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ABSTRACT: Using theoretical arguments and extensive
Monte Carlo (MC) simulations of a coarse-grained three-
dimensional off-lattice model of a β-hairpin, we demonstrate
that the equilibrium critical force, Fc, needed to unfold the
biopolymer increases nonlinearly with increasing volume
fraction occupied by the spherical macromolecular crowding
agent. Both scaling arguments and MC simulations show that
the critical force increases as Fc ≈ φc

α. The exponent α is
linked to the Flory exponent relating the size of the unfolded
state of the biopolymer and the number of amino acids. The
predicted power law dependence is confirmed in simulations of
the dependence of the isothermal extensibility and the fraction of native contacts on φc. We also show using MC simulations that
Fc is linearly dependent on the average osmotic pressure (P) exerted by the crowding agents on the β-hairpin. The highly
significant linear correlation coefficient of 0.99657 between Fc and P makes it straightforward to predict the dependence of the
critical force on the density of crowders. Our predictions are amenable to experimental verification using laser optical tweezers.

■ INTRODUCTION
The study of the protein folding problem was galvanized by
using concepts from the physics of disordered systems. Using a
coarse-grained description of folding, expressed in terms of an
uncorrelated distribution of energies of protein conformations
corresponding to the values at local minima in a multidimen-
sional energy landscape, Bryngelson and Wolynes1,2 mapped
the problem of equilibrium statistical mechanics of protein
folding to a random energy model in which the native state
plays a special role. These influential works and subsequent
studies3 showed that most naturally evolved sequences are
foldable, which means that they reach the stable native state on
biologically relevant time scales. In this picture, foldable
sequences are characterized by large differences in the
environmental-dependent folding temperature (Tf) and the
glass transition temperature (Tg) at which the kinetics becomes
so sluggish that the folded state is inaccessible on biologically
relevant time scales. Related ideas rooted in polymer physics
further showed that the interplay of Tf, and the equilibrium
collapse temperature (Tθ)

4 could be used to not only fully
characterize the phase diagram of generic protein sequences but
also determine their foldability, a prediction that has been
experimentally validated very recently.5 In the intervening
years, an impressively large number of important theoretical
and experimental works (for a recent collection, see ref 6 and
references cited therein) on a variety of seemingly unrelated
problems associated with protein folding have appeared, thus
greatly expanding the scope and utility of concepts from
statistical mechanics and polymer physics. Through these
developments, an expansive view of protein folding and its role
in biophysics has emerged7 with current applications ranging
from assisted folding8−11 to describing the functions of

molecular motors12−16 using models originally devised to
understand protein folding kinetics.
A particularly important problem that has benefited from the

focus on protein folding is the role molecular crowding plays in
modulating the thermodynamics and kinetics of folding of
proteins17 and RNA18−20 although its importance was
recognized long ago.21 It is now widely appreciated that the
cytosol is a crowded heterogeneous medium containing a
variety of macromolecules such as ribosomes, lipids, and RNA.
As a result, folding, diffusion, and other biological processes in
such an environment could be different from what transpires
under infinite dilution conditions. The effects of macro-
molecular crowding on the stability of synthetic as well as
biopolymers have been extensively investigated17,19−33 because
of the potential relevance for folding under cellular conditions.
In general, several interaction energy and length scales
determine whether crowding agents stabilize, have negligible
effect, or even destabilize the folded states of proteins.29 As a
result a number of scenarios can emerge depending on the
nature of crowding agents, and the choice of proteins. The
simplest scenario arises when both the crowder−crowder and
crowder−protein interactions are dominated by excluded
volume. Although this situation may not accurately characterize
even in vitro experiments, it has the advantage that folding in
this situation can be described using a combination of scaling
arguments and simulations.29 Nonspecific athermal crowders
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(only the excluded volume interactions between the crowders
and the crowder and the protein are relevant) tend to shift the
folded ⇌ unfolded (or equivalently the zipped ⇌ unzipped)
equilibrium of a biopolymer toward the folded state by the
entropic stabilization theory (EST), because this maximizes the
free-volume available (and hence entropy) to the crowding
agents. This simple theory is based on the elegant concept of
depletion interaction,34−37 which posits that the crowding
particles decrease the entropy of the unfolded state to a greater
extent than the folded state, thus differentially stabilizing the
ordered structure.29

The EST can be validated by measuring the dependence of
the melting temperature on the volume fraction (φc) of the
crowding particles. If EST is valid then ΔTm(φc) = Tm(φc) −
Tm(0) should increase. Indeed, absence of any change in
ΔTm(φc) indicates that enthalpic effects play an important role.
Another way to quantify the extent of stabilization is to ask
what critical force (Fc) would be necessary to unfold a
biopolymer at a given volume fraction (φc) of the crowding
agents. In this paper, we study the simple case of unzipping a
polypeptide chain that forms a β-hairpin by applying
mechanical force as a function of volume fractions of
monodisperse spherical crowding particles. The study of the
zipping/unzipping of biopolymers has a rich history38−49 and
has even formed the basis of assessing folding mechanisms of
proteins.50

Surprisingly, there have been very few experimental51,52 or
theoretical studies18 investigating the effect of mechanical force
on proteins in a crowded environment. The experimental
studies have argued that Fc increases linearly with φc, whereas
the theoretical arguments18 predict a nonlinear dependence,
which was shown to provide a good fit to the experimental data.
In this paper, we argue that the unzipping of a biopolymer
under constant tension could be consistent with linear
dependence only for small φc. At higher volume fractions, Fc
does increase nonlinearly with φc. The increase in Fc, relative to
its value at φc = 0, linked to crowding-induced stability, arises
because of a depletion of the crowding particles from the
proximity of proteins. This, in turn, results in the crowding
agents exerting an osmotic pressure on the biopolymer.
Unzipping the biopolymer requires that the imposed tension
perform work against this osmotic pressure. Thus, it is natural
to assume that Fc should be linearly dependent on the average
pressure (P) associated with crowding particles modeled as
hard spheres. We have verified this relation using extensive
Monte Carlo simulations, and we present a simple method for
determining Fc at an arbitrary φc once the linear dependence of
Fc on P is known.

■ METHODS
Model. In order to explore the effects of crowding on the

unzipping of a biopolymer, we chose the 16 residue sequence
that forms a β-hairpin structure and had been previously used
to illustrate the effects of confinement on protein folding.48 The
structure corresponds to the C-terminal β-hairpin of protein G
(PDB accession ID 1GB1), a model system that has been
extensively studied using computations53−59 following an initial
pioneering experimental study.50

In our simulations, we used a coarse-grained representation
of the polypeptide chain. We modeled the hairpin as a
collection of Np = 16 spheres of diameter σp = 0.38 nm (each
representing a residue) with configuration {ri}i=1

Np , and crowders
as a monodisperse collection of Nc spheres of diameter σc = 1.0

nm with configuration {Rl}l=1
Nc . The Hamiltonian depended on

both the positions of the crowders and the conformations of
the polypeptide chain:
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The first three terms on the right-hand side (rhs) of eq 1
accounted for nonbonded crowder−crowder (cc), protein−
protein (pp), and protein−crowder (pc) interactions, respec-
tively. The penultimate term on the rhs of eq 1( bond({ri}))
was used to enforce chain connectivity, while the final term on
the rhs of eq 1 ( coop({ri})) was used to ensure that the
hairpin underwent a cooperative unzipping transition under
tension. The interactions between the crowding particles were
taken to be

∑ υ= | − |
>

R R R({ }) ( )l
J l

l Jcc cc
(2)

where

υ
σ

σ
=

∞ ≤

>

⎪

⎪

⎧
⎨
⎩

r
r

r
( )

( )

0 ( )
cc

c

c (3)

Similarly, we used hard-sphere potentials to model the
interactions between the crowders and the polypeptide (pc):
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The term pp({ri},{ri
0}) in eq 1 was decomposed into native

(N) and non-native (NN) contributions by partitioning the set
of residue−residue distances into those that were less than a
cutoff (Rcut = 0.8 nm) in the crystal structure and those greater
than Rcut (i.e., {{|ri − rj|} ≡ {rij}={rij:|ri

0 − rj
0| ≤ Rcut}∪{rij:|ri0 −

rj
0| > Rcut}). Letting η = {rij:|ri
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where d0 is the value of d in the crystal structure.
Similarly,
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∈ϑ

d( ) ( )
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where
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Chain connectivity was enforced with a sum of box-like terms:
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and rb
0 is an ideal Cα−Cα “bonding” distance of 0.38 nm.

The cooperativity term ( coop({ri})) is a coarse-grained
representation of hydrogen-bonding type interactions and has a
nearest-neighbor Ising-like character,

∑= − Θ − Θ −
=

− −J d d d dr({ }) ( ) ( )i
l

l l l lcoop
2
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0

1
0

1
(13)

where J = ϵ/5, Θ(x) is a Heaviside function, and dl (dl
0) is the

distance (PDB distance) separating a pair of complementary
residues in the strand (l and l − 1 denote nearest neighbor
pairs). There were ncoop = 7 pairs of complementary residues
in the strand with PDB numbering: {{41,56},{42,55},{43,54},
{44,53},{45,52},{46,51},{47,50}} (see Figure 1 for the

numbering of the residues as well as the seqence). Note that
not all of these residue pairs are hydrogen bonded in the native
hairpin. In general, strand pairs exist as parts of larger β-sheets
and make some hydrogen bonds between the strands of the
pair as well as some hydrogen bonds with other strands of the
sheet. The coarse-grained nature of eq 13 renders the model
sufficiently general to ensure transferability to models of RNA
or DNA hairpins. Under such circumstances, eq 13 would
mimic the stacking interactions, which are known to stabilize
nucleic acids.

Simulation Methods. We used a standard Metropolis
algorithm to simulate the model described by eq 1 and to
obtain thermodynamic quantities of interest. Crowder trial
moves were attempted in a “single-spin flip” manner and
consisted of random repositioning of a crowder through the
generation of three independent and uniformly distributed
random variables (rv’s) on the interval [−L/2,L/2], where L =
29.7 nm is the length of a side of the cubic simulation box.
The position of residue 1 of the hairpin was held fixed at the

origin throughout all simulations (i.e., r1(t) = 0 ∀t). The
remaining Np − 1 residue trial moves were randomly selected
from a set of two possibilities. One type of move corresponded
to that used by Baumgar̈tner and Binder60 for simulating a
freely jointed chain; a random angle γ was chosen from a
uniform distribution on [0,2π) and an attempt was made to
displace residue i by γ radians along the circle perpendicular to
the line connecting residues i − 1 and i + 1. For the residue at
the free-end of the chain two random angles (β,γ) were chosen,
and an attempt was made to move the residue to a new point
on the sphere centered at residue Np − 1. The second type of
move corresponded to a random change in the bond length
connecting residue i to residue i − 1 (i = 2, 3, ..., Np); a uniform
rv, , on (0.8,1.2) was generated, and an attempt was made to
map ri |→ (ri − ri−1) + ri−1. A trial move from μ → ν was
accepted with probability (A(μ → ν)):

μ ν→ =

−
− − >
ν μ

ν μ

− − −ν μ ν μ⎧
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F z z

( )
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k T k T F z z( )/( ) (1/ ) ( )B B
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where T is the temperature, kB is Boltzmann’s constant, ν and

μ are as above, F is the constant tension applied to the
polymer, and zν and zμ are the extension in state ν and μ,
respectively, of the polymer in the direction of the applied
force.

Data Collection. Time, measured in Monte Carlo steps
(MCS), corresponded to the attempted displacement of (Nc +
Np − 1) particles, since one end of the chain was always held
fixed to the origin. Data from a trajectory were collected every
1000 MCS. Figure 2 reveals that this is significantly longer than

Figure 1. Snapshots of the simulated system in the absence of
mechanical force: (a) φc = 0.1 (Nc = 5000); (b) φc = 0.2 (Nc =
10000); (c) φc = 0.3 (Nc = 15000); (d) φc = 0.4 (Nc = 20000). The
hairpin corresponds to the small dark spot at the center of each of the
boxes. The center of the figure shows a blowup of the region adjacent
to the hairpin. The purpose of showing the four snapshots is to
illustrate that the biopolymer is jammed in a sea of crowding particles.
The blowup in the center shows structure of the β-hairpin along with
the sequence numbering of the 16 residues.

Figure 2. Root mean square deviation (rmsd) of the crowding agents
from an equilibrated initial state as a function of time (τ, measured in
Monte Carlo steps per free particle (MCS)) for trajectories at φc = 0.1
(blue), φc = 0.2 (green), φc = 0.3 (orange), and φc = 0.4 (red). Note
that crowder trial moves are reasonably successful for φc ≤ 0.3, which
implies that the allowed conformations are ergodically sampled. The
acceptance ratio for such trial moves is significantly reduced at φc = 0.4
although the errors in the results are small as indicated by consistency
between different measures. The sampling interval used for collecting
the data presented in all figures below was 1000 MCS.
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the time required for the RMSD of the crowding agents from
an equilibrated initial state to plateau at all volume fractions
except φc = 0.4. Even at φc = 0.4, the RMSD has increased
substantially after 1000 MCS. We used 0, 5000, 10000, 15000,
and 20000 crowders to simulate crowder volume fractions of
0.0, 0.1, 0.2, 0.3, and 0.4, respectively. For each φc, data was
collected at tensions between 0 pN and 40 pN at 1 pN
intervals. Snapshots of simulations at each of the nonzero φc
and in the absence of tension are illustrated in Figure 1. Data at
each force and each φc was collected from multiple trajectories
starting from previously equilibrated configurations (in turn
based on trajectories initiated from random initial crowder
configurations at both high- and low-force hairpin config-
urations).

■ RESULTS
Radial Distribution between Crowders and the

Hairpin. Figure 3 is a plot of the radial distribution (g(r)) of

crowders about the center of mass of the hairpin versus
distance (r) (i.e., g(r) = V/[Nc]⟨∑lδ(r − (Rl − rcm))⟩). The
maxima in these plots correspond to the average diameter of
the region to which the hairpin finds itself confined (D).
Interestingly, the plots illustrate that the average size of the
region is inversely proportional to the crowder density (i.e., D
≈ φc

−1). This suggests that, perhaps, the region in which the
hairpin on average is localized is aspherical.61 If the region were
spherical, we would expect that D ≈ φc

−1/3.

The observation that D ≈ φc
−1 in conjunction with an

approximate mapping between crowding and confinement
could be used to obtain the expected scaling of the dependence
of the critical force required to the unfold the β-hairpin, Fc, on
φc. Because the confining region is described by a single length,
D, the EST can be used to identify the enhancement in the
stability of the ordered state with the loss in entropy of the
unfolded state upon confinement. A similar scaling approach,
using concepts developed in the context of polymer physics, has
been used to study confinement effects on biopolymers.48,62−64

Using this inherently mean-field argument, we expect

φ≈ Δ Δ ≈
Δ

≈ν ν‡
‡F T S x R D

k T
x

A/ ( / )u
u

c g
1/ B

c
1/

(15)

In the above equation, TΔS is the penalty for confining the
polypeptide chain with dimension Rg in a region with size D,
Δxu‡ is the minimum extension needed to unfold the protein,
and ν is the Flory exponent. Because D ≈ φc

−1, we expect that
Fc ≈ φc

1/ν ≈ φc
5/3 assuming that ν ≈ 0.6. If D ≈ φc

−1/3, as
would be the case if the unfolded state were spherical, then it
follows that Fc ≈ φc

5/9, a result that we derived previously18 to
analyze the experimental data on forced unfolding of ubiquitin.

Numerical Evidence for Equation 15. Plots of the
average extension of the hairpin (⟨z⟩) versus applied tension
(F) presented in Figure 4a show that the ⟨z⟩ decreases
monotonically with φc at moderate values of F. This implies
that crowding in essence decreases ⟨z⟩ because the entropic
penalty to stretch a protein in a crowded environment is far too
large. In other words, the probability of finding a region free of
crowders decreases exponentially as the extension increases,
which explains the observed results in Figure 4a. The
isothermal extensibility (χ ≡ ∂⟨z⟩/∂F) plots in Figure 4b
reveal that Fc (i.e., the value of F at which χ is a maximum)
increases monotonically with increasing φc. A plot of Fc versus
φc (Figure 5a) subsequently revealed that the power-law
dependence of Fc on φc is characterized by an exponent α ≅
1.6, which is in accord with the scaling predictions in eq 15.
Data collapse of χ based on a scaling function X((F − Fc)/Fc)
that is independent of Nc revealed that χ ≈ (1 − ANc

dχ), where
dχ ≅ 1.43 and A ≅ 1.7 × 10−7. This shows that the effects of
crowding and force can be separated, which to some extent
justifies the scaling theory predictions. Thus, when measured in
terms of the reduced distance to the critical force, the primary
effect of the crowders is to decrease the extensibility of the
chain.
We can also obtain the dependence of Fc on φc using the F-

dependent changes in an order parameter that characterizes the

Figure 3. Radial distribution function (g(r)) of the crowders about the
center of mass of the hairpin at various volume fractions and at F = 0
pN. Red squares, orange diamonds, green upward triangles, and blue
downward triangles, respectively, correspond to φc = 0.1, 0.2, 0.3, and
0.4. The maxima in g(r) lie at r = 15.5, 14.5, 13.5, and 12.5 Å,
respectively. This suggests that the size of the region to which the
hairpin is confined (D) is inversely proportional to φc, implying that
this region is aspherical. The symbols represent raw data; curves
correspond to smoothing using eq 6.48 of Allen and Tildesley.66

Figure 4. Plot of (a) average extension (⟨z⟩) as a function of force (F) and (b) isothermal extensibility (χ ≡ ∂⟨z⟩/∂F|T) versus force (F). Black, red,
orange, green, and blue curves, respectively, correspond to volume fractions (φc) of 0, 0.1, 0.2, 0.3, and 0.4. All curves were calculated using the
multiple histogram reweighting method; symbols in plot a correspond to unreweighted data.
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folded state. The extent of structure formation can be inferred
using the average fraction of native contacts, ⟨Q⟩. In Figure 6,

we show ⟨Q⟩ as a function of F. For all values of F, the
crowding particles increase ⟨Q⟩, which is a reflection of the
enhanced stabilization of the native state of β-hairpin at φc ≠ 0.
Let us define Fm using ⟨Q⟩ = 0.5 at φc = 0. At this value of Fm,
Figure 6a shows that ⟨Q⟩ ≈ 0.75 at φc = 0.4. The critical force,
Fc, can identified with the force at which |d⟨Q⟩/dF| (Figure 6b)
achieves a maximum. It is clear that Fc is an increasing function
of φc (Figure 6c). Just as in Figure 4a, where Fc is identified

with the maximum in the isothermal extensibility, we find that
Fc ≈ φc

α with α ≈ 1.6 (Figure 6c). The numerical simulations
using different measures confirm the scaling predictions
showing the power law increase in the φc-dependent critical
force required to rupture the hairpin.

Osmotic (or Disjoining) Pressure Explains the Origin
of φc-Dependent Fc. Insights into our results can be obtained
by viewing the depletion forces from a different perspective.
Because of the repulsive interaction between the crowders and
the polypeptide chain, the crowding particles are depleted from
the surface of the protein. In the process, the crowding particles
not only gain translational entropy, but they also exert an
osmotic pressure on the polypeptide chain, thus forcing it to
adopt a compact structure. In other words, the crowders can be
viewed as providing an isothermal and isobaric bath for the
hairpin. In such a case, it is natural to assume that Fc is
proportional to the average pressure (P) associated with a hard
sphere fluid at that density and volume fraction:

= +F mP bc (16)

where m and b are constants to be determined.
The disjoining or osmotic pressure can, in turn, be calculated

from the contact value g(σ) ≡ limr→σ
+g(r) of the crowder−

crowder radial distribution function using the standard relation,

ρ φ σ= +P k T g(1 4 ( ))B c (17)

Equation 17 follows from the virial-based expression for hard
sphere systems,

∫ρ
πρ υ= −

∞P
k T k T

g r
r

r r1
2

3
( )

d
d

d
B B 0

3

(18)

via the substitution g(r) = ψ(r) e−βυ(r) and by noting that the
Boltzmann factor e−βυ = θ(r − σ) for hard spheres where θ(x) is
the step function.
From the Figure 7a showing the crowder−crowder g(r) at

volume fractions φc = 0.1, 0.2, 0.3, and 0.4, we computed g(σ),
which was subsequently used to determine the average pressure
at each φc. The linear correlation coefficient (r) between the
two variables (F and P) was determined to be 0.99657 (Figure
7b). The probability that five measurements of two
uncorrelated random variables would yield a correlation
coefficient this high is 2Γ(2)/[√πΓ(3/2)]∫ 0.99657

1 (1 − x2)1/2

dx = 0.00024, where Γ(x) is Euler’s gamma function. In Figure
7b, we provide the best fit line to the data yielding m = 0.24
nm2 and b = 13.84 pN. Thus, Fc is linearly related to the
osmotic pressure arising from depletion forces, whose strength
is a measure of the stabilization of the ordered state.

Figure 5. (a) Critical force (Fc) of the hairpin versus crowder volume fraction (φc). Fc displays a power law dependence on the volume fraction of
crowding agent with an exponent (α) of 1.55. (b) Data collapse of the isothermal extensibility (χ) (Figure 4) shows that χ ≈ (1 − ANc

dχ)X((F − Fc)/
Fc), where the scaling function (X(x)) is independent of the number of crowders (Nc). Thus, the dependence of the isothermal extensibility on Nc is
characterized by an exponent (dχ) of 1.43. Black, red, orange, green, and blue curves, respectively, are for Nc = 0, 5000, 10000, 15000, and 20000.

Figure 6. (a) Average fraction of native contacts (⟨Q⟩) versus applied
tension (F). (b) Absolute value of d⟨Q⟩/dF versus F. The force that
maximizes |d⟨Q⟩/dF| at a particular volume fraction φc corresponds to
the critical force Fc(φc) at φc. (c) A plot of Fc versus φc verifies the
results illustrated in Figure 5a; Fc ≈ φc

α where α ≅ 1.6.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp402922q | J. Phys. Chem. B 2013, 117, 13107−1311413111



In order to obtain the dependence of Fc on φc, a reliable
relationship between P and φc needs to be established.
Although P can be calculated using simulations, it would be
convenient to obtain approximate analytically calculable
estimates of P. The average pressure associated with the hard
spheres can be determined at all φc using the successful
semiempirical Carnahan−Starling equation of state:

ρ
φ φ φ

φ
=

+ + −
−

P
k T

1

(1 )B

c c
2

c
3

c
3

(19)

Figure 7c shows Fc versus φc (blue circles), as well as the curve
associated with the best-fit linear relation between Fc and P
calculated using eq 19. This linear relation yielded m = 0.17
nm2 and b = 13.96 pN, which are close to the values obtained
by fitting Fc to numerically computed values for P. The stars
illustrate (φc,Fc) ordered pairs associated with the best-fit linear
relation between Fc and P as calculated from eq 17 (as in Figure
7b). We surmise that P approximated by eq 19 can be used to
obtain accurate estimates of Fc given knowledge of the
coefficients m and b.
Finally, the accuracy of the Carnahan−Starling equation is

assessed by plotting in Figure 7d eq 19 as well as several
truncated Taylor-series expansions:

∑
πσ

φ≅
=

P
k T

a
6

i

n

i
iB

3
1

c
(20)

of this equation of state. Note that the relative error associated
with the linear approximation (n = 1) of 0.342651 is large at φc
= 0.1, while the relative error is only 0.0326804 at φc = 0.4
when n = 7 terms are included in the expansion. The

coefficients of the expansions are a1 = 1, a2 = 4, a3 = 10, a4 = 18,
a5 = 28, a6 = 40, and a7 = 54. The linear relation between Fc
and P shows that close to φc = 0, Fc should depend only linearly
on φc because P is approximately linearly dependent on φc for
small φc. However, in order to determine the value of Fc at an
arbitrary φc, one should first determine the appropriate linear
relation between Fc and P. The critical force Fc can then be
determined at an arbitrary φc using the linear relation and
approximate estimate of P given in eq 19.

■ CONCLUSIONS
Using simple theoretical arguments and extensive MC
simulations of a three-dimensional off-lattice model, we have
demonstrated for the first time that the critical force for
unzipping a biopolymer under tension obeys a nonlinear
dependence on the volume fraction of crowding agent. This
dependence can be characterized by a power law dependence
with an exponent α ≅ 1.6: Fc ≈ φc

α. The exponent α is
surprisingly close to the scaling prediction 1/ν with ν ≈ 3/5.
The numerical findings and scaling predictions can be

understood by noting that the crowders provide an isobaric
environment for the protein. The osmotic pressure arises from
the depletion forces due to expulsion of the crowding particles
from the protein and is entropic in origin. Because of the
osmotic pressure, unzipping requires that the tension imposed
on the hairpin perform mechanical work against the isotropic
pressure. These arguments are fully confirmed in simulations,
which demonstrate that Fc has a highly significant linear
correlation with the pressure (P) of the hard-sphere crowding
particles in which it is embedded. To determine Fc at an
arbitrary φc, one should first determine the linear dependence
of Fc on P. The exact relation connecting Fc to φc then follows

Figure 7. (a) Crowder−crowder radial distribution fucntion (g(r)) versus separation distance (r/σ). Red squares, orange diamonds, green up
triangles, and blue down triangles, respectively, correspond to φc = 0.1, 0.2, 0.3, and 0.4. (b) The contact value g(σ) ≡ limr→σ

+g(r) from (a) was used
to calculate the average pressure (P) of the hard spheres at each φc using the virial derived equation P = ρkBT(1 + 4φcg(σ)). A plot of Fc versus P
revealed a highly significant correlation with a linear correlation coefficient r = 0.99657. Blue circles correspond to measured data, and the black solid
line corresponds to the best fit line Fc = mP + b, where m = 0.24 nm2 and b = 13.84 pN. (c) The dependence of Fc on φc. Blue circles correspond to
simulation data. The solid black curve corresponds to the best-fit line relating Fc to the pressure (P(φc)) at φc, where P was calculated from the
semiempirical Carnahan−Starling equation of state: P = ρkBT(1 + φc + φc

2 − φc
3)/(1 − φc)

3. The red stars also correspond to a best-fit line relating
Fc to P(φc), where P was calculated as in panel b. (d) P versus φc as calculated via the Carnahan−Starling equation of state (black) and after
truncating a Taylor-series expansion (P ≅ 6kBT/(πσ

3∑i = 1
n aiφc

i) of this equation of state about φc = 0 after n = 1 (red), 2 (orange), 3 (yellow), 4
(green), 5 (cyan), 6 (blue), and 7 (purple) terms.
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from the Carnahan−Starling equation of state. This relationship
shows that Fc displays an approximately linear dependence on
φc for volume fractions near φc = 0. However, when examined
over a large range of φc, we expect that Fc should increase
nonlinearly with φc as indicated by the scaling predictions
exploiting the relationship between crowding and confinement.
Two comments about the scaling predictions are important

to make. (i) The exponent α relating the increase in Fc to φc,
although related to the Flory exponent (ν), is likely to depend
both on the nature of the unfolded states of the protein and the
shape of the crowding particles. If the overall shape of the
unfolded state is nonspherical as is clearly the case for the
hairpin (Figure 1) then α ≈ 1.6. On the other hand, if the
unfolded state is spherical on average, as is likely to be the case
for larger proteins, then it is likely α ≈ 5/9, as argued
previously.18 (ii) The theoretical predictions are based on a
mean-field picture in which it is assumed that crowding
(modeled with hard spheres) results in the protein being
localized to a cavity. Thus, fluctuations in the crowding particles
are ignored. These, especially close to the protein, could have
significant effects. The good agreement between scaling
predictions and simulations suggests that the fluctuation effects
are not significant, at least for the case tested here. In principle,
the importance of fluctuations can be tested by fixing the
locations of the crowding particles. Such quenched simulations
are equivalent to the present annealed simulations for the
properties of the proteins because in a large sample containing
fixed obstacles the protein would sample many distinct
environments. This is then the same as performing annealed
simulations. Therefore, we expect that the scaling properties
predicted and tested here will not change even if the
simulations are done by fixing the locations of the crowding
particles. Additional simulations on proteins, rather than
polypeptide chains forming secondary structures, would be
needed to obtain accurate values of α.
There are only very few experiments probing the limits of

mechanical stability of proteins in the presence of crowding
agents. For example, atomic force microscopy has been used to
investigate the effects of dextran on the mechanical stability of
proteins.52 These researchers found Fc ≈ φc for φc ∈ [0.0,0.3]
and nonlinearity only for φc > 0.3. It is important to note that
their experimental setup is of an inherently nonequilibrium
character; one end of a protein is extended at a constant speed,
while the other end is used to probe the chain’s tension.
Furthermore, the protein examined (ubiquitin) is unlikely to be
a two-state folder and may undergo distinct unzipping reactions
at multiple tensions. In this case, the effects of crowding in an
energy landscape with multiple barriers65 may have to be
studied. Because of the nonequilibrium nature of the AFM
setup, it would be desirable to verify the predictions of the
present work using laser optical tweezer experiments in which
small constant forces can be applied.
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