The cross-sectional constants are defined in Appendix C.

A.2. Blade kinetic energy

The variation in kinetic energy can be derived and integrated by parts with respect to time to yield

∫ ∫ ∫δT k δu k δv k δv k δw k δw k δθ dx dt( ) = ( + + ′ + + ′ + ) + (ϵ )
t

t
b

t

t

R
u v v w w θ′ ′

4

1

2

1

2

(A.9)

where
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The terms with a single underline (bending–torsion) or double underline (extension-torsion, trapeze effect) do not appear in
other studies developed for torsionally stiff rotor blades (Hodges and Dowell, 1974; Kaza and Kvaternik, 1977; Bir et al., 1990). The
dash-underlined terms must be retained when the area centroids of the blade cross-sections are not coincident with the elastic axis
(as in the case of circular arc airfoils). Note that the wave-underlined terms are one order of magnitude greater than the order of
truncation. These terms are retained so that the elements of the mass matrix associated with the equation for the axial displacement
u are non-zero. The cross-sectional constants are defined in Appendix C.

A.3. Tip mass kinetic energy

The variation in the kinetic energy of the tip mass is

δT m Ω x m Ωv m T Ωθ δu m Ω v m v m Ωu m T θ Ωw Ωv θ m

T Ω θ Ωw θ Ωv δv m T Ωθ m T Ωv Ω x δv m w m T θ m T θ δw

m T Ωθ m T Ωv Ω x δw m T Ωv v Ω x v Ω v v Ωu

m T Ωv w Ω x w w m T θ Ωw m T θ m T Ω Ωv δθ

( ) = { + 2 ˙ − 2 ˙ } + { − ¨ − 2 ˙ + ( ¨ + 2 ′̇ − 2 ′
˙ )+

( + ˙ + 2 ′
˙ + 2 ′̇ )} + {2 ˙ + (−2 ˙ − )} ′ + {− ¨ + ˙ − ¨ }

+ {2 ˙ + (−2 ˙ − )} ′ + { (2 ˙ ′ + ′ − + ¨ + 2 ˙ )

+ (−2 ˙ ′ − ′ − ¨ ) + (− ¨ − 2 ′̇ )+ (− ¨ ) + (− − 2 ′̇ )} + (ϵ )

m m m m m m m m m m m m m m m m m m m m

m m m m m m m m m m m m m m m m m m

m m m m m m m m m m m m m m

m m m m m m m m m m m m m m

2
1

2
1

2
2 2

5 2
2

1
2

2

3 1
2

1
2 2

2
2

3 4 5
2 4 (A.16)

A.4. Tip mass gravitational energy

The variation in the gravitational potential energy of the tip mass is given by

⎛
⎝⎜

⎞
⎠⎟δV m gδz m g δw m g w T δw m g

w
T δθ( ) = = − ′ ′ + 1 −

′
2g m m m m m m m m m
m

m1

2

2
(A.17)

Appendix B. Aerodynamic constants

Assuming that the aerodynamic coefficients are of the following order,
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C
C

C
C

, = (ϵ)l

lα

m

lα

0 0

(B.1)

C
C

= (ϵ )d

lα

0 2
(B.2)

and introducing the dimensionless constants λ V ΩR= /( )i i and r=x/R, the generalized forces and moments associated with the
aerodynamic loads are
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The terms with a solid underline are significant for large pitch angles and the terms with a dashed underline disappear for
symmetric airfoil sections.

Appendix C. Cross-sectional constants

The cross-sectional constants used to calculate the strain energy are given by

∬ ∬ ∬
∬ ∬ ∬
∬ ∬ ∬

∬

dηdξ A η dηdξ I η ξ dηdξ B

η dηdξ Ae ξ dηdξ I η η ξ dηdξ B

ξ dηdξ Ae ηξ dηdξ I ξ η ξ dηdξ B

η ξ dηdξ J Ak

= = ( + ) =

= = ( + ) =

= = ( + ) =

( + ) = =

A A ξ A

A η A η A

A ξ A ηξ A

A A

2 2 2 2
1

2 2 2
2

2 2
3

2 2 2

It can be seen that eη and eξ are the coordinates of the tensile axis (loci of the area centroids) relative to the elastic axis, positive in the
direction of the η- and ξ- axes respectively.

The cross-sectional constants used to calculate the blade kinetic energy are given by

∫ ∫ ∫
∫ ∫
∫ ∫

ρ dηdξ m ρ η dηdξ m k ρ η ξ dηdξ m k

ρ η dηdξ m d ρ ξ dηdξ m k

ρ ξ dηdξ m d ρ ηξ dηdξ m k

= = ( + ) =

= =

= =

A A m A m

A η A m

A ξ A m

0
2

0
2 2 2

0
2

0
2

0
2

0 0
2

ξ

η

ηξ

where m0 represents the mass per unit length of the rotor blade, dη and dξ are the mass centroid offsets from the elastic axis,
respectively in the η and ξ directions, and m km0

2
ξ and m km0

2
η are the chordwise and flatwise mass moment of inertia of the blade

section about the elastic axis.
The constants used to calculate the tip mass kinetic energy are

∫ ∬m ρ dA dλ=m
L

L

A
m m

− m1
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