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ABSTRACT: We investigate the structural transitions in a polymer induced by
spherical and nonspherical crowding particles over a wide range of conditions. The
polymer conformations are specified by the radius of gyration and the quality of
the solvent in the absence of crowding particles. In the presence of crowding
particles, the structures are altered by the volume fraction, size, shape, and
polydispersity of the crowders. We show that crowding induces an array of
structural changes, ranging from helix, helical hairpin (HH), and multiple helix
bundles (HBs), depending on the interplay of multiple length and energy scales
including the solvent quality, length of the polymer, temperature, and the
characteristics of the crowding agents. In nearly good solvents, the polymer
undergoes coil−helix transition in accord with the predictions based on the
entropic stabilization mechanism. Higher-order (HH and HB) structures are
obtained in poor or moderately poor solvents. In a binary mixture of spherical
crowders, the effect of the two components is largely additive with the polymer undergoing greater compaction at higher volume
fraction. In contrast to spherical crowders, spherocylinder-like crowders have a dramatically different effect on the diagram of
states of the polymer. In the presence of spherocylinders, the polymer prefers to form a nearly ideal helix, especially at low
temperatures and high aspect ratios of the crowders, at volume fractions that are not large enough for nematic order. Surprisingly,
there is a complete absence of HH and HB in the range of conditions explored here. The dominant formation of spherocylinder-
induced helix formation is due to the tendency of the spherocylinders and the polymer to align along the director formed by an
increase in nematic order only in the vicinity of the polymer. Our study, which has produced several testable predictions, shows
that only by probing the effects of crowding on a polymer (or a protein and RNA) over a wide range of conditions can the
diagram of states be quantitatively described.

■ INTRODUCTION
There is considerable interest in exploring the effects of
macromolecular crowding on the folding of proteins1−7 and
RNA8−10 because they provide a caricature of self-assembly in
the more complex cellular environment. In vitro experimen-
tal11−13 and theoretical studies cited above and others discussed
in the excellent reviews1,2,14 capture the ever-present effects of
excluded volume interactions on the stability and folding
kinetics of proteins and RNA. To understand the enhanced
stabilities of proteins, it suffices to realize6 that due to volume
excluded by the crowding particles the polypeptide chain
cannot explore only a restricted subset of all conformational
space. On the basis of this observation, the enhanced stabilities
of proteins have been determined in important studies7 based
on estimates of volume accessed by the protein, specified by the
radius of gyration of a given conformation, in the presence of a
crowding particle of appropriate shape. The observed
crowding-induced enhancement in the stabilities of the folded
states of proteins in experiments3,13 is in accord with the
predictions of the entropic stabilization mechanism (ESM).
According to the ESM,4,15 crowding decreases the entropy of
both the folded and the unfolded states. However, the decrease

in entropy of the unfolded states is considerably higher than the
folded state, resulting in the increased stability of the native
state. The ESM when used with polymer concepts yields
quantitative predictions on the extent of increase of the melting
temperature involving only the statistics of the unfolded
conformations.4 These predictions have been quantitatively
validated in experiments.3,13,16 Although qualitatively similar to
other treatments,7 the ESM4 accounts for multiparticle
fluctuations of the crowding agents and the conformations of
proteins on equal footing. In other words, these fluctuations
have been treated self-consistently, which makes deriving
analytic expressions almost impossible, in contrast to
approximate treatments.7 The lack of self-consistency gives
rise to differences in stability predictions between approximate
treatments and simulations, which support the ESM (see
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especially Table S4 in17 which compares the results of ESM and
more approximate treatments).
With the exception of a few recent studies,7,18,19 almost all of

the theoretical studies have modeled crowding agents as
monodisperse spherical particles. Such a description may be
adequate in rationalizing experimental results that are obtained
using Ficoll, polyethylene glycol, and dextran as crowding
agents. It should be emphasized that to obtain quantitative
agreement with experiments it may be necessary to consider
not only the shapes of crowding particles but also nonspecific
attractive interactions between crowding agents and pro-
teins.20,21 Indeed, as pointed out in ref 18, the nonspherical
shapes of macromolecules as well as polydispersity due to
variations in composition and sizes of macromolecules in cells
could have a dramatic effect on protein stability. Similarly, the
shapes of crowding particles can not only influence protein
stability but also have a profound influence on protein
association2 and oligomer formation in an amyloidogenic
peptide.19 Recently, we22 showed that spherical crowding
agents induce a series of structural transitions, such as helical
hairpin (HH) and multiple helix bundles (HBs), in a
homopolymer depending on the length, N, of the chain,
volume fraction, ϕc, and the quality of the solvent. Although the
homopolymer may not be of direct relevance to proteins, it
constitutes a well-defined system for which precise computa-
tions can be performed. More importantly, these systems are
relevant in understanding crowding-induced structure forma-
tion in synthetic polymers23 for which external conditions such
as solvent quality can be varied to a greater extent than can be
achieved for biopolymers.
Understanding the effect of macromolecular crowding on

polymers is a classic problem involving an interplay of several
length scales. Minimally, the system of interest is a ternary
system consisting of protein, solvent, and crowding particles.
The size of the solvent is about 0.3 nm, whereas the radius of
gyration, Rg, of the polymer can be controlled by N and the
solvent quality can be greater than several nanometers. The
crowding particles considered here are either spheres with
radius rc or rodlike with length L and radius rc. In addition to
these length scales, crowding-induced structural changes in the
polymer are also influenced by the energy scales associated with
the polymer. Assuming that the effect of the solvent can be
integrated out, we still have a system with two or more length
and energy scales. Describing the interplay between these
energy and length scales requires models for which precise
simulations can be carried out. Here, we explore the interplay
between them in influencing the structural transitions in a
homopolymer using a coarse-grained (CG) description of the
polymer as well as the crowding particles. We predict a
remarkably rich series of crowding-induced ordered structure
formation ranging from helical hairpin (HH) to helix bundles
(HBs) resembling a nematic droplet with the helices pointing
along a director. We also show that the shape of the crowders
has a profound influence on the structures that are populated.
These entropically driven transitions depend on N, the number
of beads in the polymer, size, and shapes of crowding particles
as well as parameters describing the quality of the solvent. Our
study illustrates how multiscale simulations can be performed
for complex systems guided by concepts in polymer and colloid
science.24

■ METHODS
Models. We used a single homopolymer chain containing

16, 32, or 64 beads. The structural transitions are studied in the
absence and presence of crowders, which are modeled either as
spheres or rodlike polymers composed of spherical monomers.
All beads in the polymer are identical and have the same van
der Waals interactions with the other beads and the crowders.
The potential energy of the polymer chain Ep is given by the
sum of the following terms

= + + +E V V V Vp bond angle dihe vdW (1)

The potentials are chosen in the conventional form of the
AMBER simulation package,25 with the covalent bond and
angle being harmonic potentials. The dihedral potential is a
sum of harmonic terms. The energy function of the
homopolymer chain is
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In the absence of Vdihe(ϕ), a standard model for polymers, the
chain would undergo a collapse transition as δ increases.
However, Vdihe(ϕ) favors the formation of expanded structures.
Thus, in our model the low free energy structures are
determined by a balance between these conflicting interactions
even when ϕc is zero.
The energy scale of the potentials is given by the parameter ε

in the van der Waals potential (eq 4). We set ε = 1 kcal/mol in
all the simulations. The covalent bond and the bond angle
potentials (eqs 2 and 3) are taken to be harmonic with the
following constants: Kb = 100 kcal/mol Å−2 = 100ε Å−2, r0 = 4
Å; Kθ = 20 kcal/mol rad−2 = 20ε Å −2, θ0 = 105°. The dihedral
potential (eq 4) is similar to that used in previous simulations
of α-helical proteins.26,27 We introduced the dimensionless
parameter γ, which is used to vary the strength of the dihedral
potential with respect to ε, thus controlling the stiffness of the
polymer backbone. If not, it is otherwise indicated γ = 1.
The hydrophobicity of the monomers is modeled using van

der Waals potential Vij
(vdW)(r) acting between pairs of particles

of types i and j. In our simulations, we have only two types of
particles: monomers with rmon = 2 Å and crowders with rc
(including rodlike crowders, which are constructed from
spheres) which are varied for different simulations. The
potential Vmon−mon acts only between monomers that are
separated by three or more covalent bonds. The parameter δ
controls the strength of attraction between different monomers,
which qualitatively mimics the quality of the solvent in the
absence of crowding particles. Depending on the system, it is
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varied in simulations from zero, which correspond to purely
repulsive interactions, to unity.
Crowders as Spherocylinders. The rodlike (spherocylinder)

crowder is constructed as a polymer with the same types of
interactions as those for the helical polymer, except the dihedral
interaction is absent and for all covalent angles θ = 180°. Thus,
all the monomers are roughly aligned in a line. Because the
spherocylinders are not absolutely rigid, there are some
fluctuations in covalent bond distance, and the bond angles
fluctuate around the equilibrium values. The fluctuations in the
bond angle lead to a slight curvature in the rods, which
becomes more pronounced as the length of the spherocylinder
increases. The radius for all rods is fixed at rrod = 4 Å . For all
the systems the covalent bond length of the rodlike particles is
fixed at brod = rrod = 4 Å, thus approximately modeling a
spherocylinder. The shape asymmetry of the crowders is
characterized by L/D, where D is the diameter = 2rrod and L is
the distance between the centers of the first and the last
monomers. Given our choice brod = rrod, the number of
monomers in a rod Nrod is given by Nrod = 2L/D + 1.
Simulation Details. Simulations were performed with the

AMBER simulations package25 modified to run Langevin
dynamics in the low-friction limit, which has been shown to
enhance conformational sampling.28 The velocity form of the
Verlet algorithm is used, similar to that employed in previous
publications.4,26,27 The integration time step Δt is chosen based
on the oscillatory time of the covalent bonds τ. The masses of
all particles in the system (monomers and crowders) are set to
one atomic mass unit. This yields the following covalent bond
time τ = (m/Kb)

1/2 = 0.0046 ps. The integration time step is set
to Δt = 0.46 fs ≈ 0.1τ.
For each system, ten runs are produced, each starting with a

different initial conformation generated during the initial
equilibration step. The simulation time for each run depends
on the equilibration time (to obtain good statistics) and the
number of particles in the system (to keep simulation times
realistic). A typical number of time steps is 107, with the
variation between 107 (high temperature, N = 16) and 9 × 107

(lowest temperatures, N = 64). From each run, 1000 snapshots
are saved. The sampling rate is determined from the condition
that different snapshots are statistically independent at the
highest temperatures. The statistical inefficiencies g (see, for
example, ref 29) are used to measure statistical independence of
snapshots. At high temperatures, the sampling rate is chosen so
that g ≈ 1. For higher temperatures, g is kept <10 before the
collapse of the chain into a globule. With the collapse of the
chain, the equilibration times increase dramatically, so longer
simulation times are used. The data presented at the lowest
temperatures have g < 100, which corresponds approximately
to 100 statistically independent snapshots from 10 runs. The
usefulness of g also decreases at low temperatures with the
appearance of metastable states with relaxation times on the
order of the simulation run time. To exclude this possibility,
low-temperature runs are visually checked to make sure that the
system explores a number of different configurations. We also
start simulations from a number of metastable states identified
for each particular case to ensure that their lifetimes are shorter
than the simulation time.
For simulations with crowders, cubic periodic boundary

conditions in the NVT ensemble are employed. For small radii
of crowders, the simulation box size is equal to the length of the
fully extended helix plus four average distances between
crowders at a given volume fraction. The number of crowder

nc for the smallest rc and ϕc = 0.2 for N = 16 is ≈1200; for N =
textbf 2, rc = 4, ϕc = 0.2: nc ≈ 2000; for N = 64, rc = 4, ϕc = 0.2:
nc ≈ 3000.
The number of rods in the simulation box is calculated based

on ϕc and using the volume of rodlike crowder Vrod
approximated as a spherocylinder Vrod = 2πR3((2/3) + (L/
D)). The simulation procedure is the same as for systems with
spherical crowders. The box size is in all cases larger than the
length of an expanded helix, varying between 165 Å (for L/D =
1) and 185 Å (L/D = 4) corresponding to the number of
crowder monomers ≈4000 to ≈5600.

Analysis. To characterize the equilibrium states, we
calculated the following properties.

Radius of Gyration. The dimensions of the polymer chain
are characterized with the radius of gyration
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Helical Content. We define average helicity as a fraction of
dihedral angles in a “helical state”. Each dihedral angle is
defined to be in a helical state if the value of the angle |ϕi − ϕi

N|
< ΔH, where ΔH = 12.07°; otherwise, the dihedral angle is
counted as being in a “nonhelical state”. With these definitions,
the overall degree of helicity is
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where Θ(x) is a Heavyside function. The choice of ΔH = 12.07°
will be discussed below.
We also considered a two-dihedral angle measure for helicity,

H2, which is defined as the fraction of two consecutive dihedral
angles, both of which are in a helical state as defined by the
native conformation
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Note that in this definition we use a different numerical value of
deviation in the dihedral angle ΔH2. We choose ΔH2 = 20.31°
for reasons to be discussed below. The use of H2, which
compares the fate of two consecutive dihedral angles, ensures
that at least 1.5 helical turns are formed. All averages are
calculated using an ensemble of trajectories.

■ RESULTS
Diagram of States in the γ−δ Plane.We first characterize

the nature of structures in the absence of crowding particles.
The internal stiffness of the chain, favoring chain expansion, can
be altered by changing γ (eq 4), while the extent of collapse can
be controlled by altering δ (eq 5), the surrogate parameter for
controlling the quality of solvent. The existence of different
states is ascertained using the order parameter Rg/Rg

H. We
classify the regions of δ−γ parameter space according to the
behavior of Rg/Rg

H observed in simulations of the polymer chain
with N = 16. At low δ and high γ, Rg increases monotonically
with decreasing T, a signature of the coil−helix transition. In
the intermediate δ range, Rg passes through a maximum before
decreasing as T is lowered. In this case, the helical content of
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the coil increases significantly before condensing into helical
hairpin (HH) structures. As δ is increased further, the solid Rg
decreases monotonically as T is lowered. The states in this
regime can be thought of as a coil−globule transition with a
high degree of helicity in the globule.
For a fixed γ (unless stated otherwise, γ is fixed to unity from

now on), we can roughly associate solvent quality in terms of δ
(eq 5). Although such a classification has to be done precisely
for each N, we surmise that δ ≤ 0.2 corresponds to a good
solvent, whereas when δ exceeds 0.5 the solvent is poor so that
the polymer would be collapsed even in the absence of
crowders. In the range 0.2 < δ ≤ 0.5, the solvent is moderately
poor and could be in the cross over Θ-like regime. The
influence of the crowding particles on the structural transitions
depends on a number of factors including N, the size, shape,
and volume fraction of crowding particles as well as δ.
Structural Transitions in Polymers in the Absence of

Crowders As a Function of N and δ.We plot in Figure 1 the

normalized radius of gyration Rg/Rg
H (Rg

H is the radius of
gyration of the energy minimized helix) for N = 32 and N = 64.
Different curves in the plots refer to simulations with different
values of the monomer−momomer attraction parameter δ
(defined in eq 5). The value of δ changes from 0 (purely
repulsive interaction between monomers) to δ = 1 (corre-
sponding to poor solvents). From the plots of Rg in Figure 1,
we can identify three different behaviors of Rg as T is changed,
depending on the magnitude of δ. At low δ, the high T
disordered random coil conformations undergo a transition to a
well-ordered helix when T decreases. In this case the intrinsic
stiffness due to the dihedral angle potential dominates over

attractions between monomers. Consequently, there is a
monotonic increase in Rg with decreasing T (Figure 1).
At intermediate values of attraction (e.g., δ ≈ 0.5 for the N =

32), the high T random coil first expands into a conformation
with significant helical content (thus having larger Rg) before
collapsing into a hairpin for N = 1622 and HBs for larger N. The
sequence of structural transitions that occurs as T and δ are
altered is shown in Figure 1 using conformations that represent
random coil, collapsed globule, HHs, and HBs. The observed
structural transitions are manifested by an increase in Rg at
lower T and then a sharp decrease in Rg corresponding to the
collapse into hairpin-like structures, depending on δ (see, for
example, the curves for N = 32, δ = 0.5, and N = 64, δ = 0.4 in
Figure 1).
As the solvent quality becomes poor (δ exceeds 0.6), the

values of Rg decrease monotonically with decreasing T, which is
observed, for example, for δ = 0.7 in Figure 1. In this case, the
structures are compact with significant helical content. We
show below that even the collapsed globule still has a rather
high degree of helicity. These results show that the diagram of
states for an isolated polymer is rich and is determined by T, N,
and δ for a fixed γ.

Transitions between Coil, HH, and HB Controlled by
δ. The probability distribution functions of Rg/Rg

H for three
values of δ at different temperatures for N = 32 corresponding
to the three regimes describing the solvent quality are shown in
Figure 2. For δ = 0 at high T, the distribution is broad with
expanded coil conformations (although still with a rather high
helical content). With decreasing temperature, the distribution
narrows, and the maximum shifts to near unity, indicating the
formation of a fully extended well-defined helix. We do not find
any evidence for coexistence between a coil and a helix as T is
changed.
For intermediate δ = 0.5 at high temperatures, we observe a

broad random coil distribution, similar to the δ = 0 case.
However, when the temperature is decreased, there is a
broadening of the distribution and then emergence of separate
peaks corresponding to coexisting expanded helix, HH, and
three-helix bundle (HB) structures.
A different picture emerges in the poor solvent case (δ =

0.7), which corresponds to the regime of monotonically
decreasing Rg with decreasing T. In this case, even at high T
the conformations are already collapsed. They are further
compacted with decreasing temperature, with the most

Figure 1. Normalized radius of gyration as a function of T for N = 32
(a) and N = 64 (b) polymer chains. Different curves are for different
values of the attraction parameter δ. The values of δ are given on the
right.

Figure 2. Temperature-dependent changes in the probability distribution of Rg/Rg
H for N = 32. (a) δ = 0; (b) δ = 0.5; (c) δ = 0.7. Typical

conformations corresponding to the peaks in the Rg/Rg
H probability are shown. Note a different scale in the z-axis, in the three plots.
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dominant conformation being a HB. As in the case of δ = 0, no
coexistence between different conformations is observed.
Dependence of Transition Temperatures As a

Function of δ. A number of different definitions can be
used to estimate the structural transition temperature TS.
Because we are mostly interested in the helical content during
the structural transitions, we used H(TS) = 0.5 (eq 7) or
H2(TS) = 0.5 as the definition of TS. The values of tolerance for
deviations from an ideal helix for H and H2 are chosen so that
the calculated TS values match that obtained from the
maximum of CV for the longest polymer chain of N = 64 at
δ = 0. The transition temperatures using H and H2, once
parameters ΔH and ΔH2 are chosen appropriately, lead to
almost identical TS. In what follows, we report TS determined
from the condition H(TS) = 0.5.
We calculated22 the dependence of TS on the strength of

monomer attraction δ for 16, 32, and 64 bead polymers. For all
N, the transition temperature decreases with increasing
attraction with the decrease being more pronounced for longer
chains. As discussed in relation to Figure 1, the decrease in TS is
a manifestation of the growing compaction of polymers at
higher δ, which maximizes the number of monomer contacts.
In the process, the degree of helical order is altered. With
increasing δ helicity H monotonically decreases for all T. The
decrease in TS can be understood by noting that the stability of
the compact structure increases as δ increases. If we assume
that the free energy of the ordered structures does not change
significantly as δ increases, then the decrease in the transition
temperature is approximately given by kBΔTS ≈ −ΔGc(δ)
where ΔGc(δ) is the additional stabilization of the coil state due
to increasing strength of the monomer−monomer attraction.
The decrease in TS in the absence of crowding particles
depends on a number of factors including the value of δ.
Monodisperse Spherical Crowders. We report the

results of simulations of the shorter and longer polymer chains
(N = 16 and 64) in the presence of crowding particles modeled
as spheres that have purely repulsive interactions between
themselves and also with the monomers. We are primarily
interested in the effect of crowding on the helical structural
transitions as δ is varied. For δ = 0, which corresponds to good
solvent conditions, the polymer is a random coil at high
temperatures. The transition to a helical state occurs at low
temperatures (Figure 3). For this case, we expect that the
crowding particles will decrease the entropy of the coil state,
thus entropically stabilizing the helical states, HH, and HB
states as predicted in a number of studies. Thus, for δ = 0 we
expect TS to increase in the presence of crowding particles4 as
found experimentally.30 For δ ≠ 0 the lowest free energy
structures are determined by a balance between a number of
factors, as discussed above.
Because much less is known about crowding-induced

structural transitions in poor solvents or in nearly poor
solvents, we choose for each polymer chain the interaction
parameter value (δ) such that the uncrowded polymer forms a
helix at low temperatures. In each case, δ was chosen, based on
the results in the absence of crowding particles, such that it is
close to the crossover value, beyond which the low-temperature
conformations are collapsed into a hairpin. Accordingly, we
choose δ = 0.5 for N = 16 and δ = 0.3 for N = 64.
The dependence of Rg/Rg

H on T for systems in the presence
of spherical crowding particles is displayed in Figure 3. Plots (a)
and (b) are for N = 16, and plots (c) and (d) are for N = 64.
For each chain we performed two sets of simulations. In

Figures 3(a) and 3(c), the volume fraction of crowders is kept
constant at ϕc = 0.2, and the radius of crowders rc is varied. The
results obtained by varying volume fractions ϕc for a rc = 2 Å
for the N = 16 chain and rc = 4 Å for N = 64 are in Figures 3(b)
and 3(d), respectively.
It is instructive to compare the effect of crowding in Figure 3

to the effect of increasing δ for isolated chains (Figure 2 and ref
22). Comparison of the results in these figures shows that
qualitatively the addition of crowders is equivalent to increasing
the effective monomer−monomer attraction. This conclusion is
valid for all regimes discussed previously: weak attraction, when
the low-temperature configuration is an expanded helix; and
higher δ when the polymer chain collapses at low T into hairpin
and HB structures. We observe that given the sufficiently high
value of the bare attraction δ crowding can induce collapse into
hairpins at low temperatures. Physically crowding induces
intramolecular depletion attraction that arises because the
crowding particles are excluded from the overlap zone
surrounding two monomers. The entropic nature of the
depletion attraction, known as Asakura−Oosawa (AO)
force,31 results in the renormalization of the bare δ to δeff = δ
+ f(ϕc,rc)

32 where f(ϕc,rc) is an increasing function of the
volume fraction, ϕc, of the crowding particles. Thus, even with
δ = 0, crowding can cause collapse the polymer,33−36 which in
our case leads to formation of various ordered structures. The
arguments given here are only qualitative because crowding
agents multiparticle interactions,32 which cannot be captured
using only δeff.
We can infer from Figures 3(a) and 3(c) that, at a given ϕc

and T, the effective crowder-induced monomer−monomer
attraction increases as the size of the crowding particles
decreases. In addition, Figures 3(b) and 3(d) show that for a
fixed size of the crowding particle, rc, the effective monomer−
monomer attraction increases with the increase of ϕc. These

Figure 3. Normalized radius of gyration Rg/Rg
H as a function of T in

the presence of crowders. Rg
H is the value of the radius of gyration of

the energy minimized structures. (a) Effect of crowder radius rc (values
given in the plot) at a constant crowder volume fraction ϕc = 0.2 on
structural transitions in the N = 16 chain with δ = 0.5. (b) Varying ϕc
at a constant rc = 2 Å for N = 16, δ = 0.5. Plots (c) and (d) explore
effects of varying rc and ϕc, respectively, for a longer chain, N = 64,
with δ = 0.3.
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conclusions are qualitatively valid for all N, although the
strength of the effective interaction depends on rc.
From the AO theory,31 which like other treatments is also

only approximate, it can be shown that the strength of the
depletion attraction, whose range is rc (for hard crowding
particles), is proportional to ≈(1/rc3). Thus, small crowding
particles are more effective in compacting the polymer8 even
though the range of attraction is diminished. The AO theory
only qualitatively explains the simulation results. At low volume
fractions ϕc and large rc (coil−helix transition regime), the
effect of crowding is mostly to make expanded random-coil
structures at high T more compact (Figure 3), which is roughly
equivalent to increasing the bare δ. The presence of crowders
has a smaller effect on the fluctuating helix at lower T.
In Figure 4, we plot the distribution functions P(Rg/Rg

H) for
the two cases in Figure 3 with the highest effect of crowding: N
= 16 with rc = 2Å, ϕc = 0.2 (Figure 4(a)), and N = 64 with rc =
4Å, ϕc = 0.2 (Figure 4(b)). In the absence of crowders, in both
cases where the helix−coil type of transition takes place, the
P(Rg/Rg

H) values are similar to that in Figure 2(a) for N = 32.
Crowding particles induce additional effective attraction leading
to the emergence of hairpin-like structures. For N = 16, the
dominant structure is a hairpin (Figure 4(a)) that coexists with
an extended helix. In the N = 64 case, shown in Figure 4(b), the

dominant structure at low T is a HH, which coexists with a HB
and an extended helix.

Mixtures of Spherical Crowders. We consider a model
system of crowders that contain a binary mixture of spherical
particles. In the binary mixture the composition of the
individual component is as an additional variable that can
affect the structural changes in the polymer. We study the
helical transitions in a number of binary mixtures of spheres
and look at the effects of variation of the crowder radius and the
volume fraction of the components in the mixture. The
simulation procedure is the same as in the previous case. We
choose the size of the simulation box using the condition that it
should accommodate a fully extended helix plus several average
intercrowder distances. To satisfy these criteria, we used
simulation boxes containing 1200−1800 particles for the
systems studied. To ensure that conformations of the polymer
and the associated configurations of the crowding particles are
adequately sampled, we restricted these simulations to N = 16.
The attraction parameter for all simulations is δ = 0.3. As

discussed previously,22 without crowders the polymer with δ =
0.3 adopts an extended helix conformation with decreasing
temperatures. In the presence of monodisperse spherical
crowding agents, the largest effect of crowding is observed
for rc = 2Å, ϕc = 0.2 (Figure 3(a)), for which the low-
temperature conformation is dominated by the HH (Figure

Figure 4. Changes in Rg/Rg
H probability density as a function of T for the two systems of Figure 3 with the greatest effect of crowding. (a) N = 16, δ

= 0.5; rc = 2Å, ϕc = 0.2. (b) N = 32, δ = 0.3; rc = 4Å, ϕc = 0.2. The structures of crowding-induced HH and HB are also shown.

Figure 5. Mixture of two crowders rc1 = 2 Å, rc2 = 4 Å and ϕc1 = ϕc2 = 0.1 for an N = 16 chain with δ = 0.5. (a) Temperature-dependent changes in
the distribution of Rg/Rg

H. (b) Average Rg/Rg
H as a function of T for the mixture (circles as indicated in the plot). The corresponding results for the

one-component systems at ϕc = 0.2 are shown for reference.
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4(a)). For a larger radius of rc = 4 Å at the same volume
fraction, the dominant low T conformation is an extended helix.
We simulated the conformational changes of the N = 16

polymer in a 50:50 mixture (by volume) containing crowding
particles with rc1 = 2 Å, rc2 = 4 Å, and ϕc1 = ϕc2 = 0.1. (In this
system, we do not observe phase separation of crowders at any
temperature.) Figure 3 and arguments based on AO theory
show that increasing the crowder radius diminishes their effects
on the coil−helix transition. This is indeed what we observe in
Figure 5(a), which shows that at low temperatures the
probabilities of finding the polymer in a HH or extended
helix conformation are comparable. This can be qualitatively
rationalized as a result of superposition of probability
distributions of the two reference one-component systems: rc
= 2Å, ϕc = 0.2 and rc = 4Å, ϕc = 0.2. The averaged Rg/Rg

H

plotted in Figure 5(b) for the mixture (solid black lines) and
the two reference systems (dashed lines in Figure 5(b))
demonstrate that, at least for this particular system, even
quantitatively the conclusion holds true. One can obtain the
Rg/Rg

H results for the mixtures, simply by averaging the values
for the components comprising the mixture, a result that has
general applicability.10,37

We also tested the effects of varying the composition of the
second components on the coil−helix transition. The
probability distributions of Rg/Rg

H at low and high T obtained
by changing rc2 and ϕc2 are shown in Figure 6. In these

simulations, we keep the first component constant at rc1 = 2Å,
ϕc1 = 0.1 and vary the properties of the second component. Let
us start with a mixture with rc1 = 2 Å, rc2 = 4 Å, and ϕc1 and ϕc2
= 0.1 (dashed black line in Figure 6) and increase the volume
fraction of the second component to ϕc2 = 0.3. Figure 6 shows
that the polymer is compact at both low and high temperatures.
At the low temperature, the dominant conformation can be
thought of as compact, but deformed HH containing defects
arise from an increase in the number of intrapolymer contacts.
The more ideal HH is also discernible in the probability
distribution (Figure 6) as a shoulder, especially at the low
temperature (the peak at Rg/Rg

H ≈ 0.57 in Figure 6). The extent
of polymer compaction due to crowding is larger at the higher
volume fraction of 0.4 than for the one-component system rc =
2Å, ϕc = 0.2. At the high temperature, the probability
distribution also has a maximum at a value of Rg/Rg

H

corresponding to the population of the deformed HH. The

distribution is shifted to more compact conformations
compared with the black dashed curve calculated using rc2 =
4 Å, ϕc2 = 0.1 (see Figure 6(b)). These conclusions are
consistent with the expected result that increasing the crowder
volume fraction leads to a greater polymer compaction.
We increased the radius of the second component to rc2 = 8

Å, keeping ϕc2 = 0.3. As expected, the increase of rc leads to
diminished crowding effects found in the one-component
systems. At T = 167 K the dominant conformation is the HH
(blue curve in Figure 6a), with the distribution that resembles
the one for rc = 2 Å, ϕc = 0.2 (Figure 4a). For the higher T
(Figure 6(b)), the distribution shifts to less compact
conformations as well. On the basis of these results, we
conclude that the trend regarding the variation of rc is valid for
mixtures in the same manner as for one-component systems. In
other words, the smaller crowding particles (more precisely (rc/
Rg
H) ≤ 1) have a greater influence because they induce stronger

intramolecular AO depletion attraction.
We note parenthetically that in the system (rc1 = 2 Å and rc1

= 8 Å) at T = 167 K the crowders phase separate. The polymer
is localized predominantly in the phase containing the smaller
(rc = 2 Å) crowding particles. However, the phase separation
does not lead to any new features in the crowder-induced
polymer compaction. The probability distribution in Figure
6(b) is consistent with diminished crowding effects for a larger
rc2.

Crowders as Spherocylinders. To elucidate the effect of
the shape of crowders on the polymer conformations at low
and high temperatures, we performed simulations containing
monodisperse rodlike (more precisely spherocylinders) crowd-
ing particles and varying aspect ratio L/D. We chose N = 64
with δ = 0.3 and the volume fraction of the spherocylinders, ϕc
= 0.2. Systems with L/D = 1, 2 and 4 L/D = 1, 2, and 4 are
studied. For each L/D, we performed simulations at T = 167 K
and T = 492 K to study the effects of rodlike crowders on
mostly helical and mostly disordered conformations, respec-
tively. Instead of fixing ϕc and varying the volume per particle,
one could simulate a system with both ϕc and the volume per
particle (regardless of their shape). This will result in variations
in the number density. Because on theoretical grounds it is ϕc
that is crucial for hard crowding particles, we studied the shape
effects by fixing ϕc.
The probability density distributions of Rg/Rg

H and the
averaged values of Rg/Rg

H and helix content for the polymer in
the presence of spherocylinders are shown in Figure 7. Let us
consider the results for T = 167 K, presented in Figures 7(a)
and 7(b). In the absence of crowders, the most probable
polymer conformation is a well-formed helix, with the
maximum in Rg/Rg

H distribution slightly less than unity, as is
clear from the Rg/Rg

H distribution (dashed violet line in Figure
7(a)). Addition of spherical crowders (L/D = 0, thick black
line) leads to collapse of the extended helix into a HH and a
three HB being the most probable conformations (cf. Figure
4(b)).
In contrast to spherical crowders (L/D = 0), spherocylinders

have a drastically different effect on the structures of the
polymer. Even for L/D = 1 we see that the extended helical
conformation is dominant in contrast to HH and HB that are
populated in the presence of spherical crowders. The peaks for
HH (Rg/Rg

H ≈ 0.3) and three helix bundle (Rg/Rg
H ≈ 0.5)

conformations, while still distinctly present (Figure 7a), are
strongly suppressed. For crowders with L/D = 2 and 4 the
results are almost identical, which allows us to extrapolate them

Figure 6. Probability distributions of Rg/Rg
H for three different

mixtures of crowders at low and high temperatures. For all systems, rc1
= 2 Å and ϕc1 = 0.1. The second component, as indicated in the plots,
is rc2 = 4 Å, ϕc2 = 0.1 (dashed black line); rc2 = 4 Å, ϕc2 = 0.3 (red
line); rc2 = 8 Å, ϕc2 = 0.3 (blue). Plots (a) and (b) are for T = 167 and
T = 492 K, respectively.
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into the nematic region of higher L/D values. In these cases the
extended conformation is even more dominant than is the case
in the absence of crowders. As the aspect ratio increases, the
polymer fluctuations are greatly suppressed by the rodlike
crowding particles resulting in the formation of the helical
conformation as the most lowest free energy state (see below
for a physical explanation).
The average values of Rg/Rg

H and H, presented in Figure
7(b), reflect the spherocylinder-induced conformational
changes in the polymer. The average Rg/Rg

H at L/D = 0 is
smaller than that obtained at ϕc = 0 and increases monotoni-
cally with increasing L/D (black circles in Figure 7b). Already
at L/D ≈ 1, the radius of gyration is equal to that of the no-
crowder system (although the underlying conformations are
slightly different). With further increase in L/D, the average Rg/
Rg
H increases and appears to saturate for L/D ≥ 2. The variation

in the helix content H is much smaller (compare dashed and
red lines in Figure 7b), which is in agreement with the
conformational changes observed in Figure 7(a).
Thus, the effect of rodlike crowders (L/D > 1 for our case) at

low temperatures is to destabilize the collapsed HH-like
conformations. At higher aspect ratios, bending fluctuations
of a well-formed helix, which are present at ϕc = 0 and in the
presence of spherical crowders, are suppressed leading to the
formation of a nearly ideal helix with a sharp peak in the
distribution of Rg/Rg

H at Rg/Rg
H ≈ 0.9. The average value of Rg/

Rg
H is fairly close to that for an ideal helix. A similar but much

less dramatic trend holds at T = 492 as well (Figures 7(c) and
(d)). The probability density shows that, without crowders, the
system is a disordered “random” coil (peak in Rg/Rg

H ≈ 0.5).
Addition of spherical crowders results in chain compaction as
shown by a shift in Rg/Rg

H to ≈0.4. A change of the crowder

shape to a rod with L/D = 1 does not have a perceptible effect
on the system, with the Rg/Rg

H lying virtually on top of the
spherical crowders one. A further increase to L/D = 2 and 4
leads to a shift in the distribution of Rg/Rg

H to more extended
conformations with larger Rg/Rg

H. Correspondingly, the average
of Rg/Rg

H in Figure 7(d) increases with increasing L/D. In this
case the average Rg/Rg

H does not saturate at larger L/D. We
expect further chain expansion as the spherocylinders make
transition to a nematic phase at higher L/D and ϕc. The
changes in the helicity, which is low at high T, are negligible.

Nematic Phase of the Rodlike Crowders and Polymer
Helix Formation. The overall picture that emerges is that the
spherocylinders lead to an expansion of the polymer leading to
a nearly ideal helical state especially at low temperatures.
Because these crowding particles can undergo a transition to a
nematic phase at high enough ϕc,

38 it is of interest to ascertain
if such a transition leads to the predominant formation of an
ideal hairpin over HH and HB found in the presence of
spherical crowders (Figure 6). To understand the connection
to a possible nematic liquid crystal formation in the crowding
particles, we analyzed the eigenvalues of the orientation tensor

∑⟨ ⟩ =αβ α β
=

Q R
n R

u u( )
1

( ) i j

n R
i j

, 1

( )
( ) ( )

(9)

defined for number n(R) rods, which are closer than a certain
distance R to the polymer. In eq 9, uα

(i) is the α component of
the unit vector along the ith rod. For each distance R we
calculate the tensor for n(R) rods only if the center of the rod is
≤R from any polymer monomer. The largest eigenvalue I3(R)
of Qαβ is used to define the nematic order parameter P2(R) =
(3I3(R) − 1)/2.
The systems studied here do not exhibit nematic ordering

(P2(∞) < 0.1 for all L/D simulated). In other words, the
volume fraction is far less than that needed for formation of a
nematic phase. However, we find that P2(R) increases in the
vicinity of the polymer (small R) at high and low temperatures,
with the effect being more pronounced for higher L/D. Analysis
of the correlations between the eigenvector associated with I3
and the eigenvector along the long axis of the gyration tensor of
the polymer shows preferential orientation of the rods in the
direction of the long polymer axis. Thus, the elongation of the
polymer conformations observed at T = 167 and 492 K is due
to local partial nematic ordering of the spherocylinders in the
vicinity of the polymer. The ordering is induced by the
presence of the polymer chain, which introduces the preferred
direction along the polymer in the expanded conformations.
These expanded conformations are stabilized by the local
partial nematic ordering of the spherocylinders. The coupling
between the local ordering of the crowding particles and the
polymer chains renders the helical state stable as the aspect
ratio increases. It should be noted that transitions to HH and
HB could occur at high L/D ratio if δ is increased.

■ CONCLUSIONS

The diagram of states of a polymer in the presence of crowding
particles is determined by a number of factors such as the
solvent quality parametrized by δ, shape, size, volume fraction,
and polydispersity of the crowders. Only when δ is small, the
ESM predicting enhanced stability of the ordered states with an
increase in the ordering temperature, TS, with increasing ϕc is
expected.4 For δ ≠ 0, describing a range of solvent quality

Figure 7. Effect of the aspect ratio L/D spherocylinders on the
structures of N = 64 polymer, at constant crowder volume fraction ϕc
= 0.2 and diameter D = 4 Å. (a) and (c) give the probability
distributions of Rg/Rg

H for different values of L/D parameter for T =
167 K and T = 492 K, respectively. Results for spherical crowders (L/
D = 0) are in a thick black line, and a system without crowders
(dashed violet line) is also shown for reference. (b) and (d) Rg/Rg

H

(black circles) and helix content H (red squares) as a function of L/D
for the same two temperatures T = 167 K and T = 492 K. Dashed
black and red lines are reference values of Rg/Rg

H and H, respectively,
in a system without crowders.
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(moderately poor (Θ-like) or poor), crowding-induced
structural transitions and the changes in the dependence of
TS on δ can be complicated.22 Here, we have shown that for a
homopolymer, in the absence of crowders, an increase in δ
leads to the formation of HH (for N = 16) and multiple HBs
(for N = 16, 32, 64). The character of the transitions changes
with increasing δ from coil−helix to globule−helix. In a
sufficiently poor solvent (large δ), the helix content of the low
T globule-like conformations can be less than what is found at
moderate values of δ. This occurs because the energy of the
polymer can be minimized by increasing the number of
contacts between monomers which can only be achieved at the
cost of reducing the helical content favored by the stiffness
associated with the dihedral angle potential. As a corollary, we
predict that if γ (Figure 1) is increased the helical structures
would remain stable over a wider temperature range even if δ is
increased.
In the presence of spherical crowders, there is an increase in

the extent of collapse of the polymer at all temperatures, which
is due to an increase in δ arising from the depletion effect. The
changes in polymer conformations are similar to those observed
in the system without crowders but occur at higher effective δ.
Thus, introduction of spherical crowders favors more compact
conformations and destabilizes the helical structure. As a result,
in contrast to the small δ regime, the structural transition
temperature TS (defined using the average helicity of the
polymer) is lower for a system with crowders than for the
isolated polymer (ϕc = 0). The transition temperature TS
decreases (signifying a greater helix destabilization due to
crowding effects) with decreasing radius of spherical crowder rc
and increasing volume fraction ϕc. Introduction of spherical
crowders can also induce formation of the HH and HB helix at
low temperature in a polymer, which in the absence of
crowders forms only an extended helix at low temperatures.
In the mixtures of two spherical crowders, the qualitative

conclusions remain the same. Crowding induces effective
monomer attraction which prefers compact structures with a
higher number of monomer contacts and destabilizes helical
structures especially when δ is large. The structural transition
temperature decreases with increasing ϕc and decreasing rc of
one crowding component, keeping the properties of other
components constant at moderate and high δ values.
The results for mixtures also point to an interesting

conclusion regarding explicit solvent. If we consider that the
small rc component represents explicit solvent and the particles
with larger rc are spherical crowding particles, then our results
show that replacing half (by volume) the crowders with spheres
of a larger size leads to a decrease in the effective attraction δ.
This result indicates a possibility of a complex scenario for
crowding-induced structural transition, when the effective large
crowder attraction on the polymer is counterbalanced by the
modification in the solvent-mediated monomer interaction. A
similar scenario has been explored in the context of collapse of
coil in a mixture of athermal solvents.39

We also studied the effect of changing shape of crowders, by
keeping the crowder volume fraction ϕc constant and building
rodlike crowders out of spherical crowders. Surprisingly, at all
temperatures the increase in L/D leads to chain expansion,
which is evident even at L/D as low as 2. At low temperatures
the expansion is favored due to destabilization of the collapsed
hairpin conformations. At higher temperatures when con-
formations are mostly disordered, the elongation is due to
stabilization of extended conformation, which exhibits a

preferred direction along the polymer. In both cases we
observe local, polymer-induced nematic order with the nematic
director orienting preferentially along the long axis of the
polymer. Remarkably, for N = 64, HH and HB structures are
completely destabilized. It would be of interest to further
explore the N-dependence of the phase diagram in the presence
of spherocylinders.
In this study, we have assumed that the crowding agents are

monodisperse. The effect of polydispersity for spherical
crowding agents has been treated earlier.10 It would be
interesting to consider polydispersity effects of rodlike particles
on the stability of ordered structures. As pointed out
elsewhere,4,8 crowding has a maximum effect if the size of the
crowding agents is less than that of the protein. In the opposite
limit the stability becomes independent of the size of the
crowding particle. Thus, if the crowding is a mixture of rods of
differing sizes then the smallest spherocylinder would have the
maximum effect on the stability. In addition, by appealing to
previous studies10,37 we suggest that the effect on stability
would be additive and be determined by the partial volume
fraction of the different components (classified by size) of the
rod particles. Explicit simulations are needed to test this
conjecture.
The use of coarse-grained models to describe complex

problems involving multiple length and energy scales is
becoming increasingly common. The present article presents
a case study of the structural transitions that a polymer
undergoes as the size, shapes, and volume fraction of the
crowding particles are changed. There is a remarkable
complexity in the structures that the polymer adopts depending
upon the nature of crowding agents, solvent quality, and
temperature. A plausible lesson from this study for the effects of
crowding on the self-assembly of proteins and RNA is that
there are multiple scenarios. For example, crowding can
stabilize (by the ESM) or destabilize (depending on the quality
of the solvent) proteins or be neutral. In other words, there are
multiple possibilities and not a single universal scenario to
capture the effects of crowding on protein or RNA stability.
Only by studying the phase diagram over a wide range of
conditions, rather than at a single external condition, can we
hope to describe in quantitative detail the fate of a protein or
RNA in the complex cellular environment.
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