
ME 386P-2, Spring 2014
Homework 3

Assigned: January 30, 2014
Due: February 6, 2014

1. Consider an infinitesimally small rectangular parallelepiped element from a strained material. De-
fine its initial dimensions as (a,b,c) along the (x, y, z) directions, respectively. When this element is
strained, its dimensions elongate by (δa,δb,δc) along the (x, y, z) directions. Answer the following.

(a) Calculate the dilatation of this element, ∆V /V0, in terms of its dimensions and the elongations
(δa,δb,δc).

(b) Prove that ∆V /V0 = εx +εy +εz when the δ terms of elongation are small, i.e., small strain theory is
valid. Note that εx = δa/a, for example.

(c) Consider the isotropic linear thermal expansion of this element using the linear thermal expan-
sion coefficient α = (δL/L)/∆T . (If thermal expansion were anisotropic, then the tensor form of
the thermal expansion coefficient, αi j , would be necessary.) The resulting displacement field is
~u =α∆T (x ı̂+y ̂+z k̂), which can also be written as ui =α∆T xi . Calculate the dilatation for tem-
perature change ∆T using both the small-strain (εi j ) and finite-strain (Ei j , which the book writes
as Gi j ) theories. Remark on the difference between these two predictions and calculate their differ-
ence for the case ofα= 11.8×10−6/K and∆T = 25 K. What would be the difference from dilatation
calculated using the equation from (a) before simplification by assuming the δ terms to be small?

2. Prove the the Lamé coefficient Γ is undefined when ν = 0.5. What implications does this have for
the stiffness, ci j , and compliance, si j , tensors? What implications does this have for calculating stresses
from strains and visa versa?

3. Plot the Young’s modulus for all possible directions in the (100), (110) and (123) planes for MgO
(magnesium oxide). It is suggested that you make polar plots, in which radius is proportional to modulus
and θ is the direction within the plane. The elastic moduli of MgO are E〈100〉 = 247 GPa and E〈111〉 =
343 GPa. (An example Octave script, that you may find useful, is available on the class secure web page.)

4. Consider an isotropic silica glass with E = 80GPa and G = 31.5 GPa and tungsten carbide (WC), which
we will assume to be isotropic with E = 530 GPa and G = 219 GPa. Consider each material by itself and
the two materials combined into a glass-matrix composite containing 50% WC particles, by volume, for
the following.

(a) Calculate the compliance matrix Si j for each material alone.
(b) Calculate the effective compliance matrix for the composite, SReuss

i j , using the Reuss approxima-
tion.

(c) Calculate the effective stiffness matrix for the composite, C Voigt
i j , using the Voigt approximation.

(d) Calculate the effective compliance, SVoigt
i j , using the Voigt approximation and compare with the

result of the Reuss approximation.

5. Consider a cube of rubber with initial, undeformed dimensions of L ×L ×L. This cube is subjected
to a uniaxial stress σ, which elongates it by length ∆L in the direction of stress application. Answer the
following, and remember that volume is conserved in deformation of rubber.

σ

L0 ∆L

(a) Will stiffness of the rubber increase or decrease with increasing temperature? Give a brief, qualita-
tive explanation as to why.



(b) Show that, for this problem, Finger’s general constitutive equation (σi j = G Bi j −p δi j ) simplifies
to the uniaxial constitutive model discussed in class,
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whereλ= (L+∆L)/L0 is the stretch in the stressed direction. (Hint: Apply the condition of constant
volume then solve for σ by eliminating p.)

(c) Convert your answer into engineering stress, s, to show that,
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