Table 1: Crystal systems of the 14 Bravais lattice types. The inequality symbol, \neq, means that equality is not required by symmetry, but may occur by chance.

System	Axial lengths and angles	Bravais lattice	Symbol
Cubic	$a=b=c, \alpha=\beta=\gamma=90^{\circ}$	Simple	P
		Body-centered	I
Tetragonal	$a=b \neq c, \alpha=\beta=\gamma=90^{\circ}$	Face-centered	F
		Simple	P
Orthorhombic	$a \neq b \neq c, \alpha=\beta=\gamma=90^{\circ}$	Simple	P
		Body-centered	I
		Base-centered	C
Rhombohedral ${ }^{\dagger}$	$a=b=c, \alpha=\beta=\gamma \neq 90^{\circ}$	Simple	I
Hexagonal	$a=b \neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$	Simple	R
Monoclinic	$a \neq b \neq c, \alpha=\gamma=90^{\circ} \neq \beta$	Simple	P
		Base-centered	P
Triclinic	$a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	Simple	P

${ }^{\dagger}$ Also referred to as trigonal.
Table 2: Common crystal structures of the metallic elements near room temperature.

Semimetals	
B	Tetr.
Si	DC
As	Rhomb.
Te	Hex.
Alkaline Earth	
Be	HCP
Mg	HCP
Ca	FCC
Sr	FCC
Ba	BCC

Metals					
Al	FCC				
Sc	HCP	Y	HCP	La	Hex.
Ti	HCP	Zr	HCP	Hf	HCP
V	BCC	Nb	BCC	Ta	BCC
Cr	BCC	Mo	BCC	W	BCC
Mn	Cubic, Tetr.	Tc	HCP	Re	HCP
Fe	BCC	Ru	HCP	Os	HCP
Co	HCP, FCC	Rh	FCC	Ir	FCC
Ni	FCC	Pd	FCC	Pt	FCC
Cu	FCC	Ag	FCC	Au	FCC
Zn	HCP	Cd	HCP	Hg	-
Ga	Orth.	In	Cubic, Tetr.	Tl	HCP
Ge	DC	Sn	Cubic, Tetr.	Pb	FCC
		Sb	Rhomb.	Bi	Rhomb.
				Po	Cubic

J. F. Nye. "Physical Properties of Crystals." (Oxford University Press: Oxford) 1985, pp. 140-141.

EQUILIBRIUM PROPERTIES
CH. VIII
Table 9
Form of the $\left(s_{i j}\right)$ and $\left(c_{i j}\right)$ matrices

Triclinic Both classes	
Orthorhombic All classes	

§ 4
141

\dagger The same matrix holds for both possible orientations of class $\overline{4} 2 m\left(2 \| x_{1}\right.$ and $\left.m . \perp x_{1}\right)$ since the addition of a centre of symmetry makes the two orientations indistinguishable

