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Schmid Factor

σapplied

(hkl)[uvw]
θ
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The relationship between
applied uniaxial normal
stress and the resolved shear
stress on slip system

(hkl)[uvw] is given by the
Schmid factor, m:

τRSS = σ cos θ cos λ = σ m

Slip occurs preferentially on
the slip system with the
largest m.
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Sterographic Projection

For cubic crystals, the standard triangle contains all the
information necessary to produce the standard projection.
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The Standard Triangle

Slip systems for FCC crystals described on the standard
triangle.
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Single Crystal Rotation
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Tension: The slip
direction rotates toward the
tensile axis, while the slip
plane normal rotates away.

Compression: The slip
direction rotates away from
the tensile axis.
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Example:

Consider deformation of a BCC single crystal which slips

on the {110}〈111〉 systems and is initially loaded in

tension along the [123] direction.

Solution Steps:

• Calculate Schmid factors to determine the preferred
slip system.

• Use the standard stereographic projection to
determine the rotation of the tensile axis.

• Follow the tensile axis rotation to determine the
introduction of conjugate slip systems.
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Slip Plane Slip Direction cos θ cos λ m

(110) [1̄11] 0.56695 0.61721 0.34993

[11̄1] 0.56695 0.30861 0.17496

(11̄0) [111] −0.18898 0.92582 −0.17496

[1̄1̄1] −0.18898 0.00000 0.00000

(011) [11̄1] 0.94491 0.30861 0.29161

[1̄1̄1] 0.94491 0.00000 0.00000

(01̄1) [111] 0.18898 0.92582 0.17496

[1̄11] 0.18898 0.61721 0.11664

(101) [1̄11] 0.75593 0.61721 0.46657

[1̄1̄1] 0.75593 0.00000 0.00000

(1̄01) [111] 0.37796 0.92582 0.34993

[11̄1] 0.37796 0.30861 0.11664
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The only initially active slip system is the (101)[1̄11]. Use
the stereographic projection to visualize the rotation of the
tensile axis toward the slid direction.

Note that [123] lies below the

standard triangle. The

tensile axis, originally along

[123], will rotate toward the

slip direction, [1̄11].
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The tensile axis rotates from the

[123] direction toward the [1̄11]

direction on the standard

stereographic projection. The great

circle on which it rotates crosses

the edge of the standard triangle.

As it crosses this line, a conjugate

slip system can activate!
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Two slip systems occur on the bottom edge of the standard
triangle. This is also true for BCC systems, although this
figure is for FCC.

Single-Crystal Plasticity – p.10



The University of Texas at Austin

Direction on edge of standard triangle: To find the direction

which the tensile axis rotates into along the edge of the standard

triangle, first define the axis~a about which it rotates. This axis is

perpendicular to the plane in which both [123] and [1̄11] lie.

~a = [123] × [1̄11] = [1̄4̄3]

The directions along the bottom edge of the standard triangle are

of the form [0kl]. Since the tensile axis must lie in the same plane,

[0kl] · [1̄4̄3] = 0

Solving for k and l yields the new tensile axis direction along the

edge of the standard triangle: [034].
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Now the preferred slip systems for

the new [034] orientation of the

tensile axis must be calculated.
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Calculate Schmid factors for a tensile axis along [034]

Slip Plane Slip Direction cos θ cos λ m

(110) [1̄11] 0.42426 0.80829 0.34293

[11̄1] 0.42426 0.11547 0.04899

(11̄0) [111] −0.42426 0.80829 −0.34293

[1̄1̄1] −0.42426 0.11547 −0.04899

(011) [11̄1] 0.98995 0.11547 0.11431

[1̄1̄1] 0.98995 0.11547 0.11431

(01̄1) [111] 0.14142 0.80829 0.11431

[1̄11] 0.14142 0.80829 0.11431

(101) [1̄11] 0.56569 0.80829 0.45724

[1̄1̄1] 0.56569 0.11547 0.06532

(1̄01) [111] 0.56569 0.80829 0.45724

[11̄1] 0.56569 0.11547 0.06532
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New slip systems: The old

system, (101)[1̄11] still oper-
ates, but the new conjugate

system (1̄01)[111] also now
operates. This the tensile axis

tries to rotate toward the [1̄11]
and [111] directions simulta-
neously. If both rotations oc-
cur equally, the net rotation is

toward the [011] direction.
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