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One of the most intriguing results of single-molecule experiments
on proteins and nucleic acids is the discovery of functional heteroge-
neity: the observation that complex cellular machines exhibit multiple,
biologically active conformations. The structural differences between
these conformations may be subtle, but each distinct state can be
remarkably long-lived, with interconversions between states occurring
only at macroscopic timescales, fractions of a second or longer.
Althoughwe now have proof of functional heterogeneity in a handful
of systems—enzymes, motors, adhesion complexes—identifying and
measuring it remains a formidable challenge. Here, we show that
evidence of this phenomenon is more widespread than previously
known, encoded in data collected from some of the most well-estab-
lished single-molecule techniques: atomic force microscopy or optical
tweezer pulling experiments. We present a theoretical procedure for
analyzing distributions of rupture/unfolding forces recorded at differ-
ent pulling speeds. This results in a single parameter, quantifying the
degree of heterogeneity, and also leads to bounds on the equilibration
and conformational interconversion timescales. Surveying 10 pub-
lished datasets, we find heterogeneity in 5 of them, all with intercon-
version rates slower than 10 s−1. Moreover, we identify two systems
where additional data at realizable pulling velocities is likely to find a
theoretically predicted, but so far unobserved crossover regime be-
tween heterogeneous and nonheterogeneous behavior. The signifi-
cance of this regime is that it will allow far more precise estimates
of the slow conformational switching times, one of the least under-
stood aspects of functional heterogeneity.
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One of the great problems in modern biology is to understand
how the intrinsic diversity of cellular behaviors is shaped by

factors outside of the genome. The causes of this heterogeneity
are spread across multiple scales, from noise in biochemical reaction
networks through epigenetic mechanisms like DNAmethylation and
histone modification (1). It might be natural to expect heterogeneity
at the cellular level because of the bewildering array of time and
length scales associated with the molecules of life that govern cell
function. Surprisingly, even at the level of individual biomolecules,
diversity in functional properties like rates of enzymatic catalysis
(2–5) or receptor–ligand binding (6, 7) can occur. This diversity
arises from the presence of many distinct functional states in the
free-energy landscape, which correspond to long-lived active con-
formations of the biomolecule. Although the reigning paradigm in
proteins and nucleic acids has been a single, folded native structure,
well separated in free energy from any other conformations, pos-
sibilities about rugged landscapes with multiple native states have
been explored for a long time (8–15). However, only with the rev-
olutionary advances in single-molecule experimental techniques in
recent years have we been able to gather direct evidence of func-
tional heterogeneity, in systems ranging from protein enzymes (2–4)
and nucleic acids (5, 16, 17), to molecular motors (18) and cell
adhesion complexes (6, 7). As research inevitably moves toward
larger macromolecular systems, the examples of functional hetero-
geneity will only multiply. We thus need to develop theories that can
deduce aspects of the hidden kinetic network of states underlying

the single-molecule experimental data (19), allowing us to quantify
the nature and extent of the heterogeneity.
The focus in this study is single-molecule force spectroscopy,

conducted either by atomic force microscopy (AFM) or optical
tweezers, which constitutes an extensive experimental literature
over the last two decades. Our contention is that evidence of het-
erogeneity is widespread in this literature, but has gone largely un-
noticed, because researchers [with a few exceptions, as discussed
below (20–23)] did not recognize the markers in their data that in-
dicated heterogeneous behavior. To remedy this situation, we in-
troduce a universal approach to analyzing distributions of rupture/
unfolding forces collected in pulling experiments, which yields a
single nondimensional parameter Δ≥ 0. The magnitude of Δ char-
acterizes the extent of the disorder in the underlying ensemble, the
ruggedness of the free-energy landscape. Moreover, our method
provides a way of estimating bounds on key timescales, describing
both the fast local equilibration in each well (distinct system state) of
our rugged landscape, and the slow interconversion between the
various wells. After verifying the validity of our approach using syn-
thetic data generated from a heterogeneous model system, we survey
10 experimental datasets, comprising a diverse set of biomolecular
systems from simple DNA oligomers to large complexes of proteins
and nucleic acids. The largest values ofΔ in our survey, indicating the
strongest heterogeneity, come from systems involving nucleic acids
alone or protein/nucleic acid interactions, supporting the hypothesis
that nucleic acid free-energy landscapes are generally more rugged
than those involving only proteins (24). Our theory thus provides a
powerful new analytical tool, for the first time (to our knowledge)
allowing a broad comparison of functional heterogeneity among
different biomolecules through a common experimental protocol.
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Theory
Force Spectroscopy for a Pure, Adiabatic System.As a starting point,
consider a generic free-energy landscape for a biomolecular sys-
tem with a single functional state (Fig. 1A) subject to an increasing
time-dependent external force f ðtÞ. For a molecular complex, the
functional basin of attraction in the landscape would correspond
to an ensemble of bound conformations with similar energies,
which we label N. For the case of single-molecule folding, this
would be the unique native ensemble. The force is applied through
an experimental apparatus like an AFM or optical tweezer, typi-
cally connected to the biomolecule through protein or nucleic acid
linkers of known stiffness. The apparatus is pulled at a constant
velocity v, leading to a force ramp with slope df=dt=ωsðf Þv, where
ωsðf Þ is the effective stiffness of the setup (linkers plus the AFM
cantilever or optical trap). This ωsðf Þ may in general depend on
the force, particularly for the AFM setup, where the cantilever

stiffness is often comparable to or greater than that of the mo-
lecular construct. So we also define a characteristic stiffness ωs,
which we set to the mean ωsðf Þ over the range of forces probed in
the experiment (although the precise value of ωs is not important).
This allows us to introduce a characteristic force loading rate r
proportional to the velocity, r=ωsv.
If at time t= 0 the system starts in N, the force ramp tilts the

landscape along the extension coordinate. If we model the con-
formational dynamics of the system as diffusion within this land-
scape, the tilting eventually leads to a transition out of N, associated
with unbinding of the complex or unfolding of the molecule (an
ensemble of states we call U). We let ΣrðtÞ be the survival proba-
bility for loading rate r, in other words, the probability that the
transition to U has not occurred by time t. The distribution of first
rupture times is then −dΣr=dt, and the mean rupture rate kðrÞ is just
the inverse of the average rupture time:

kðrÞ=
� Z ∞

0
dt  t
�
−
dΣr

dt

��−1
=
� Z ∞

0
dt  ΣrðtÞ

�−1
, [1]

where we have used integration by parts and assumed that rupture
always occurs if we wait long enough, Σrð∞Þ= 0.
The behavior of ΣrðtÞ at different r depends on how kðrÞ

compares to two other intrinsic rates. The first is the equilibration
rate keq in the N well, or how quickly the system samples the con-
figurations of the functional ensemble. For a single, smooth well
with mean curvature ω0 and a diffusion constant D, this rate is on
the order of keq ∼ βω0D, where β= 1=kBT. The second is a critical
rate kcðrÞ= r=fc, which describes how quickly the force reaches a
critical force scale for rupture fc ∼G‡=x‡. Here, G‡ is the energy
scale of the barrier that needs to be overcome for the N-to-U
transition at zero force, and x‡ is the extension difference between
the N well minimum and the transition state. For f J fc, the land-
scape is tilted sufficiently that the barrier becomes insignificant,
and rupture occurs quickly (on a diffusion-limited timescale). If
kcðrÞ � kðrÞ � keq, the system is in the adiabatic regime. The force
ramp is sufficiently slow that rupture occurs before the critical force
is reached, and equilibration is fast enough that the system can
reach quasiequilibrium at the instantaneous value of the force f ðtÞ
at all times t before the rupture.
If the adiabatic condition is satisfied, the survival probability

ΣrðtÞ obeys the kinetic equation dΣrðtÞ=dt=−kðf ðtÞÞΣrðtÞ, where
kðf Þ is the rupture rate at constant force f. Because f ðtÞ is a
monotonically increasing function of t, we can change variables
from t to f ðtÞ (25), and solve for Σrðf Þ, the probability that the
system does not rupture before the force value f is reached:

Σrðf Þ= exp
�
−
1
r

Z f

0
df ′

ωskðf ′Þ
ωsðf ′Þ

�
. [2]

Interestingly, the integral inside the exponential is independent
of the loading rate r. Hence, for a system pulled from a single native
ensemble, we can calculate the following quantity from experi-
mental trajectories at different r:

Ωr ðf Þ≡ − r   log  Σrðf Þ, [3]

and the results should collapse onto a single master curve for all r in
the adiabatic regime. When r is sufficiently large that kðrÞ< kcðrÞ or
kðrÞ> keq, the assumption of quasiequilibrium on a slowly changing
energy landscape breaks down, and Eq. 2 no longer holds. For this
fast, nonadiabatic case (26, 27), we should find that Ωrðf Þ varies
with r, as we will explore later in more detail.

Force Spectroscopy for a Heterogeneous, Adiabatic System. In a pio-
neering series of studies, Raible and collaborators (20–22) analyzed
force ramp experiments for the regulatory protein ExpG unbinding
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Fig. 1. (A) Schematic biomolecular free-energy landscape with a single
functional state, N, corresponding to an ensemble of folded/bound confor-
mations. Under an adiabatically increasing external force fðtÞ, there is an
instantaneous rupture rate kðfðtÞÞ describing transitions between N and the
unfolded/unbound ensemble U. (B) Schematic free-energy landscape of a
heterogeneous system with multiple functional states. Each functional en-
semble Nα will have a state-dependent adiabatic rupture rate kðf , αÞ. As-
suming the states are roughly equally probable in equilibrium, there will be
a single overall rate ki for interconversion between the various states.
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from a DNA fragment. Plotting Ωrðf Þ (the data reproduced in Fig.
6D), they did not find any collapse, as might be surmised from
Eq. 3. This was not an artifact due to nonadiabaticity [violation of
the inequality kcðrÞ � kðrÞ � keq], because the absence of collapse
becomes even more pronounced at small loading rates, further into
the adiabatic territory where collapse should be observed. They
correctly inferred that the cause of this divergence is heterogeneity
in the ensemble of states in the protein–DNA complex.
To understand the behavior of Ωrðf Þ in a heterogeneous system,

let us consider the effects of a force ramp on a biomolecular free-
energy landscape with multiple functional states (Fig. 1B). Our goal
is to use Ωrðf Þ, derived from experimental pulling trajectories, to
quantify the extent of the heterogeneity and extract information
about the underlying conformational dynamics. The functional states
are distinct basins of attraction in the landscape, corresponding to
distinct functional ensembles which we label Nα for state α. We as-
sume the minimum energy in each well and their overall dimensions
are comparable, so that the equilibrium probabilities peqα of the
various states are of the same order. In this case, if α≠ α′, the
transition rates kα→α′ and kα′→α are also similar from detailed bal-
ance, kα→α′=kα′→α = peqα′ =p

eq
α ∼Oð1Þ. Hence, we can introduce an

overall scale for the interconversion rate between the different states,
ki, such that kα→α′ ∼OðkiÞ for any α≠ α′. Thus, we now have two
intrinsic timescales: keq for equilibration within a single Nα, and ki
for transitions between distinct Nα values, where typically ki � keq
must be true in order to observe clear heterogeneity.
The experimental setup is the same as above, with a loading rate

r, and a corresponding mean rupture rate kðrÞ for reaching the U
ensemble. We can identify three dynamical regimes, based on the
magnitude of ki. In the first regime, interconversion is slow, with
ki � kðrÞ. In the second regime, ki is comparable to kðrÞ. In fact, as
we will discuss later in more detail, we will be particularly interested
in the crossover scenario where ki ≥ kðrÞ for some subset of the r
values in the experiment, but ki < kðrÞ for the remainder. If this
second regime is identified in an experiment, it provides a way to
estimate the scale of ki. Finally, in the third regime, the barriers
between the Nα basins of attraction are small, such that ki � kðrÞ,
and the system can sample all of the states before rupture. Quali-
tatively, this scenario is indistinguishable from the case of a system
with a single native basin of attraction, with ki taking the role of keq
as the rate scale for overall equilibration in the landscape. Because
the first regime is simpler to treat mathematically than the second
regime, we will initially focus on a theory to describe the first regime
and identify its signatures in experimental data. Assessing the
validity of this theory in experiments will turn out to be a useful
criterion for distinguishing between the first, second, and third re-
gimes, and thus putting bounds on ki. This by-product of our theory
is of considerable importance because it is a priori very difficult to
estimate ki.
To begin, consider adiabatic pulling where ki is the slowest

rate in the system, ki � kcðrÞ � kðrÞ � keq. On the timescale of
pulling and rupture, the system is effectively trapped in a het-
erogeneous array of states: if we start a pulling trajectory in state
α, the system will remain in that state until rupture. The rupture
rate at constant force, kðf , αÞ will in general depend on the state,
and the ensemble of molecules from which we pull will be
characterized by a set of initial state probabilities pα. If ki is ex-
tremely small, such that the system cannot interconvert even on
the macroscopic timescales of experimental preparation, pα may
be different from peqα , because we are not guaranteed to draw
from an equilibrium distribution across the entire landscape.
This distinction is not important for the analysis below. In fact,
our approach also works when ki = 0, corresponding to the
quenched disorder limit, as seen for example in an ensemble of
molecules with covalent chemical differences.
The analog of Eq. 2 for the survival probability Σrðf Þ during adi-

abatic pulling in a heterogeneous system with small ki is as follows:

Σrðf Þ=
�
exp
�
−
1
r

Z f

0
df ′

ωskðf ′,αÞ
ωsðf ′Þ

��
, [4]

where the brackets denote an average over the initial ensemble of
states, hOðαÞi≡PαpαOðαÞ for any quantity OðαÞ. The associated
Ωrðf Þ from Eq. 3 can be expressed through a cumulant expansion in
terms of the integrand Iðf , αÞ≡ R f0 df ′ωskðf ′, αÞ=ωsðf ′Þ as follows:

Ωrðf Þ=−
X∞
n=1

ð−1Þn κnðf Þ
n!rn−1

,

κnðf Þ≡ ∂n
∂λn   log

�
eλIðf , αÞ

	


λ=0.

[5]

The first two cumulants are κ1ðf Þ= hIðf , αÞi and κ2ðf Þ= hI2ðf , αÞi−
hIðf , αÞi2. In the absence of heterogeneity, all cumulants κnðf Þ with
n> 1 are exactly zero. For a small degree of heterogeneity, or equiv-
alently for sufficiently fast loading rates r, the main contribution to
the expansion is from the n= 1 and n= 2 terms. For the case of
fast r, we assume that we are still within the adiabatic regime,
where kcðrÞ � kðrÞ, which turns out to be valid even for the largest
loading rates in the experimental studies discussed below. In this
scenario, where the n> 2 contributions are negligible, Ωrðf Þ can be
approximated as follows:

Ωrðf Þ≈ r
Δðf Þ log

�
1+

κ1ðf ÞΔðf Þ
r

�
, [6]

where Δðf Þ≡ κ2ðf Þ=κ21ðf Þ≥ 0 is a dimensionless measure of the
ensemble heterogeneity. For a pure system, Δðf Þ→ 0, giving
Ωrðf Þ→ κ1ðf Þ, independent of r. Eq. 6 agrees with the expansion in
Eq. 5 up to order n= 2, and also has the nice property that it
satisfies the inequality Ωrðf Þ≤ κ1ðf Þ, just like the exact form. The
latter inequality follows from the definition of Σrðf Þ in Eq. 4 and
Jensen’s inequality, Σrðf Þ≥ expð−κ1ðf Þ=rÞ.
Implementing the Model on Experimental Data. So far, the discussion
has been completely general, but to fit Eq. 6 to experimental data
we need specific forms for Δðf Þ and κ1ðf Þ. The minimal physically
sensible approximation, with the smallest number of unknown pa-
rameters, supplements Eq. 6 with the following assumptions:

Δðf Þ=Δ, κ1ðf Þ= k0
βx‡

�
eβfx

‡

− 1
�
. [7]

The constants Δ, k0, and x‡ are fitting parameters. This presumes
that Δðf Þ changes little over the range of forces in the data, and
κ1ðf Þ has the same mathematical form as in a pure Bell model
with an escape rate kðf Þ= k0eβfx

‡

and ωsðf Þ=ωs, where k0 is the
escape rate at zero force and x‡ is the distance to the transition
state. For a heterogeneous system, the parameters k0 and x‡ no
longer have this simple interpretation, but we can still treat them
as effective Bell values, averaged over the ensemble, with Δ
measuring the overall scale of the heterogeneity. Eq. 6, together
with the three-parameter approximation of Eq. 7, provides re-
markably accurate fits to all of the heterogeneous experimental
datasets we have encountered in the literature. As will be seen
below, it is capable of simultaneously fitting Ωrðf Þ data for load-
ing rates r spanning nearly two orders of magnitude.
Although we focus on Ωrðf Þ as the main experimental quantity

of interest, Eqs. 6 and 7 can also be used to derive a closed form
expression for the probability distribution of rupture forces,
prðf Þ=−dΣrðf Þ=df =−ðd=df Þexpð−Ωrðf Þ=rÞ, at loading rate r:

prðf Þ= k0eβ fx
‡

r

 
1+

Δk0

eβ fx

‡ − 1
�

βrx‡

!−Δ+1
Δ

. [8]

In the limit of no heterogeneity, Δ→ 0, this distribution reduces
to the one predicted for a Bell model under a constant loading
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rate (25). The theoretical form for prðf Þ also allows us to carry out a
relative likelihood analysis on the experimental data, to verify that Δ
is indeed a robust indicator of heterogeneity. As detailed in Support-
ing Information, 6. Relative Likelihood Analysis of Heterogeneous vs.
Pure Model Fitting for Experimental Data, we found that experimen-
tal distributions prðf Þ corresponding to systems with nonzero Δ
were far more likely to be described by the heterogeneous theory in
Eq. 8 than a pure model with the same number of parameters. We

surmise that if analysis of experimental data using our theory indicates
thatΔ ≠ 0 then it is highly probable that a multiple state description is
needed, thus dismissing a one-dimensional pure state description.
To verify that our analysis and conclusions would not change

substantially even if the assumptions of the minimal model were
relaxed, we have also tested two generalized versions of the
model: one using the Dudko–Hummer–Szabo (28) instead of the
Bell form for the escape rate in κ1ðf Þ, and the other allowing Δðf Þ
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Fig. 2. Analysis of the FBL heterogeneous model system. (A) Two different free-energy wells, corresponding to distinct states, characterized by different
transition distances to rupture, x‡. The system switches to a new value of x‡, drawn from a Gaussian distribution centered at x‡0 with SD σ, with rate ki. (B) Heat
map of Δ as it varies with σ and ki, extracted from fitting the theory of Eqs. 6 and 7 to numerical simulation results of ΩrðfÞ for the model system. The
parameters are as follows: D= 100 nm2/s, ω0 = 400 kBT= nm

2, x‡0 = 0.2 nm, σ = 0–0.05 nm, and ki = 0–104 s−1. (C and D) Sample simulation results ΩrðfÞ (circles)
on a logarithmic scale, with each color denoting a different loading rate r. The panels show different combinations of ki and σ, with the plots in C illustrating
the case of quenched disorder (ki = 0) for increasing σ, and D showing increasing ki for fixed σ = 0.05 nm. The theoretical best-fit curves are drawn as solid
curves, and the resulting Δ value is listed in each plot. The Insets show the mean rupture rate kðrÞ (circles) as a function of r compared with keq (dotted line),
kcðrÞ (dashed line), and ki (dash-dotted line).
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to vary linearly with f across the force range. Both extensions
have four instead of three fitting parameters, but the heteroge-
neity results for the experimental systems we analyzed are
completely consistent with those obtained using the minimal model
(see Supporting Information, 1. Testing the Assumptions of the Ωr(f)
Model with Respect to Possible Generalizations, for details). These
results demonstrate that, if the need arises in future experimental
contexts, the theory leading to Eq. 6 is quite general, and can be
tailored by choosing suitable expressions for κ1ðf Þ and Δðf Þ that go
beyond the minimal model of Eq. 7.
The theory described up to now applies only to the first dynamical

regime, where ki � kðrÞ. However, the cases where ki is larger than
some or all of the kðrÞ, and the theory partially or completely fails,
turn out to be very informative as well. To understand these points,
it is easier to discuss the theory in the context of a concrete physical
model for heterogeneity, which we introduce in the next section.

Results and Discussion
Fluctuating Barrier Location Model. Before turning to experimental
data, we verify that the Δ parameter extracted from the fitting of
Ωrðf Þ curves using Eqs. 6 and 7 is a meaningful measure of hetero-
geneity. To do this, we will generate synthetic rupture data from a
heterogeneous model system. The fluctuating barrier location (FBL)
model, illustrated in Fig. 2A, consists of a reaction coordinate x
whose dynamics are described by diffusion with constant D along a
parabolic free energy UðxÞ= ð1=2Þω0x2 for x≤ x‡. Rupture occurs if
x exceeds the transition distance x‡. To mimic dynamic heterogeneity,
the value of x‡ changes at random intervals, governed by a Poisson
process with an interconversion rate ki. At every switching event, a
new value of x‡ is drawn from a Gaussian probability distribution
Pðx‡Þ= expð−ðx‡ − x‡0Þ2=2σ2Þ=

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
centered at x‡0 with SD σ, and

diffusion continues if x is less than the transition distance. At time
t= 0, when the applied force ramp f ðtÞ= rt begins, we assume the
initial ensemble of systems all start at x= 0 with x‡ values distributed
according to Pðx‡Þ. Survival probabilities Σrðf Þ are computed from
numerical simulations of the diffusive process, with about 3× 104
rupture events collected for each parameter set (see Supporting
Information, 2. Heterogeneous Model Simulation Details, for ad-
ditional details). The simplicity of the model, where one pa-
rameter, σ, controls the degree of heterogeneity, and another, ki,
the interconversion dynamics, allows us to explore the behavior
of Σrðf Þ, and hence Ωrðf Þ, over a broad range of disorder and
intrinsic timescales.
The circles in Fig. 2 C and D show simulation results for Ωrðf Þ

between f = 0–50 pN, plotted on a logarithmic scale, with each
color denoting a different ramp rate in the range r = 200–10,000
pN/s. The model parameters areD= 100 nm2/s, ω0 = 400 kBT=nm2,
x‡0 = 0.2 nm, σ = 0–0.05 nm, ki = 0–104 s−1, which give a variety of
Ωrðf Þ curves of comparable magnitude over similar force scales
to the experimental data discussed below. Fig. 2C shows results
for quenched disorder (ki = 0) at different σ, whereas Fig. 2D
shows results for varying ki at fixed σ = 0.05 nm. For a given
choice of ki and σ, we fit the analytical form of Eqs. 6 and 7 si-
multaneously to the six Ωrðf Þ curves at different r, with the best-
fit model plotted as solid lines in Fig. 2 C and D. This fitting
yields values for Δ, k0, and x‡ in each case. The variation of Δ
with σ and ki is plotted as a heat map in Fig. 2B.
Let us first consider the quenched disorder results (Fig. 2C and

the left column of Fig. 2B). By definition, because ki = 0, the sys-
tem ensemble is permanently frozen in a heterogeneous array of
different states with different values of x‡. Moreover, the adiabatic
assumptions also hold, as can be seen in the Insets to Fig. 2C. These
show the mean rupture rate kðrÞ for different r (circles) compared
with keq (dotted line) and kcðrÞ (dashed line). For all of the r values
analyzed, kcðrÞ< kðrÞ � keq, so adiabaticity should approximately
hold. Thus, the assumptions leading to Eqs. 6 and 7 are valid, and
indeed the analytical form provides an excellent fit to the simulation
data. Although the theory is by construction most accurate in the

limit of fast (but still adiabatic) r, it still quantitatively describes the
results for r spanning two orders of magnitude. Only small discrep-
ancies start to appear at the slowest loading rates. For the pure
system limit (σ = 0), the best-fit value of Δ is also zero, with all of the
Ωrðf Þ curves collapsing on one another. Δ progressively increases
with σ, growing roughly proportional to the width of the disorder
distribution. The greater the heterogeneity, the more pronounced
the separation between the Ωrðf Þ curves at various r.
The results in Fig. 2D are obtained by keeping the extent of

heterogeneity fixed at a large level (σ = 0.05 nm) and allows in-
terconversion, increasing ki from 10 to 103 s−1. So long as kðrÞ � ki,
the system is unlikely to interconvert on the timescale of rupture,
and we see distinct, noncollapsed Ωrðf Þ curves. However, as ki in-
creases and overtakes kðrÞ, starting from the smallest values of
r where kðrÞ has the smallest magnitude, the Ωrðf Þ curves begin to
collapse on one another. This leads to increasing discrepancies
between the data and the theoretical fit, because the assumptions
justifying the theory break down when kðrÞ< ki. Eventually, once ki
is greater than all of the kðrÞ, there is total collapse of the Ωrðf Þ
curves (Fig. 2D, Bottom). Frequent interconversion between the
different states of the system before rupture averages out the het-
erogeneity, making the results indistinguishable from a pure system.
In this limit, the ensemble of functional states acts effectively like a
single functional basin of attraction, with multiple distinct pathways
to rupture. Although multiple pathways between a pair of states can
be considered to be another manifestation of heterogeneity, they
are not in themselves sufficient to lead to noncollapse of the Ωrðf Þ
curves, as we discuss in more detail in Supporting Information, 3.
Heterogeneity in Rupture Pathways vs. Heterogeneity in Functional
States. To see anything but complete collapse of the Ωrðf Þ curves in
the adiabatic regime requires a small enough interconversion rate
ki, slower than the mean rupture rates kðrÞ for at least some subset
of the r values.

Dynamical Regimes and Extraction of Bounds on Timescales of Internal
Dynamics. Interestingly, it is precisely the discrepancy in the theo-
retical fits with increasing ki that points the way to one of the most
valuable features of our approach. Not only can we measure het-
erogeneity, but we can also infer information about the timescales of
conformational dynamics. Note first that the best-fit values of Δ
track the disappearance of heterogeneity, monotonically de-
creasing from Δ= 5.90 at σ = 0.05, ki = 0 s−1, to Δ= 0.21 at
σ = 0.05, ki = 103 s−1. It is clear, however, that as ki increases and
dynamical disorder becomes more prominent, a single overall
value of Δ is an imperfect description of the dynamics. Instead of
obtaining a single Δ value by simultaneously fitting all the Ωrðf Þ
curves at multiple r, we can get a more fine-grained picture by
looking at Δ calculated from smaller subsets of the data, and
how it varies with the mean timescale of rupture k. To ac-
complish this, let us take Ωrðf Þ curves from two consecutive
loading rates ðr1, r2Þ, fit Eqs. 6 and 7, and calculate the resulting
value of Δ, which we will call the “pair” parameter Δpðr1, r2Þ.
For example, if our total dataset consists of six loading rates
r= 200, 500, 1,000, 2,000, 5,000, 10,000 pN/s, we first determine
Δpðr1, r2Þ for ðr1, r2Þ= ð200, 500Þ pN/s, then ð500, 1,000Þ pN/s,
and so on, to get five different results for Δpðr1, r2Þ. The advantage
of this approach is that each Δp corresponds to a much smaller
range of rupture timescales than what is covered by the entire
dataset. In Fig. 3A, we plot Δp for σ = 0.05, ki = 0, 10, 102, 103 s−1.
The x-axis coordinate is the smaller mean rupture rate of the pair,
k=minðkðr1Þ, kðr2ÞÞ.
The results for Δp in Fig. 3A allow us to identify three different

behaviors, corresponding to the three dynamical regimes discussed
in Theory:

i) Noncollapse (NC): Here, all of the Δpðr1, r2Þ≥ 1, and
Δpðr1, r2Þ for any pair of ðr1, r2Þ is approximately the same
as Δ calculated from the entire dataset. We see this in the
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ki = 0 s−1 case in Fig. 3A, where for comparison the value of
Δ over the whole set is marked by a horizontal dashed line.
The corresponding Ωrðf Þ curves are in Fig. 2C, Bottom. The
agreement between Δpðr1, r2Þ and Δ is a consistency check
for the theory, and implies that the underlying assumptions
are valid, namely ki < kðrÞ< keq for all r in the dataset. From this,
we can conclude that the minimum value of kðrÞ among all of
the loading rates r used in the experiment gives us an upper
bound on ki. Similarly the maximum value of kðrÞ over all
r gives a lower bound on keq. For ki = 10 s−1 in Fig. 3A, we
see what happens as ki approaches the timescale of kðrÞ. We
are still in the NC regime, because Δp ≥ 1 and ki (vertical
dotted line) is smaller than any of the kðrÞ. However, ki is
now sufficiently close to kðr= 200  pN=sÞ that Δpð200, 500Þ
(the leftmost point) is smaller than the rest of the Δp, which
lie at faster rupture timescales relatively unaffected by ki.

ii) Partial collapse (PC): Δpðr1, r2Þ≥ 1 for the largest values of
ðr1, r2Þ, but for small loading rates Δpðr1, r2Þ � 1. This occurs
in the ki = 102 s−1 results in Fig. 3A. In this regime, the system
is adiabatic, keq > kðrÞ, but now ki falls between the smallest
and largest values of kðrÞ. In the ki = 102 s−1 case, the var-
iation in Δp is a reflection of the degree of overlap in the
Ωrðf Þ curves (Fig. 2D, Middle). The ðr1, r2Þ= ð5,000, 10,000Þ
pN/s pair (blue and purple Ωrðf Þ circles) are clearly sepa-
rated, corresponding to Δp ≥ 1 and the fact that ki K kðr1Þ,
kðr2Þ. The ð200,  500Þ pN/s pair (red and orange circles) are
nearly overlapping, corresponding to Δp � 1, and ki > kðr1Þ,
kðr2Þ. The PC regime thus provides the best case scenario for
directly estimating ki from the data, because we can bound
ki from above and below, and we know ki will roughly co-
incide with the k where Δpðr1, r2Þ∼ 1.

iii) Total collapse (TC): Δpðr1, r2Þ � 1 for the all ðr1, r2Þ in the
dataset. This is illustrated by the ki = 1,000 s−1 case in Fig.
3A, corresponding to the Ωrðf Þ curves in Fig. 2D, Bottom. Δp
values close to zero translate into near total overlap of theΩrðf Þ
results. This regime requires adiabaticity, keq > kðrÞ, and if there
is any heterogeneity in the system, the interconversion between
states has to be fast, ki > kðrÞ. Thus, the maximum value of kðrÞ
over all r gives a lower bound on both ki and keq.

To summarize, we can use the magnitude of the heterogeneity
parameters (Δ or Δp depending on whether we look at the whole

dataset or pairs of ramp rates) to make specific inferences about
the nature of the biomolecular free-energy landscape. Δ � 1
(large disorder) in an experimental dataset implies the following
facts: there is an ensemble of folded/intact states in the system,
these states have substantially different force-dependent rates of
rupture, and the system will only rarely switch from one state to
another before rupture occurs. A small but finite Δ in the range
0 � ΔK 1 (low disorder) indicates that heterogeneity is still
present, but one or both of the following are true: the inter-
conversion rate ki is comparable to the mean rupture rates, so
heterogeneity is partially averaged out due to transitions be-
tween states, or the differences in rupture rate functions between
states are small. Finding Δ≈ 0 (no disorder) indicates that either
there is no heterogeneity (a single native state) or that ki is so
large that the ensemble of native states behaves effectively like
a single state.

Ruling Out Nonadiabatic Artifacts. One important question about
the usefulness of the theory remains: what about situations
where the loading rate r is sufficiently fast that the adiabatic
assumption kcðrÞ � kðrÞ � keq breaks down? As mentioned
above, Ωrðf Þ in this case will not collapse onto a single master
curve independent of r, regardless of the presence of underlying
heterogeneity in the system. Because the experimentalist has no
direct way of measuring keq or kcðrÞ, it is not a priori clear
whether a given loading rate r is slow enough for adiabaticity to
hold. Can the theory in Eqs. 6 and 7 fit a pure system over a
range of nonadiabatic r, and yield a nonzero fitted value of Δ that
would incorrectly indicate the presence of heterogeneity? To
rule out the possibility of such a false positive, we simulated the
FBL model system above, without any heterogeneity (σ = 0), over
a much larger range of loading rates r, and plotted the results of
Ωrðf Þ in Fig. 4 on a logarithmic scale for r = 103 to 5·107 pN/s. As
shown in the figure Inset, for rK 105 pN/s, kðrÞ still falls between
kcðrÞ and keq, so adiabaticity holds and the Ωrðf Þ curves are nearly
indistinguishable. However, for rJ 105 pN/s, the collapse begins
to break down, and the Ωrðf Þ curves grow increasingly distinct.
Crucially, this nonadiabatic trend for a pure system is qualita-
tively different from what happens in the adiabatic heteroge-
neous case. In the former, the curves on a logarithmic plot grow
more and more separated as r grows (Fig. 4), whereas in the

p

A B
non-collapse

partial collapse

total collapse

ki = 0

ki = 10 s-1

ki = 102 s-1

ki = 103 s-1

RNA-AtGRP8
DNA-expG

Ran-imp

ICAM1-LFA1

Fig. 3. Pair heterogeneity parameterΔp, calculated from a best fit ofΩrðfÞ curves for two consecutive values of loading rate ðr1, r2Þ in a given dataset. The horizontal
axis coordinate is the smaller of the mean rupture rates for each pair, k=minðkðr1Þ, kðr2ÞÞ. For comparison, the Δ calculated from all loading rates in a dataset is
shown as a horizontal dashed line. The shaded region corresponds to Δp ≤ 1, where disorder is negligible. (A) Results for the FBL model system of Fig. 2, with
σ= 0.05 nm and ki = 0, 10, 102, and 103 s−1. From Left to Right, theΔp points for each ki value correspond to loading rate pairs: ðr1, r2Þ= (200, 500), (500, 1,000), (1,000,
2,000), (2,000, 5,000), and (5,000, 10,000) pN/s. Vertical dotted lines mark the values of ki in each case. Systems whereΔp ≥ 1 across all measured timescales of kðrÞmust
have slow conformational interconversion, ki <kðrÞ or static disorder (ki = 0), and thus correspond to the noncollapse (NC) regime. When some kðrÞ are larger than ki
and some are smaller, we are in the partial collapse (PC) regime, with smaller kðrÞ exhibiting Δp � 1, and the larger onesΔp ≥ 1. When ki > kðrÞ for the entire dataset,
all Δp � 1, and we are in the total collapse (TC) regime. (B) Results for four experimental systems (Fig. 6) that exhibit heterogeneity and have datasets with at least
three loading rates. The Δp calculated from pairs of loading rates are consistent with the Δ calculated from the total dataset, and all fall in the Δp ≥ 1 NC regime.
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latter situation the Ωrðf Þ curves get closer together with in-
creasing r (Fig. 2C). Thus, a theory like Eqs. 6 and 7, where
convergence at large r is present [Ωrðf Þ→ κ1ðf Þ as r increases],
would not fit the nonadiabatic Ωrðf Þ data, preventing a false
positive. Indeed, for the model system used in our simulations,
an expression for Σrðf Þ in the nonadiabatic r→∞ limit can be
analytically derived (details are in Supporting Information) from
an integral equation approach (26):

Σrðf Þ→ 1
2

0
B@1+ erf

2
64βDx‡0ω

2
0 − rðe−γ + γ − 1Þ

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βω3

0ð1− e−2γÞ
q

3
75
1
CA, [9]

where γ ≡ βDfω0=r. The corresponding analytical form for
Ωrðf Þ=−r logΣrðf Þ is plotted in Fig. 4 as solid curves for the
two largest values of r, comparing well with the simulated results.
From Eq. 9, we can explicitly see that, for a fixed f, Σrðf Þ→ 1 and
Ωrðf Þ→ 0 as r→∞, so that the Ωrðf Þ curves on a logarithmic plot
like Fig. 4 are pushed increasingly downward, the opposite trend of
the theory in Eqs. 6 and 7. Thus, in general, we should be able to
distinguish datasets corresponding to pure, nonadiabatic Ωrðf Þ from
heterogeneous, adiabatic ones, and false positives can be avoided.

Analysis of Experimental Data. As a demonstration of the wide ap-
plicability of our method, we have analyzed 10 earlier datasets from
biomolecular force ramp experiments, spanning a range of scales
from strand separation in DNA oligomers up to the unbinding of
large receptor–ligand complexes. Five of these systems (Fig. 5)
showed TC of the Ωrðf Þ curves, within experimental error bars,
whereas the other five showed NC, and hence heterogeneity (Fig.
6). Let us consider each of these two groups in more detail.

Systems Exhibiting TC. The five experimental studies exhibiting TC
in Fig. 5 are as follows: (A) Schlierf and Rief (29), the unfolding of
Ig-like domain 4 (ddFLN4) from Dictyostelium discoideum F-actin
cross-linker filamin; (B) Koch and Wang (30), the unbinding of a
complex between the restriction enzyme BsoBI and DNA; (C)
Neuert et al. (31), the unbinding of the steroid digoxigenin from an
anti-digoxigenin antibody; (D) Kim et al. (6), the unbinding of the
vonWillebrand factor A1 domain from the glycoprotein Ib α subunit
(GPIbα); and (E) Manosas et al. (32), unzipping of an RNA hairpin.
In the hairpin case, the collapse of the Ωrðf Þ curves is consistent with
collapse seen in other dynamical quantities extracted from the data

at different loading rates, for example, the rupture rate kðf Þ or the
effective barrier height at a given force (32, 33). In all of the above
experiments, the data are originally gathered as time traces of the
applied force. The rupture or unfolding event in each trace is iden-
tified as a large drop in the force when using AFM (or a large in-
crease in the end-to-end distance using optical tweezers), a signature
easily detected due to its high signal-to-noise ratio. The value of the
force immediately before the drop is then recorded. From hundreds
of such traces, the experimentalists construct the distribution of
forces pvðf Þ or prðf Þ at which the system unfolds/ruptures for a fixed
pulling velocity v or loading rate r. In those cases (A and D) where
data are reported in terms of v rather than r, mean values of the
linker stiffness ωs are used to get corresponding loading rates
r=ωsv (see the figure legend for values). The distribution prðf Þ is
related to Σrðf Þ through prðf Þ=−dΣrðf Þ=df. By integrating prðf Þ, we
obtain Σrðf Þ and hence Ωrðf Þ. We can also calculate the mean
rupture force f ðrÞ= R∞0 df   fprðf Þ and thus the mean rupture rate
kðrÞ= r=f ðrÞ. The largest value of kðrÞ among all of the r for a given
experiment is shown in the bar chart of Fig. 5F. As mentioned
above in discussing the TC scenario, the maximum observed value
of kðrÞ provides a lower bound for both keq and ki.
The local equilibration rate keq defines an intrinsic timescale

whether or not the system is heterogeneous, but the slower in-
terconversion rate ki exists as a distinct timescale only when
there is a heterogeneous ensemble of states with sufficiently
large energy barriers between them. Observing collapse of Ωrðf Þ
over a range of r does not absolutely rule out heterogeneity, but
it does constrain the possible values of ki. The two systems in Fig.
5 with the strongest constraints on ki (the largest lower bounds)
are A and C, where any ki (or keq) must be > Oð102   s−1Þ. This is
not surprising, because A is a single, compact protein domain,
and C is a tight antibody complex. For these systems, where
specificity of the interactions stabilizing the functional state is of
a prime importance, significant heterogeneity is unlikely, be-
cause it would require at least two conformational states in-
volving substantially different sets of interactions. For the more
general category of enzyme–substrate or receptor–ligand com-
plexes (which encompasses systems B and D in Fig. 5 and all but
one of the systems in Fig. 6), specificity may not always be the
most important factor. Conformational heterogeneity among
bound complexes could play crucial biological roles, as a part of
enzymatic regulation or signaling.
System D of Fig. 5 presents an intriguing case, because force

ramp experiments on the A1–GPIbα complex show evidence of two
bound conformational states: a weaker bound state, from which the
system is more likely to rupture at small forces (K 10 pN), and a
more strongly bound state, predominating at larger forces (6). The
interconversion rates between the states could not be measured, but
based on fitting the ramp data to a two-state model are estimated
to be on the order of ∼Oð1  s−1Þ. However, the four experimental
pulling velocities are so slow that the mean rupture rate at the
highest velocity (v= 40 nm/s) is only 0.16 s−1. Hence, if the two
states do exist, they get averaged out over the timescale of rupture,
leading to a set of Ωrðf Þ curves that are collapsed. We can thus
make a prediction for this particular system—assuming the two-
state picture is reasonable and that both states are populated in the
ensemble of complexes at the start of the force ramp. If the mea-
surements were extended to velocities significantly above 40 nm/s,
where rupture could occur on average before interconversion, the
expanded dataset should exhibit PC of the Ωrðf Þ curves. As in Fig.
2D, Middle, in the heterogeneous model system, the values of kðrÞ
where PC occurs would roughly coincide with the interconversion
rate ki. This would be one way of directly estimating the scale of ki
from experiment.

Heterogeneous Systems. In contrast to Fig. 5, the five experimental
studies of Fig. 6 all show clear NC and thus evidence of heteroge-
neity: (A) unbinding of the leukocyte function-associated antigen-1

Fig. 4. Simulation results (circles) of ΩrðfÞ for the FBL model system of Fig. 2,
with no disorder (σ = 0) over a range of loading rates r extending into the
nonadiabatic regime. Each color is a different value of r. The solid curves for the
two largest r are plots of the analytical expression in Eq. 9, derived for the model
system in the r→∞ limit. The Inset shows themean rupture rate kðrÞ (circles) as a
function of r compared with keq (dotted line) and kcðrÞ (dashed line).
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(LFA1) integrin from its ligand, intercellular adhesion molecule-1
(ICAM1) (34); (B) rupture of the GTPase protein Ran from the
nuclear receptor importin β (impβ) (35); for this dataset, Ran is
loaded with a GTP analog (GppNHp), as well complexed with
another binding partner, the protein RanBP1; (C) unzipping of a
10-bp DNA duplex (36); (D) Raible et al. (22) (based on earlier
experimental data from ref. 37), the unbinding of the regulatory
protein expG from a promoter DNA fragment; (E) Fuhrmann et al.
(38), the unbinding of the protein ATGRP8 (in the mutant
ATGRP8-RQ form) from its RNA target.
In all of these cases, the theoretical fit to Eqs. 6 and 7 (solid

curves) is excellent, allowing us to extract the fitting parameters
listed in each panel of Fig. 6. The values of k0, the effective zero-
force off-rate, are in the range ∼Oð0.01− 0.1  sÞ, whereas the ef-
fective transition state distance b∼Oð0.1− 1  nmÞ. Both of these
scales are physically sensible for protein or nucleic acid systems. The
panels in Fig. 6 are ordered by increasing Δ, which varies from 1.5 to
13.3. To verify the robustness of these Δ values, we also calculated
the pair parameters Δp for every dataset that had at least three
different loading rates. These are shown in Fig. 3B, with the cor-
responding Δ for the full data indicated as horizontal dashed lines.
As is expected for the NC regime, the Δp do not vary significantly
with rupture rate, and are consistent with Δ in each case. The three
largest values of Δ (Fig. 6 C–E) correspond to bonds composed of
nucleic acid base pairing or protein/nucleic acid interactions. This
significant heterogeneity may reflect the tendency for free-energy
landscapes involving nucleic acids to be more intrinsically rugged.
However, it is not necessarily the case that all nucleic acid systems

are heterogeneous (the BsoBI–DNA complex of Fig. 5B and the
RNA hairpin of Fig. 5E are counterexamples).
All of the data in Fig. 6 were collected using AFM pulling ex-

periments, in contrast to Fig. 5, where B,D, and E were optical-trap
results (the rest being AFM). It is thus worthwhile to wonder
whether aspects of the AFM experimental setup could affect the
heterogeneity analysis. In Supporting Information, 5. Sensitivity of the
Heterogeneity Analysis to Experimental Artifacts, we have analyzed
possible errors from several sources: the finite force resolution of
AFM cantilever, the nonnegligible hydrodynamic drag on the can-
tilever at large pulling speeds (>1 μm/s) (39–41), uncertainties
arising from finite sampling of the rupture force distributions, and
the apparatus response time. Based on this error analysis, we con-
clude that the estimation of the heterogeneity parameterΔ from the
experimental data are reliable in all of the systems of Fig. 6. The
observed heterogeneity must therefore be an intrinsic aspect to
the biomolecules, rather than an artifact of the AFM experiment.
The fidelity of the theoretical fits to the data in Fig. 6 (with no

signs of PC) means all of the experiments were in the heterogeneous,
adiabatic regime. Thus, the range of observed kðrÞ allows us to place
upper bounds on ki and lower bounds on keq, which are plotted in
the bar chart of Fig. 6F. There is a clear separation of timescales,
with all of the upper bounds on ki K 10 s−1, and the lower bounds on
keq J 102 s−1. The slow interconversion rates ki in these systems are
remarkable, particularly the DNA oligomer in Fig. 6C, which is a
tiny system only 10 bp long. The rupture force distributions for the
DNA unzipping were earlier fit to a specific model of dynamic
disorder in ref. 23, where force-dependent rates of conformational

A

D E F

B C

Fig. 5. Experimental ΩrðfÞ data (circles) calculated from rupture force distributions in five studies: (A) ref. 29, (B) ref. 30, (C) ref. 31, (D) ref. 6, and (E) ref. 32.
All these cases exhibit no apparent heterogeneity, with the ΩrðfÞ curves for each system collapsing on one another. Colors denote different pulling velocities
v or loading rates r, as reported in each study. For A and D, where v is reported, the linker stiffness values of ωs = 4.1 (A) and 0.043 pN/nm (D) are used to get
the corresponding loading rates r =ωsv. (F) For each of the experimental cases, the lower bounds on the possible values of keq and ki, derived from the
theoretical analysis.
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fluctuations were extracted. The range of these estimated rates
(2.8 × 10−5 to 4.8 × 10−1 s−1) are consistent with the upper bound
derived from the current analysis, ki < 0.6 s−1. However, we must
keep in mind that—unless PC is observed, pinpointing the scale of
ki—our analysis cannot distinguish between a heterogeneous sys-
tem characterized by dynamic disorder with slow ki and one with
quenched disorder (ki = 0) caused by covalent chemical differ-
ences among the experimental samples.
The Ran–impβ system in Fig. 6B provides an interesting coun-

terpart to the A1–GPIbα complex discussed earlier. As in that
example, the system is believed to exhibit two bound conformations
with different adhesion strengths (35, 42). This is also supported by
evidence of conformational variability in the crystal structure of a
truncated impβ bound to Ran–GppNHp, where two versions of the
molecular complex were observed, characterized by substantially
different sets of interactions (43). The bound conformations are
expected to dynamically interconvert, but the timescale has not
been measured. Our analysis of the existing data provides an upper
bound on the rate, ki < 6.4 s−1. We predict that further experi-
ments could fix the rate more precisely: for example, by going to
pulling velocities slower than v= 100 nm/s (the slowest v in the
current dataset), we may be able to observe PC, like in Fig. 2D,
Middle, establishing the scale of ki. This is opposite of the pre-
scription we gave above for the A1–GPIbα complex, where the
existing experiments have been too slow rather than too fast. Our
theory thus provides a guide for experimentalists to fine-tune their

parameters to extract the most information possible from the
system under study.
We envision that our approach will become one part of a

larger, comprehensive experimental toolbox for investigating
heterogeneity in biomolecules: it can test for and quantify het-
erogeneity based on the rupture force distributions, but these
distributions do not contain all of the information we would like
to know about a system. A large Δ parameter indicates that there
are multiple states in the intact/folded part of the free-energy
landscape, and that these states must interconvert on timescales
slower than the mean rupture time. To extract additional details,
like the precise number of functional states, requires using
other experimental/analytical techniques, like single-molecule
FRET. One recent example where this was demonstrated was the
k-means clustering algorithm applied by Hyeon et al. (16) to esti-
mate the number of interconverting states from single-molecule
FRET trajectories of a simple nucleic acid construct, the Holliday
junction. In principle, this approach could be extended to folding
trajectories obtained in constant force experiments, which in con-
junction with the distribution of rupture forces could be used to
extract the number of distinct functional states.

Conclusions
Our work introduces a generic method for characterizing het-
erogeneity in biomolecules using rupture force distributions from
force spectroscopy experiments. The central result is a single
nondimensional parameter Δ≥ 0. A system with no measurable

A

D E F

B C

Fig. 6. ExperimentalΩrðfÞ data (circles) calculated from rupture force distributions in five studies: (A) ref. (34), (B) ref. (35), (C) ref. (36), (D) ref. (22), and (E) ref. (38). In
contrast to Fig. 5, these systems exhibit heterogeneity, with distinct ΩrðfÞ curves. Colors denote different pulling velocities v or loading rates r, as reported in each
study. For B–E, where v is reported, the linker stiffness values of ωs = 5.0 (B), 2.0 (C), 3.0 (D), and 6.0 pN/nm (E) are used to get the corresponding loading rates r =ωsv.
Solid curves show the theoretical best fit to Eqs. 6 and 7, with the fitted parameters k0, x‡, and Δ listed in each panel. (F) For each of the experimental cases, the lower
bounds on the possible values of keq (blue bars) and the upper bounds on ki (pink bars), derived from the theoretical analysis.
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heterogeneity on the timescale of the pulling experiment has
Δ= 0. When Δ> 0, its magnitude characterizes the degree of the
disorder. Both in the presence and absence of heterogeneity, the
method yields bounds on the local equilibration rate keq within a
system state, and (if heterogeneity is present) the rate of in-
terconversion ki between states. The practical value of our ap-
proach is demonstrated by analyzing ten previous experiments,
allowing us to classify a broad range of biomolecular systems.
The five cases where heterogeneity was observed are all the more
striking given the persistence of their conformational states, with
upper bounds on ki K 10 s−1.
Our theory leads to a proposal for future experimental studies:

searching for a range of pulling speeds where the data exhibits the
property of partial collapse, allowing for a more accurate de-
termination of ki. This PC scenario did not occur among the
datasets we considered, although in two cases (the protein com-
plexes A1–GPIbα and Ran–impβ) we predict that extending the

range of pulling velocities would very likely result in PC. The
global energy landscapes of multidomain protein and nucleic acid
systems are essential guides to their biological function, but are
quite difficult to map out in the laboratory. This is particularly true
for systems where the ruggedness of the landscape creates a host
of long-lived, functional states. The approach described here
suggests new ways in which single-molecule pulling experiments
can be used to obtain information about internal dynamics of
systems with functionally heterogeneous states. Our theory should
shed light on both the static and dynamic aspects of such landscapes,
the first step toward a comprehensive structural understanding of
these biomolecular shape-shifters.
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