
ME 386P-2, Spring 2011 Homework 4

1. Consider the simple shear deformation of a block of rubber, as discussed in lecture. This is illustrated below as a deformation from the undeformed configuration x_i in (a) to the deformed configuration x'_i in (b). The normal stresses $\sigma_{\gamma\gamma}$ and σ_{zz} are zero.

The shear strain is defined as $\gamma = \tan \theta$. The deformed axes can be described in terms of the original axes as,

$$x' = x + \gamma y;$$
 $y' = y;$ $z' = z$

The vector u_i describing the displacement of any point p to new position p' after deformation is described by,

$$u_x = \gamma y;$$
 $u_y = 0;$ $u_z = 0$

Answer the following using this information.

(a) Calculate the Finger tensor (left Cauchy-Green tensor) using the definition

$$B_{ij} = \frac{\partial x_i'}{\partial x_k} \frac{\partial x_j'}{\partial x_k}$$

- (b) Use Finger's constitutive relation to calculate the remaining unknown stresses.
- (c) Calculate the finite-strain tensor, E_{ij} , and then use the small-strain assumption to calculate the small-strain tensor, ϵ_{ij} from E_{ij} .

2. Damping arises in α -Fe from the motion of C atoms between octahedral interstitial sites in the α -Fe lattice. This is the Snoek effect. The spacing between octahedral sites is approximately $x = a/\sqrt{2}$, where $a = 2.87 \times 10^{-10}$ m is the lattice parameter of α -Fe. The approximate distance through which an atom can diffuse is $x \approx \sqrt{Dt}$, where *D* is the diffusion coefficient,

$$D = D_0 \exp\left(-\frac{Q}{RT}\right)$$

and *t* is the time for diffusion. For α -Fe, $D_0 = 4 \times 10^{-7} \text{ m}^2/\text{s}$ and Q = 80.1 kJ/mole. (The universal gas constant is 8.314 J/mol·K.) Assume that the frequency for maximum anelastic damping in this system is approximately $f_r = 1/t$, where *t* is the time for a C atom to move between interstitial sites at room temperate, approximately 27 °C. The actual frequency for maximum damping at this temperature is 0.27 Hz. How closely does your calculation agree with this experimental result?

- 3. Answer the following using the given model for a viscoelastic material.
 - (a) For the Kelvin-Voigt model, assume a constant stress of σ_0 and an initial strain of zero. Derive an equation for strain as a function of time, assuming zero initial strain, and make a sketch of strain versus time.
 - (b) For the Maxwell model, assume a constant, positive strain and an initial stress of σ_0 . Derive and equation for the stress as a function of time and make a sketch of stress versus time.