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Protein collapse is encoded in the folded
state architecture

Himadri S. Samanta, *a Pavel I. Zhuravlev, b Michael Hinczewski,c

Naoto Hori, a Shaon Chakrabartib and D. Thirumalaiab

Folded states of single domain globular proteins are compact with high packing density. The radius of

gyration, Rg, of both the folded and unfolded states increase as Nn where N is the number of amino

acids in the protein. The values of the Flory exponent n are, respectively, E1
3 and E0.6 in the folded and

unfolded states, coinciding with those for homopolymers. However, the extent of compaction of the

unfolded state of a protein under low denaturant concentration (collapsibility), conditions favoring the

formation of the folded state, is unknown. We develop a theory that uses the contact map of proteins as

input to quantitatively assess collapsibility of proteins. Although collapsibility is universal, the propensity to be

compact depends on the protein architecture. Application of the theory to over two thousand proteins

shows that collapsibility depends not only on N but also on the contact map reflecting the native structure.

A major prediction of the theory is that b-sheet proteins are far more collapsible than structures dominated

by a-helices. The theory and the accompanying simulations, validating the theoretical predictions, provide

insights into the differing conclusions reached using different experimental probes assessing the extent of

compaction of proteins. By calculating the criterion for collapsibility as a function of protein length we

provide quantitative insights into the reasons why single domain proteins are small and the physical reasons

for the origin of multi-domain proteins. Collapsibility of non-coding RNA molecules is similar b-sheet

proteins structures adding support to ‘‘Compactness Selection Hypothesis’’.

1 Introduction

Folded states of globular proteins, which are evolved (slightly)
branched heteropolymers made from twenty amino acids, are
roughly spherical and are nearly maximally compact with high
packing densities.1–3 Despite achieving high packing densities
in the folded states, globular proteins tolerate large volume
substitutions while retaining the native fold.4 This is explained
in a couple of interesting theoretical studies,5,6 which demon-
strated that folded states of globular proteins are sufficiently
soft to accommodate mutations. Collectively these and related
studies show that folded proteins are compact. When they
unfold, which can be achieved upon addition of high concen-
trations of denaturants (or applying a mechanical force), they
swell adopting expanded conformations. The radius of gyration
(Rg) of a folded globular protein is well described by the Flory

law with Rg � aNN
1
3, where aN E 0.33 nm,7 whereas in the

swollen state Rg E aDNn, where aD (E0.2 nm) and n E 0.6 is

the Flory exponent.8 Thus, viewed from this perspective we
could surmise that proteins must undergo a coil-to-globule
transition,9,10 a process that is reminiscent of the equilibrium
collapse transition in homopolymers.11,12 The latter is driven by
the balance between conformational entropy and intra-polymer
interaction energy resulting in the collapsed globular state. The
swollen state is realized in good solvents (interaction between
monomer and solvents is favorable) whereas in the collapsed
state monomer–monomer interactions are preferred. The coil-
to-globule transition in large homopolymers is akin to a phase
transition. The temperature at which the interactions between
the monomers roughly balance monomer–solvent energetics
is the y temperature. By analogy, we may identify high (low)
denaturant concentrations with good (poor) solvent for proteins.

Despite the expected similarities between the equilibrium
collapse transition in homopolymers and the compaction of
proteins, it is still debated whether the unfolded states of proteins
under folding conditions are more compact compared to the states
created at high denaturant concentrations. If polypeptide chain
compaction is universal, is collapse in proteins essentially the
same phenomenon as in homopolymer collapse or is it driven
by a different mechanism?13–17 Surprisingly, this fundamental
question in the protein folding field has not been answered
satisfactorily.10,18 In order to explain the plausible difficulties in
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quantifying the extent of compaction, let us consider a protein,
which undergoes an apparent two-state transition from an
unfolded (swollen) to a folded (compact) state as the denaturant
concentration (C) is decreased. At the concentration, Cm, the
populations of the folded and unfolded states are equal. A vexing
question, which has been difficult to unambiguously answer in
experiments, is: what is the size, Rg, of the unfolded state under
folding conditions (C o Cm)? Small Angle X-ray Scattering (SAXS)
experiments on protein L show practically no change in the
unfolded Rg as C is changed.19 On the other hand, from experiments
based on single molecule Fluorescence Resonance Energy Transfer
(smFRET) it has been concluded that the size of the unfolded state
is more compact below Cm compared to its value at high C.20,21 The
so-called smFRET–SAXS controversy is unresolved. Resolving this
apparent controversy is not only important in our understanding of
the physics of protein folding but also has implications for the
physical basis of the evolution of natural sequences.

The difficulties in describing the collapse of unfolded states
as C is lowered could be appreciated by the following observations.
Single domain proteins are finite-sized with N rarely exceeding
B200. Most of those studied experimentally have N o 100. Thus,
the extent of change in Rg of the unfolded states is small, requiring
high precision experiments to quantify the changes in Rg as C is
changed. For example, in a recent study,22 we showed that in PDZ2
domain the change in Rg of the unfolded states as the denaturant
concentration changes from 6 M guanidine chloride to 0 M is only
about 8%. Recent experiments have also established that changes
in Rg in helical proteins are small.20

In homopolymers there are only two possible states, coil and
globule, with a transition between the two occurring at Ty.
On the other hand, in globular proteins one can conceive of at
least three states (we ignore intermediates here): (i) the
unfolded state UD at high C; (ii) the compact but unfolded
state UC, which could exist below Cm; (iii) the native state. Do
the sizes of UD and UC differ? This question requires a clear
answer as it impacts our understanding of how proteins fold,
because the characteristics of the unfolded states of proteins
plays a key role in determining protein foldability.23–25

Given the flexibility of proteins (persistence length on the
order of 0.5–0.6 nm), we expect that the size of the extended
polypeptide chain must gradually decrease as the solvent
quality is altered. Experiments on a number of proteins show
that this is the case.20,26–29 However, in some SAXS experiments
the theoretical expectation that RUC

g oRUD
g for one protein

was not borne out,10,19 precipitating a more general question:
are chemically denatured proteins compact at low C? The
absence of collapse is not compatible with inferences based on
smFRET21 and theory.23 Here, we create a theory to not only a
plausible explanation of the smFRET–SAXS controversy but also
provide a quantitative description of how the propensity
to be compact is encoded in the native topology. The theory,
based on polymer physics concepts, includes specific attractive
interactions (mimicking interactions accounting for native
contacts in the Protein Data Bank (PDB)) and a two-body
excluded volume repulsion. By construction the model does
not have a native state. In order to validate the theoretical

predictions, we performed simulations using a completely
different model often used in protein folding simulations.
In both the models, there are only two states (analogues of
UD and UC) in the model. The formation of UC is driven by the
favourable gain in free energy due to contacts present in the
folded state. Thus, chain compaction is driven in much
the same way as in homopolymers, altered only by specific
interactions that differentiate proteins from homopolymers.

Theory and simulations predict how the extent of compaction
(collapsibility) is determined by the strength and the number of
the native contacts and their locations along the chain. Proteins
for which favorable energy per contact is on the order of a few
kBT (kB is the Boltzmann constant and T is the temperature) are
deemed to be collapsible. A similar definition can be given
for homopolymers. We use a large representative selection of
proteins from the PDB to establish that collapsibility is an
inherent characteristic of evolved protein sequences. A major
outcome of this work is that b-sheet proteins are far more
collapsible than structures dominated by a-helices. Our theory
suggests that there is an evolutionary pressure on proteins for
being compact as a pre-requisite for kinetic foldability, as we
predicted over twenty years ago.23 We come to the inevitable
conclusion that the unfolded state of proteins must be compact
under native conditions, and the mechanism of polypeptide
chain compaction has similarities as well as differences to
collapse in homopolymers. As a by-product of this work, we also
establish that certain non-coding RNA molecules must undergo
compaction prior to folding as their folded structures are
stabilized predominantly by long-range tertiary contacts.

2 Theory

We start with an Edwards Hamiltonian for a polymer chain:30

H ¼ 3kBT

2a02

ðN
0

@r

@s

� �2

dsþ kBTVðrðsÞÞ; (1)

where r(s) is the position of the monomer s, a0 the monomer
size, and N is the number of monomers. The first term in
eqn (1) accounts for chain connectivity, and the second term
represents volume interactions and favorable interactions
between select monomers given by VðrðsÞÞ,

VðrðsÞÞ ¼ v

2pa02ð Þ3=2
XN
s¼0

XN
s0¼0

e
� rðsÞ�rðs0Þð Þ2

2a02

� k

2ps2ð Þ3=2
X
si ;sjf g

e
�

r sið Þ�r sjð Þð Þ2
2s2

(2)

The first term in eqn (2) accounts for the homopolymer
(non-specific) two-body interactions. It is well established in the
theory of homopolymers that in good solvents with v 4 0 the
polymer swells with Rg B aNn (nE 0.6). In poor solvents (v o 0)
the polymer undergoes a coil–globule transition with Rg B aNn

(n E 1/3). These are the celebrated Flory laws. Here, we
consider only the excluded volume repulsion case (v 4 0).
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The second term in eqn (2) requires an explanation. The
generic scenario for homopolymer collapse is based on the
observation that the equilibrium collapsed state may be pictured
as tight packing of a string made of blobs (additional discussion
is given below). The globule forms to maximize favorable intra-
molecular contacts while simultaneously minimizing surface
tension. Compaction in proteins, although shares many features
in common with homopolymer collapse, could be different. A key
difference is that the folded states of almost all proteins are
stabilized by a mixture of local contacts (interaction between
residues separated by less than say B8 but greater than 3 residues)
as well as non-local (48 residues) contacts. Note that the demarca-
tion using 8 between local and non-local contacts is arbitrary, and
is not germane to the present argument. These specific interactions
also dominate the enthalpy of formation of the compact, non-
native state UC, playing an important role in its stability. Previous
studies using lattice models of proteins in two31 and three32

dimensions showed that formation of compact but unfolded states
are predominantly driven by native interactions with non-native
interactions playing a sub-dominant role. A more recent study,33

analyzing atomic detailed folding trajectories has arrived at the
same conclusion. Therefore, our assumption is that the topology of
the folded state could dictate collapsibility (the extent to which the
UD state becomes compact as the denaturant concentration is
lowered) of a given protein. In combination with the finite size of
single domain proteins (N B 200), the extent of protein collapse
could be small. In order to assess chain compaction under native
conditions we should consider the second term in eqn (2). We note
that the second term needed to probe collapsibility is analogous to
the Go model used to study folding of proteins.

It is worth mentioning that several studies investigated the
consequences of optimal packing of polymer-like representations
of proteins.34–40 These studies primarily explain the emergence of
secondary structural elements by considering only hard core
interactions, attractive interactions due to crowding effects,38,41

or formation of compact states induced by anisotropic attractive
patchy interactions.40 However, the absence of tertiary inter-
actions in these models, which give rise to compact states of
varying topologies, prevents them from addressing the coil-to-
globule transition. This requires creating a microscopic model
along the lines described here.

We note in passing, with a discussion to follow, that a
number of studies have considered the effect of crosslinks on
the shape of polymer chains,42–48 which have served as models
for polymer gels and rubber elasticity.49–51 In these studies the
contacts were either random, leading to the random loop
model,43 or explicit averages over the probability of realizing
such contacts were made,42,52 as may be appropriate in modeling
gels. These studies inevitably predict a coil-to-globule phase
transition as the number of crosslinks increases.

In contrast to models with random crosslinks, in our theory
attraction exists only between specific residues, described by
the second term in eqn (2), where the sum is over the set of
interactions (native contacts) involving pairs {si,sj}. We use the
contact map of the protein (extracted from the PDB structure)
in order to assign the specific interactions (their total number

being Nnc). The contact is assigned to any two residues si and sj

if the distance between their Ca atoms in the PDB entry is less
than Rc = 0.8 nm and |si � sj| 4 2. We use Gaussian potentials
in order to have short (but finite) range attractive interactions.
For the excluded volume repulsion, this range is on the order of
the size of the monomer, a0 = 0.38 nm. For the specific
attraction, the range is the average distance in the PDB entry
between Ca atoms forming a contact (averaged across a selection
of proteins from the PBD). We obtain s = 0.63 nm.

By changing the value of k, and hence the strength of
attraction, the polypeptide chain would become compact.
Decreasing k is analogous to chemically denaturing proteins,
although the connection is not precise. At high denaturant
concentrations (k E 0, good solvent) the excluded volume
repulsion (first term in eqn (2)) dominates the attraction, while
at low C (high k, poor solvent) the attractive interactions are
important. The point where attraction balances repulsion is the
y-point, and the value of k = ky. Although reserved for the coil-
to-globule transition in the limit of N c 1 in homopolymers,
we will use the same notation (y-point) here. In our model, at
the y-point, the chain behaves like an ideal chain. Because we
focus on the region between the extended coil and the y-point we
do not include three body interactions needed to quantitatively
characterize the globule state. If ky is very large then significant
chain compaction would only occur at very low (C { Cm)
denaturant concentrations, implying low propensity to collapse.
Conversely, small ky implies ease of collapsibility. For generic
foldable globular proteins the ground state (k c 1) of the
Hamiltonian in eqn (2) is a collapsed chain whose Rg is on the
order of the monomer size. In other words, a stable native state
does not exist for the model described in eqn (2). Thus, we define
protein collapsibility of the polypeptide chain to reach the y-point
as measured by the ky value, and use the changes in the radius of
gyration Rg as a measure of the extent of compaction.

Assessing collapsibility

For our model, which encodes protein topology without favoring
the folded state, we calculate hRg

2i using the Edwards–Singh (ES)
method.53 Although from a technical view point the ES method
has pros as well as cons, numerous applications show that in
practice it yields physically sensible results on a number of
systems. First, ES showed that the method does give the correct
dependence of hRg

2i on N for homopolymers. Second, even when
attractive interactions are included, the ES method leads to
predictions, which have been subsequently verified by more
sophisticated theories. An example of particular relevance here
is the problem of the size of a polymer in the presence of obstacles
(crowding particles). The results of the ES method54 and those
obtained using renormalization group calculations55 are qualita-
tively similar. Here, we adopt the ES method, allowing us to
deduce far reaching conclusions for protein collapsibility than is
possible solely based on simulations. We use simulations on a
limited set of proteins to further justify the conclusions reached
using the analytic theory.

The ES method is a variational type calculation that represents
the exact Hamiltonian by a Gaussian chain, whose effective
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monomer size is determined as follows. Consider a virtual chain
without excluded volume interactions, with the radius of gyration
hRg

2i = Na2/6,53 described by the Hamiltonian,

Hv ¼
3kBT

2a2

ðN
0

@r

@s

� �2

ds; (3)

where the monomer size in the virtual Hamiltonian is a. We split
the deviation W between the virtual chain Hamiltonian and the
real Hamiltonian as,

H�Hv ¼ kBTW ¼ kBT W1 þW2ð Þ; (4)

where

W1 ¼
3

2

1

a02
� 1

a2

� �ðN
0

@r

@s

� �2

ds;

W2 ¼ VðrðsÞÞ:

(5)

The radius of gyration is Rg
2 ¼ 1

N

ÐN
0 r2ðsÞ
� �

ds, with the average

being,

r2ðsÞ
� �

¼
Ð
r2e�H=kBTdrÐ
e�H=kBTdr

¼
Ð
r2e�Hv=kBTe�WdrÐ
e�Hv=kBTe�Wdr

¼
r2ðsÞe�W
� �

v

e�Wh iv
(6)

where h� � �iv denotes the average over Hv.
Assuming that the deviation W is small, we calculate the

average to first order in W. Consequences of including second
order corrections are considered in Appendix A. The result is,

r2ðsÞ
� �

�
r2ðsÞð1�WÞ
� �

v

hð1�WÞiv
� r2ðsÞð1�WÞ
� �

v
ð1þWÞh iv (7)

and the radius of gyration is

Rg
2

� �
¼ 1

N

ðN
0

r2ðsÞ
� �

ds

¼ 1

N

ðN
0

r2ðsÞ
� �

v
þ r2ðsÞ
� �

v
hWiv � r2ðsÞW

� �
v

h i
ds;

(8)

If we choose the effective monomer size a in Hv such that
the first order correction (second and third terms on the right
hand side of eqn (A4)) vanishes, then the size of the chain is,
hRg

2i = Na2/6. This is an estimate to the exact hRg
2i, and is an

approximation as we have neglected W2 and higher powers of
W. Thus, in the ES theory, the optimal value of a from eqn (A4)
satisfies,

1

N

ðN
0

r2ðsÞ
� �

v
hWiv � r2ðsÞW

� �
v

h i
ds ¼ 0: (9)

Since W ¼ W1 þW2, the above equation can be written as

1

N

ðN
0

r2ðsÞ
� �

v
W1h iv � r2ðsÞW1

� �
v

h i
ds

¼ � 1

N

ðN
0

r2ðsÞ
� �

v
W2h iv � r2ðsÞW2

� �
v

h i
ds:

(10)

Evaluation of the r2ðsÞW1

� �
v

term yields,

r2ðsÞW1

� �
v
¼

3

2

1

a02
� 1

a2

� �Ð
r2
ÐN
0

_r2ds e
� 3
2a2

Ð N
0

_r2dsdr

Ð
e
� 3
2a2

Ð N
0

_r2dsdr

¼ 3

2

1

a02
� 1

a2

� �
@

@a

Ð
drr2ea

Ð
_rds

Ð
drea

Ð
_rds

0
@

1
A
������
a¼� 3

2a2

2
64

þ
Ð
r2e
� 3
2a2

Ð N
0

_r2dsdr
Ð
e
� 3
2a2

Ð N
0

_r2dsdr
� �2

ððN
0

_r2ds e
� 3
2a2

Ð N
0

_r2dsdr

3
7775

¼ 1

a02
� 1

a2

� �
a2

a2N

6

� �
þ r2ðsÞ
� �

v
W1h iv

(11)

With the help of eqn (11) and (9) we obtain the following
self-consistent expression for a,

1

a02
� 1

a2
¼

1

N

ÐN
0 r2ðsÞ
� �

v
hViv � r2ðsÞV

� �
v

h i
ds

a2

N

ÐN
0 ds r2ðsÞh iv

: (12)

Calculating the averages in Fourier space, where ~rn¼
1

N

ÐN
1 cos

pns
N

� �
rðsÞds, rðsÞ¼2

PN
n¼1

cos
pns
N

� �
~rn, and Rg

2¼2
P
n

~rn
2

�� ��� �
),

we obtain

1

a02
� 1

a2
¼ v

3

2

� �5=2 p
2

� �3=2

a2ð Þ5=2N3=2
PN
n¼1

1

n2

� �

�
XN
s¼0

XN
s0¼0

PN
n¼1

1� cos½npðs� s0Þ=N�
n4

PN
n¼1

1� cos½npðs� s0Þ=N�
n2

þ 3p2a02

2a2N

� �5=2

� k

3

2

� �5=2 p
2

� �3=2

a2ð Þ5=2N3=2
PN
n¼1

1

n2

� �

�
X
si ;sjf g

PN
n¼1

1� cos½np si � sj
	 


=N�
n4

PN
n¼1

1� cos½np si � sj
	 


=N�
n2

þ 3p2s2

2a2N

� �5=2
:

(13)

The best estimate of the effective monomer size a can be
obtained by numerically solving eqn (13) provided the contact
map is known. A bound for the actual size of the chain is
hRg

2i = Na0
2/6. Because we are interested only in the collapsibility

of proteins we use the definition of the y-point to assess
the condition for protein compaction instead of solving the
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complicated eqn (13) numerically. The volume interactions are
on the right hand side of eqn (13). At the y-point, the v-term
should exactly balance the k-term. Since at the y-point the
chain is ideal with a = a0, we can substitute this value for a
in the sums in the denominators of the v- and k-terms.
By equating the two, we obtain an expression for ky. Thus,
from eqn (13), the specific interaction strength at which two-
body repulsion (v-term) equals two-body attraction (k-term) is:

ky ¼
4

3
pa03

PN
s¼0

PN
s0¼0

PN
n¼1

1� cos½npðs� s0Þ=N�
n4

PN
n¼1

1� cos½npðs� s0Þ=N�
n2

þ 3p2

2N

� �5=2

P
si ;sjf g

PN
n¼1

1� cos½np si � sj
	 


=N�
n4

PN
n¼1

1� cos½np si � sj
	 


=N�
n2

þ 3p2s2

2a02N

� �5=2

:

(14)

The numerator in eqn (14) is a consequence of chain connec-
tivity and the denominator encodes protein topology through
the contact map, determining the extent to which the sizes
in UD and UC states change as C becomes less than Cm. The
numerical value of ky is a measure of collapsibility.

A comment about the solution of eqn (13) for a is worth
making. For k = 0, corresponding to the good solvent condition,
we expect that a c a0. In this case, analysis of eqn (13), in a
manner described in Appendix A, shows that there is only one

solution with a � N
1
10. Similarly, at ky eqn (13) also admits only

one solution. Thus, from the structure of eqn (13) we surmise
there are no multiple solutions, at least in the extreme limits
v = 0 and k = 0.

The expression for ky (eqn (14)) is equally applicable to homo-
polymers in which contacts between all monomers are allowed,
provided the self-avoidance condition is not violated. In Appendix
A, we derive an expression for ky p Ty B v(1 � (vN�0.5)/2). Thus,
our model correctly reproduces the known N dependence of
Ty obtained long ago by Flory56 using insightful mean field
arguments.

3 Results
Native topology determines collapsibility

The central result in eqn (14) can be used to quantitatively
predict the extent to which a given protein has a propensity to
collapse. We used a list of proteins with low mutual sequence
identity selected from the Protein Data Bank PDBselect,57 and
calculated ky using eqn (14) for these proteins. In all we
considered 2306 proteins. For each contact (i,j), the energetic
contribution due to interaction between i and j is k = (2ps2)�3/2k
according to eqn (2). Thus, ky = (2ps2)�3/2ky is the average
strength (in units of kBT) of a contact at the y-point. If ky,
calculated using eqn (14), is too large then the extent of
polypeptide chain collapse is expected to be small. It is worth
reiterating that the theory cannot be used to determine the

stability of the folded state, because in the Hamiltonian there
are only two states, UD (k = 0 in eqn (2)) and UC (k 4 ky).

The strength of contacts in real proteins (excluding possibly
salt bridges) is typically on the order of a few kBT in the absence
of denaturants. This is the upper bound for the contact
strength any theory should predict, as adding denaturant only
decreases the strength. If ky is unrealistically high (tens of kBT)
then the attractive interactions of the protein would be too
weak to counteract the excluded volume repulsion even at zero
denaturant concentration, resulting in negligible difference in
Rg between the UD and UC states.

Fig. 1a shows a two-dimensional histogram of the PDBselect
proteins in the (N, ky) plane. For the majority of small proteins
(less than 150 residues) the value of ky is less than 3 kBT,

Fig. 1 (a) Collapsibility quantified using ky (in units of kBT) for a set of 2306
PDB structures as a function of the length N of the proteins. White lines
show the ky at the boundaries for maximally and minimally collapsible
proteins (lower and upper lines respectively). Colors give a rough estimate
of the number of proteins, which decreases from red to violet. A dynamic
visualization of the data is available at author’s website.59 (b) Weight
function W (eqn (15)) of a contact, showing how much a contact between
residues i and j contributes to the compaction of a protein. The colors are
for different N values (shown in the inset). Interestingly, the location of the
maximum is roughly independent of N.
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indicating that the unfolded states of all of these proteins
should become compact at C o Cm. That collapse must occur,
as predicted by our theory and established previously in
lattice,23 and off-lattice models of proteins,58 does not necessarily
imply that it can be easily detected in standard scattering
experiments, because the changes could be small requiring
high precision experiments (see below).

Weight function of a contact

For a given N, the criterion for collapsibility in eqn (14) depends
on the architecture of the proteins explicitly represented in the
denominator through the contact map. Analysis of the weight
function of a contact, defined below, provides a quantitative
measure of how a specific contact influences protein compaction.
Some contacts may facilitate collapse to a greater extent than
others, depending on the location of the pair of residues in the
polypeptide chain. In this case, the same number of native
contacts Nnc in the protein of the same length N might yield
a lower (easier collapse) or higher (harder collapse) value of ky.
In order to determine the relative importance of the contacts with
respect to collapse, we consider the contribution of the contact
between residues i and j in the denominator of eqn (14),

Wði � jÞ ¼

PN
n¼1

1� cos½npði � jÞ=N�
n4

PN
n¼1

1� cos½npði � jÞ=N�
n2

þ 3p2s2

2a02N

� �5=2
: (15)

A plot of W(i� j) in Fig. 1b for different values of the chain length
N shows that the weight depends on the distance between the
residues along the chain. Contacts between neighboring residues
have negligible weight, and there is a maximum in W(i � j) at
i � j E 30 (for a0/s = 0.6), almost independent of the protein
length. The maximum is at a higher value for proteins with
N 4 100 residues. The figure further shows that longer range
contacts make greater contribution to chain compaction than
short range contacts. The results in Fig. 1b imply that proteins
with a large fraction of non-local contacts are more easily
collapsible than those dominated by short range contacts, which
we elaborate further below.

Maximum and minimum collapsibility boundaries

Using W(i � j) in eqn (15), we can design protein sequences to
optimize for ‘‘collapsibility’’. To design a ‘‘maximally collapsible’’
protein, for fixed N and number of native contacts Nnc, we assign
each of the Nnc contacts one by one to the pair i,j with a maximal
W(i, j) among the available pairs with the criterion that |i � j| 4
2. Such an assignment necessarily implies that the artificially
designed contact map will not correspond to any known protein.
Similarly, we can design an artificial contact map by selecting i, j
pairs with minimal W(i,j) till all the Nnc are fully assigned. Such a
map, which will be dominated by local contacts, are minimally
collapsible structures.

The white lines in Fig. 1a show ky of chains of length N with
Nnc(N) contacts distributed in ways to maximize or minimize

collapsibility. We estimated Nnc(N) E 0.6Ng, with g E 1.3, from
the fit of the proteins selected from the PDBSelect set (a fuller
discussion is presented in Appendix A). Since the lines are
calculated for Nnc from the fit over the entire set, and not from
Nnc for every protein, there are proteins below the minimal and
above the maximal curve in Fig. 1a. For a given protein, with
N and Nnc defined by its PDB structure, ky for all possible
arrangements of native contacts is largely in between the
maximally and minimally collapsible lines in Fig. 1a. The
majority of proteins in our set are closer to the maximal
collapsible curves, suggesting that the unfolded proteins have
evolved to be compact under native folding conditions. This
theoretical prediction is in accord with our earlier studies
which suggested that foldability is determined by both collapse
and folding transitions,23 and more recently supported by
experiments.20

b-Sheet rather than a-helical proteins undergo larger
compaction

The weight function W (eqn (15) and Fig. 1b) suggests that
contacts in a-helices (|i � j| = 4) only make a small contribution
to collapse. Contacts corresponding to the maximum of W at
i � j E 30 are typically found in loops and long antiparallel
b-sheets. Fig. 2 shows a set of proteins with high a-helix
(490%) and a set with high content of b-sheets (470%).59

The values of ky for the two sets are very distinct, so they barely
overlap. We find that many of the a-helical proteins lie on or
above the curve of minimal collapsibility while the rest are
closer to the maximal collapsibility. The smaller b-rich proteins
lie on the curve of maximal collapsibility slightly diverging from
it as the chain length grows. These results show that the extent
of collapse of proteins that are mostly a-helical is much less
than those with predominantly b-sheet structures.

Fig. 2 Dependence of ky on the secondary structure content of proteins.
We display ky for a-rich (490%) and b-rich (470%) proteins. Proteins that
are predominantly a-helical tend to be close to minimally collapsible
(upper line), while b-rich proteins are close to maximally collapsible curve
(lower curve). The green stars are for RNA with the left one at small N
corresponding to the Mouse Mammary Tumor Virus (MMTV) pseudoknot
(N = 34) and the other is Azoarcus ribozyme (N = 196).
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A note of caution is in order. The minimal collapsibility of
most a-helical proteins in the set may be a consequence of
some of them being transmembrane proteins, which do not
fold in the same manner as globular proteins. Instead, the
transmembrane a-helices are inserted into the membrane
by the translocon, one by one, as they are synthesized. Such
proteins would not have the evolutionary pressure to be compact.

Comparison between theory and simulations

The major conclusions, summarized in Fig. 1 and 2, are based
on an approximate theory. In order to validate the theoretical
predictions, we performed simulations for 21 proteins using
realistic models (see Appendix B for details) that capture the
known characteristics of the unfolded states of proteins and the
coil to globule transition.

In accord with our theoretical predictions, Rg decreases as
k increases. For k = 0, corresponding to the maximally expanded
state (high denaturant concentration) we expect that Rg E
aDN0.588. A plot of Rg versus N0.588 is linear with a value of
aD = 0.25 nm (Fig. 3a). Remarkably, this finding is in accord with
the experimental fit showing Rg E aDN0.588 with aD = 0.2 nm.8 The
modest increase in the aD, compared to the experimental fit,
predicted here can be explained by noting that in real proteins
there is residual structure even at high denaturant concentrations
whereas in our model this is less probable. The scaling shown in
Fig. 3a shows that the model used in the simulations provides
a realistic picture of the unfolded states. We emphasize that the
parameters in the simulations were not adjusted to obtain the
correct Rg scaling or aD.

In Fig. 4 we show the dependence of Rg as a function of k for
three representative proteins along with their native and
unfolded structures and contact maps. The a helical protein
myoglobin and the b-lactoglobulin with b sheet architecture,
have nearly the same number of amino acids, N B 150. The
sizes of the two proteins are similar (Fig. 4b) when k is small
(k o 0.5) implying that the values of Rg in the unfolded states
are determined solely by N (see Fig. 3a). For each protein, we

identified ky from simulations with the k value at which
dRg

dk
is a

minimum. Using this method, we find that the ky value for
b-lactoglobulin is less than for myoglobin. This result is
consistent with the theoretical prediction, demonstrating that
generically a proteins are less collapsible than b proteins.
Interestingly, TIM barrel, an a/b protein with larger chain
length (N = 246), collapses at ky = 1.6, which is larger than
b-lactoglobulin but smaller than myoglobin (purple line in
Fig. 4b). These results are qualitatively consistent with theoretical
predictions.

In Fig. 5, we compare the predicted ky (eqn (14)) and the
values from simulations. The absolute values of ky are different
between simulations and theory because we used entirely
different models to describe the coil to globule transition.
The potential used in the theory, convenient for serving analytic
expression for ky, is far too soft to describe the structures of poly-
peptide chains. As a result the polypeptide chains explore small
Rg values without significant energetic penalty. Such unphysical

conformations are prohibited in the realistic model used in
the simulations. Consequently, we expect that the theoretical
values of ky should differ from the values obtained in simula-
tions. Despite the differences in the potentials used in theory
and simulations, the trends in ky predicted using theory are the
same as in simulations. The Pearson correlation coefficient,

Fig. 3 (a) Average Rg at k = 0 is plotted as a function of N0.588 for the 21
proteins. The line is a fit, Rg = 0.25N0.588 � 0.15 (nm). (b) The probability
distribution of the radius of gyration, P(Rg) for different values of inter-
action strength k for protein-L. As k increases, the distribution becomes
narrower. (c) Same as (b) except this panel shows end-to-end distribution
P(Ree) for different values of attractive strength k for protein-L. The
similarity between P(Ree) and P(Rg) shows that Ree also is a reasonable
measure of compaction.
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r = 0.79. Since we examined only 21 proteins in simulations,
which is fewer than theoretical predictions made for 2306
proteins, we analyzed the correlation data by the bootstrap
method to ascertain the statistical significance of r. The
estimated probability distribution of r is shown in Fig. 5b.
The mean of correlation coefficient is 0.78 and r90% 4 0.61
with 90% confidence. The distribution is bimodal indicating
that there is at least one outlier in the data set, which is likely
to be the three helix bundle B domain of protein A (labeled 5 in
Fig. 5). For 20 proteins excluding protein A, the distribution
has a single peak (green broken line) with the mean 0.88 and
r90% 4 0.82 (green dotted line in Fig. 5). From these results, we
surmise that both theory and simulations qualitatively lead to
the conclusion that proteins with b-sheet architecture are more
collapsible than a-helical structures, which is one of the major
predictions of this work.

Given that the simulations describe the characteristics of
the unfolded states, we show in Fig. 3b the variations in the
probability distribution of Rg, P(Rg) for protein-L as a function
of k. The broadest distribution, with k = 0, corresponds to the

extended chain. We find that P(Rg) becomes narrower as the
attractive strength (k) increases. The continuous shift to the
compact state with gradual increase in the attractive strength
is consistent with experiments that the unfolded proteins
collapse as the denaturant concentration decreases. Thus,
generally Rg of the UC state is less than that of the UD state.
The end-to-end distribution, P(Ree), for different values of
values of k in Fig. 3c is broad at k = 0 corresponding to the
unfolded protein. Average Ree decreases as attractive strength
increases and the distribution becomes narrower. The results
in Fig. 3 show that both Ree, which can be inferred using
smFRET, and Rg (measurable using SAXS), are smaller in the
UC state than the UD state. However, the extent of decrease is
greater in Ree than Rg, an observation that has contributed to
the smFRET–SAXS controversy.

RNAs are compact

There are major differences between how RNA and proteins
fold.60 In contrast to the apparent controversy in proteins, it is
well established that RNA molecules are compact61–63 at high

Fig. 4 Collapse transitions revealed by simulations for three representative proteins. (a) Contact maps and ribbon-diagram structures of three proteins,
b-lactoglobulin (top), TIM barrel (middle), and myoglobin (bottom). Representative structures in the simulations are also shown for three values of k.
(b) Average radius of gyration, hRgi, monotonically decreases as k increases. The three proteins with different native topology have different ky values with
myoglobin being less collapsible (larger ky) than b-lactoglobulin. (c) Average end–end distance, hReei, also monotonically decreases as k increases
although the changes in Ree are larger than in Rg. The middle panel shows snapshots from simulations at different k. The predicted conformation at
k E ky is not random, supporting experiments showing persistent structures in the collapsed state of proteins. (d) Same as (c) except this panel shows
average RMSD for three proteins.
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ion concentrations or at low temperatures. Because our theory
relies only on the knowledge of contact map, used to assess

collapsibility in Azoarcus ribozyme and MMTV pseudoknot to
merely illustrate collapsibility of RNA (Fig. 6). The ky values
(green stars in Fig. 2) are close to the lower b-sheet line,
indicating that these molecules must undergo compaction as
they fold. This prediction from the theory is fully supported by
both equilibrium and time-resolved SAXS experiments64 on
Azoarcus ribozyme. In this case (N = 196) the changes are so
large that even using low resolution experiments collapse is
readily observed.65 We should emphasize that the size of
different RNAs (for example viral, coding, non-coding) vary
greatly. For a fixed length, single-stranded viral RNAs have
evolved to be maximally compact, which is rationalized in
terms of the density of branching. Although the sizes of the
viral RNAs considered in ref. 66 are much longer than the
Azoarcus ribozyme the notion that compaction is determined by
the density of branching might be valid even when N B 200.

Dependence of kh on the values of the cut-off

In order to ensure that the theoretical predictions do not
change qualitatively if the cutoff values are changed, we varied
them over a reasonable range. The reason for our choice of Rc is
that in majority of folding simulations, using Ca representation
of proteins, Rc = 0.8 nm is typically used. Consider the variation
of ky with Rc, the cut-off used to define contacts at a fixed
s = 0.63 nm. As Rc increases the number of contacts also
increases. From eqn (14) it follows that ky should decrease,
which is borne out in the results in Fig. 7a. Reassuringly, the
trends are preserved. In particular, the prediction that b-sheet
proteins are most collapsible is independent of Rc. The trend
that b-rich proteins are more collapsible than a-rich proteins
remains same irrespective of the Rc values.

Fig. 7b shows the changes in ky for proteins as a function of
s (contact distance) for fixed Rc = 0.8 nm. The ky values decrease
with increasing s. The predicted trend is independent of the
precise value. It is worth emphasizing that the predictions
based on simulations that the size of the proteins at ky is about
(5–8)% of the folded state was obtained using s = 0.63 nm. This
range is consistent with estimates based on experiments on a
few proteins (see for example ref. 67). Higher values of s would
give values of compact states of proteins that are less than the
native state Rg.

4 Discussion

We have shown that polymer chains with specific interactions,
like proteins (but ones without a unique native state), become
compact as the strength of the specific interaction changes.
A clear implication is that the size of the UD state should
decrease continuously as C decreases. In other words, the
unfolded state under folding conditions is more compact than
it is at high denaturant concentrations. Compaction is driven
roughly by the same mechanism as the collapse transition in
homopolymers in the sense that when the solvent quality is
poor (below Cm) the size of the unfolded state decreases
continuously. When the set of specific interactions is taken

Fig. 5 (a) Correlation between simulation results and theoretical predictions
for ky. The trends observed in simulations are consistent with theoretical
predictions. The horizontal axis is theoretical ky, and the vertical axis is ky
value from simulations. In general, the theoretical ky values are larger than
what is obtained in simulations (see the main text for an explanation), with
the exception of protein labeled 5, a small all a-helical B domain of protein A.
In both theory and simulations, all-a proteins (blue crosses) have greater ky,
and all-b proteins (red circles) have smaller ky. The purple triangles are for
proteins with a/b and a + b architecture. The linear-regression line for all data
points is shown in black and the Pearson correlation coefficient is 0.79.
Following is the complete list of 21 proteins with their PDB code and number
of residues in parentheses. (1) Myoglobin (1mbo, 153); (2) spectrin (3uun, 116);
(3) endonuclease III (2abk, 211); (4) BRD2 bromodomain (5ibn, 111);
(5) B domain of protein A (1bdd, 51); (6) villin headpiece (1vii, 36); (7) home-
odomain (1enh, 49); (8) GFP (1gfl, 230); (9) b-lactoglobulin (1beb, 156);
(10) PDZ2 (1gm1, 94); (11) src SH3 (1srl, 56); (12) CspTm (1g6p, 66); (13) TIM
barrel (1r2r, 246); (14) lysozyme (2lyz, 129); (15) CheY (3chy, 128); (16) protein
L (1K53, 64); (17) barstar (1bta, 89); (18) RNase H (2rn2, 155); (19) proteinase K
(2id8, 279); (20) ubiquitin (1ubq, 76); (21) monellin (1iv9, 96). (b) Population
distribution of the correlation coefficient estimated by the bootstrap analysis.
The blue curve is generated for the data set of all 21 proteins examined in the
simulations. The mean of correlation coefficient is r = 0.78 with r90% 4 0.61
(vertical dotted line) with 90% confidence. The distribution has two peaks
indicating that there is at least one outlier in the data set, which is the B
domain of protein A. For remaining 20 proteins, the distribution has a single
peak (green broken line) with the mean 0.88 and r90% 4 0.82 (green dotted).
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from protein native contacts in the PDB, our theory shows that
the values of ky are in the range expected for interaction between
amino acids in proteins. This implies that collapsibility should be
a universal feature of foldable proteins but the extent of compac-
tion varies greatly depending on the architecture in the folded
state. This is manifested in our finding that proteins dominated
by b-sheets are more collapsible compared to those with a-helical
structures.

Magnitude of kh and plausible route to multi-domain
formation

The scaling of ky with N allows us to provide arguments for
the emergence of multi-domain proteins. In eqn (13) or (14)
attractive (k-) and repulsive (v-) terms have the same structure.
The only difference in their scaling with N is due to the
difference in the sums (over all the monomers in the repulsive
term and over native contacts in the attractive term). Double
summation over all the monomers gives a factor of N2 to the
repulsive term. The summation over native contacts in the
attractive term scales as Nnc. Therefore, to compensate for
the repulsion, Nnc should scale as N2. However, for a given

protein with a certain length N and certain numbers of contacts,
it is not clear how the denominator in eqn (14) scales with N.
Empirically we find Nnc(N) dependence across a representative set
of sequences scales as Ng with g at most E1.3 (Appendix A). Thus,
it follows from eqn (14) that ky increases without bound as N
continues to increase. Because this is unphysical, it would imply
that proteins whose lengths exceeds a threshold value NC cannot
become maximally compact even at C = 0. An instability must
ensue when N exceeds NC. This argument in part explains why
single domain proteins are relatively small.68

Scaling of Nnc as a power law in Ng means that as the protein
size grows, the value of ky will deviate more and more from
those found in globular proteins, implying such proteins cannot
be globally compact under physiologically relevant conditions.
However, such an instability is not a problem because larger
proteins typically consist of multiple domains. Thus, if the
protein does not show collapse as a whole, the individual
domains could fold independently, having lower values of ky
for each domain of the multi-domain protein. It would be
interesting to know if the predicted onset of instability at NC

provides a quantitative way to assess the mechanism of formation

Fig. 6 Native topologies of two RNA molecules, MMTV pseudoknot (a–c) and Azoarcus ribozyme (d–f). Three-dimensional structures (a and d),
secondary structures (b and e), and contact maps (c and f) are shown for each RNA. Colors are used to distinguish secondary structures. Contact pairs in
RNA are defined as any nucleotide pair i and j (|i � j| 4 2) satisfying Rij o 14 Å, where Rij is the distance between centers of mass of the nucleotides.73

MMTV has two stem basepairs (cyan and green in a–c), which contribute to non-local contacts (cyan and green in c). Azoarcus ribozyme has several
hairpin basepairs (P2, P5, P6, P8 and P9) which can be seen in the vicinity of the diagonal in the contact map (f). There are also basepairs between
nucleotides far along the sequence such as P3, P4 and P7, as well as tertiary interactions such as TL2–TR8 and TL9–TR5. These non-local contacts
contribute to the collapsibility of the ribozyme.
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of multi-domain proteins. Extension of the theory might yield
interesting patterns in the assembly of multi-domain proteins.

For instance, one can quantitatively ascertain if the N-terminal
domains of large proteins, which emerge from the ribosome first,
have higher collapsibility (lower ky) than C-terminal domains.

Insights into the SAXS–smFRET controversy

Our theory provides a plausible theoretical explanation of the
contradictory results using SAXS and FRET experiments on
compaction of small globular proteins. It has been argued,
based predominantly using SAXS experiments on protein-L
(N = 72) that Rg of UD and UC states are virtually the same
at denaturant concentrations that are less than Cm.19 This
conclusion is not only at variance with SAXS experiments on
other proteins but also with interpretation of smFRET data
on a number of proteins. The present work, surveying over
2300 proteins, shows that the compact state has to exist,
engendered by mechanisms that have much in common with
homopolymer collapse. For protein-L, the ky = 1.7kBT, a very
typical value, is right on the peak of the heat map in Fig. 1.
We have previously argued that because the change in Rg

between the UD and UC states for small proteins is not large,
high precision experiments are needed to measure the predicted
changes in Rg between UC and UD. For protein-L the change is
less than 10%,29 making its detection in ensemble experiments
very difficult. Similar conclusions were reached in recent
experiments.20 A clear message from our theory is that, tempting
as it may be, one cannot draw universal conclusions about
polypeptide compaction by performing experiments on just a
few proteins. One has to survey a large number of proteins with
varying N and native topology to quantitatively assess the extent
of compaction. Our theory provides a framework for interpreting
the results of such experiments.

Random contact maps, local and non-local contacts

In order to differentiate collapsibility between evolved and random
proteins, we created twelve random contact maps keeping the total
number of contacts the same as in protein-L (see Fig. 8 for
examples). For each of these pseudo-proteins we calculated ky
using eqn (14). We find that for all the random contact maps
the ky values are less than for protein-L, implying that the
propensity of the pseudo-proteins to become compact is greater
than for the wild type. This finding is in accord with studies
based on homopolymer and heteropolymer collapse with random
crosslinks. These studies showed that the polymer undergoes a
collapse transition as the density of crosslinks is increased.43,45,46

Of particular note is the demonstration by Camacho and
Schanke,48 who showed using exact enumeration of random
heteropolymers and scaling arrangements that the collapse can
be either a first or second order transition depending on the
fraction of hydrophobic residues.48

Some time ago Abkevich et al.69 showed, using Monte Carlo
simulations of protein-like lattice polymers, that the folding
transition in proteins with predominantly non-local contacts
was first order like, which is not the case for proteins in which
local contacts dominate. In light of this finding, it is interesting
to examine how compaction is affected by local and non-local
contacts. We created for N = 72 (protein-L) a contact map with

Fig. 7 (a) ky values for list of proteins with varying Rc with fixed s = 0.63 nm.
(b) ky values for list of proteins with varying s with fixed Rc = 0.8 nm. (c and d)
Comparison of potentials used in the theory and simulations with (c) k = 0
and (d) k = 3. In the theory, Gaussian potentials are used for both non-specific
repulsion (black broken line) and specific attraction (thick red-broken line).
In the simulations, potentials have hard core repulsion (black line) and
WCA-type attraction (thick red line). In both the theory and simulations, the
depth of the attraction potential changes depending on values of k, whereas
the repulsive part does not. The use of soft potentials in the theory results in
larger ky than in simulations (Fig. 5). (e) The dependence of the number of
contacts, Nnc, as a function of N for the PDBselect proteins. a-rich and b-rich
proteins are colored in blue and red, respectively. The green line is a fit using
Nnc = 0.6Ng with g = 1.3. A plot for 21 proteins used in the simulations is
shown in the inset.
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185 (same number as with WT protein-L), predominantly local
contacts (Fig. 8b). The values of ky for these pseudo-proteins
is considerably larger than for the WT, implying that proteins
dominated by local contacts are minimally collapsible. We
repeated the exercise by creating contact maps with predomi-
nantly non-local contacts (Fig. 8c). Interestingly, ky values in
this case are significantly less than for the WT. This finding
explains why in proteins with varied a/b topology there is a
balance between the number of local and non-local contacts.
Such a balance is needed to achieve native state stability and
speed of folding69 with polypeptide compaction playing an
integral part.23

Based on these findings we conclude that Rg of the unfolded
states of proteins dominated by non-local contacts must undergo
greater compaction compared to those with that have mostly local
contacts. The results in Fig. 2 also show that proteins rich
in b-sheet are more collapsible than predominantly a-helical
proteins. It follows that b-sheet proteins must have a larger
fraction of non-local contacts than proteins rich in a-helices.
In Fig. 8d we plot the distribution of the fraction of non-local
contacts for the 2306 proteins. Interestingly, there is a clear
separation in the distribution of non-local contacts between
a-helical rich and b-sheet rich proteins. The latter have substantial

fraction of non-local contacts which readily explains the findings
in Fig. 8c and the predictions in Fig. 2.

Local versus non-local contacts in small homopolymers

We have established that the long-range contacts render b-sheet
proteins more collapsible than a-helical proteins stabilized by
short range contacts. It is of interest to ascertain the nature of
equilibrium globules in homopolymers. From polymer theory we
expect that the nature of contacts that stabilize the collapsed state
will depend on the depth of quench, which in our formulation is
k� kyð Þ
ky

as well as N. To shed light on this issue we performed

simulations using a model for the homopolymer with N = 64, the
same size as protein L. From the comparison of the results for
protein L and the homopolymer in Fig. 9 we draw the following
conclusions: (1) the value of kHP

y is smaller than ky for protein L
because the number of contacts in the homopolymer is greater
(Fig. 9a and b) and the establishments of long-range contacts in
protein L requires compensation for entropy loss. (2) In the range
of k 4 kHP

y examined, the homopolymer is predominantly stabi-
lized by local contacts (Fig. 9d) whereas the architecture of protein
L determines the nature of important contacts for stability
(Fig. 9c). (3) At larger values of k long range contacts become
relevant in stabilizing the compact globule (Fig. 9e). These
inferences are in accord with theoretical predictions. It would
be interesting to examine how N and depth of quench affect these
results, as they are germane to our understanding of chromosome
organization.

5 Conclusions

We have created a theory to assess collapsibility of proteins
using a combination of analytical modeling and simulations.
The major implications of the theory are the following.
(i) Because single domain proteins are small, the changes in
the radius of gyration of the unfolded states as the denaturant
concentration is lowered are often small. Thus, it has been
difficult to detect the Rg changes using SAXS experiments in a
couple of proteins, raising the question if unfolded polypeptide
chains become compact below Cm. Here, we have solved this
long-standing problem showing that the unfolded states of
single-domain proteins do become compact as the denaturant
concentration decreases, sharing much in common with the
physical mechanisms governing homopolymer collapse. By
adopting concepts from polymer physics, and using the contact
maps that reflect the topology of the native states, we estab-
lished that proteins are collapsible. Simulations using models
that describe the unfolded states of proteins reasonably well
further confirm the conclusions based on theory. (ii) Based on a
survey of over two thousand proteins we surmise that there is
evolutionary pressure for collapsibility is universal although the
extent of collapse can vary greatly, because this ensures that the
propensity to aggregate is minimized even if environmental
fluctuations under cellular conditions transiently populate
unfolded states. Two factors contribute to aggregation. First,

Fig. 8 Collapsibility for synthetic contact maps. Two representative con-
tact maps for each category are shown in the upper left and lower right of
each square. Given the number of residues N = 72 and total number of
contacts Nnc = 185 (same as protein-L), residue pairs (i,j) are randomly
chosen to satisfy the following conditions: (a) uniformly distributed, |i � j|
Z 3; (b) local contacts only, |i � j| Z 3 and |i � j| o 8; and (c) non-local
contacts only, |i � j| Z 8. The calculated values of ky are explicitly shown.
The ky value for protein-L is 1.7kBT. (d) Distribution of the fraction of non-
local contacts in the 2306 proteins. For each protein, the fraction is
calculated as the number of non-local contacts (NNL

nc) divided by the total
number of contacts (Nnc). A contact between residues i and j is ‘‘non-local
(NL)’’ if |i � j| Z 8. There is a clear separation in this distribution for proteins
rich in a helices compared to those that are rich in b-sheets implying that
the latter are more collapsible than the former.
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the rate of dimer formation by diffusion controlled reaction
would be enhanced if a pair of UD rather than UC molecules
collided due cellular stress because the contact radius in the
former would be greater than in the latter. Second, the fraction
of exposed hydrophobic resides in UD is much greater than in
UC, thus greatly increasing the probability of aggregation. The
second factor is likely to be more important than the first.
Consequently, transient population of UC due to cellular stress
minimizes the probability of aggregation. (iii) We have also
shown that the position of the residues forming the native
contact greatly influences the collapsibility of b sheet proteins
(containing a number of non-local contacts showing greater
compaction than a helical proteins, which are typically stabi-
lized by local contacts.

Our theory also shows that most RNAs may have evolved
to be compact in their natural environments. Although the
evolutionary pressure to be compact is likely to be substantial
for viral RNAs,62,63,66,70 it is apparent that even non-coding
RNAs are also likely to be almost maximally compact in their
natural environments. Our theory suggests that, to a large extent,
collapsibility of RNA is similar to proteins with b-sheet structures.
Both classes of biological macromolecules are stabilized by non-
local contacts. Interestingly, it has been argued that the need to be
compact (‘‘Compaction selection hypothesis’’70) could be a major
determinant for evolved biopolymers to have minimum energy
compact structures as their ground states.

Appendix A
Collapse of homopolymers

The theory described for protein collapse resulting in eqn (14)
is general and applicable to the collapse of homopolymers
as well. We show in this appendix that the ES formalism

can be used to derive the scaling of ky with N, the number of
monomers.

Consider a homopolymer with the following Hamiltonian:

H ¼ 3kBT

2a02

ðN
0

@r

@s

� �2

dsþ kBTVHðrðsÞÞ; (A1)

where r(s) is the position of the monomer s, and a0 is the
monomer size. The first term in eqn (A1) accounts for chain
connectivity, and the second term represents volume inter-
actions and favorable interactions between monomers, given
by VH(r(s)),

VHðrðsÞÞ ¼
v

2pa02ð Þ3=2
XN
s¼0

XN
s0¼0

e
�ðrðsÞ�rðs

0ÞÞ2
2a0

2

� k

2ps2ð Þ3=2
XN
s¼0

XN
s0¼0

e
�ðrðsÞ�rðs

0ÞÞ2
2s2

(A2)

The form of VH(r(s)) is exactly the same as in eqn (2) except
in the above equation all monomers interact favorably as long
as self-avoidance is not violated whereas in eqn (2) attractive
interactions depend on the topology of the protein. The first
(second) term in eqn (A2) describes non-specific excluded
volume (attractive) interactions. Thus, the model in eqn (A1)
describes the behavior in good solvents (k = 0) as well as
the transition point at which there is a transition to the
collapsed state. For the excluded volume repulsion, the range
of interactions is on the order of the size of the monomer
a0 and for attractive interactions, the range is s. In good
solvents, with v 4 0, the polymer swells with Rg B aNn

(n E 0.6). In poor solvents (v o 0), the polymer undergoes a
coil–globule transition with Rg B aNn (v = 1

3). These are the well-
known Flory laws.

Fig. 9 Comparison between protein L (a and c) and a homopolymer (b and d) that has the same chain length (N = 64). (a and b) Radius of gyration (Rg)
depending on k. The points k = ky, 1.2ky, 1.4ky are indicated by arrows. (c and d) The dependence of the probabilities of contacts between i and j
monomers as a function of |i � j|. Protein L (c) is stabilized by nonlocal contacts |i � j| B 50. The equilibrium globule in a homopolymer (d) are stabilized
by local contacts (smaller |i � j|). (e) The number of non-local contacts as a function of

k

ky
for protein L (purple line) and homopolymer (green line) shows

that the relevance of non-local contacts in homopolymers increases as k increases.
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Following the ES method described in the main text, we
arrive at the self-consistent equation for a for the homopolymer
chain,

1

a02
� 1

a2
¼ v

3

2

� �5=2 p
2

� �3=2

a2ð Þ5=2N3=2
PN
n¼1

1

n2

� �

�
XN
s¼0

XN
s0¼0

PN
n¼1

1� cos½npðs� s0Þ=N�
n4

PN
n¼1

1� cos½npðs� s0Þ=N�
n2

þ 3p2a02

2a2N

� �5=2

� k

3

2

� �5=2 p
2

� �3=2

a2ð Þ5=2N3=2
PN
n¼1

1

n2

� �

�
XN
s¼0

XN
s0¼0

PN
n¼1

1� cos½npðs� s0Þ=N�
n4

PN
n¼1

1� cos½npðs� s0Þ=N�
n2

þ 3p2s2

2a2N

� �5=2
:

(A3)

To obtain an expression for the y-point we derive the
condition for homopolymer collapse instead of solving the
complicated eqn (A3) numerically. The volume interactions
are on the right hand side of eqn (A3). At the y-point, the
v-term should exactly balance the k-term arising from attractive
interaction between the monomers. Since at the y-point the
chain is ideal with a = a0, we can substitute this value for a in
the sums in the denominators of the v- and k-terms, to obtain
an expression for ky. Thus, from eqn (A3), the specific inter-
action strength at which two-body repulsion (v-term) equals
two-body attraction (k-term) is ky for homopolymers differs from
ky (eqn (14)) for proteins only by the term in the denominator.
The sum over specific interactions for proteins is replaced by the
non-specific interaction in homopolymer. It can be shown that
the N dependence is the same in both the numerator and
denominator in ky for homopolymers. Therefore, to leading order
in W, ky is independent of N for a homopolymer.

In order to derive the scaling of ky with N, we need to analyze
the corrections arising from second order in W. To second
order in W, the radius of gyration is,

Rg
2

� �
¼ 1

N

ðN
0

r2ðsÞ
� �

ds

¼ 1

N

ðN
0

r2ðsÞ
� �

v
þ r2ðsÞ
� �

v
hWiv � r2ðsÞW

� �
v

h

� 1

2
r2ðsÞW2
� �

v
� r2ðsÞ
� �

v
W2
� �

v

� ��
ds;

(A4)

In the expression
1

2
r2ðsÞW2
� �

v
� r2ðsÞ
� �

v
W2
� �

v

� �
, only the

1

2
r2ðsÞW2

2
� �

v
� r2ðsÞ
� �

v
W2

2
� �

v

� �
contribute to ky. Here, W1 is

the same as eqn (5), and W2 is given by eqn (A2). The terms
associated with W1 are zero at the y-transition point. By
counting the powers of N it follows that r2ðsÞW2

2
� �

v
scales as

1

N7
and r2ðsÞ

� �
v
W2

2
� �

v
scales as

1

N5
. Hence, at the y-point, we

find that ky satisfies the following quadratic equation,

ky
2 þ 2N1=2 � 2v
� �

ky � v 2N1=2 � v
� �

¼ 0) ky � v 1� v

2
N�1=2

� �
:

(A5)

in the large N limit. The scaling law for ky (pTy) obtained first
by Flory,56 was confirmed using simulations much later.71

Thus, our general formalism can be applied to describe collapse
of homopolymers as well as proteins and RNA.

Proteins

The results for homopolymers given above may be extended to
obtain the N dependence of ky for proteins. By considering the
second order correction to the radius of gyration, we obtain the
following quadratic equation for ky,

ky
2N6(1�g) + (2N(7/2–3g)� 2vN3(1�g))ky� v(2N1/2� v) = 0) kyB N3(g�1).

(A6)

In deriving the above equation we assume that total number of
contacts Nnc B Ng. A plot of Nnc as a function of N (Fig. 7e) for
the PDBselect proteins confirms that this is indeed the case.
For g = 1.3, ky B N0.9, which shows that larger proteins are less
collapsible than smaller ones, implying that when N exceeds a
critical value they are likely to form multi-domain structures.
Comparison of eqn (A5) and (A6) shows that collapsibility in
proteins and homopolymers differs dramatically. For homo-
polymers the coil-to-globule transition occurs at a finite tem-
perature. The sharpness of the transition increases as N
increases. In sharp contrast, the growth of ky with N for
proteins (eqn (A6)) implies that larger proteins must organize
themselves into domains with individual domains forming
compact structures.

Appendix B
Simulations

The theoretical results were obtained using a set of approximations,
whose validity need to be confirmed using simulations. The
purpose of these simulations is to show that the predicted
theoretical values of ky correlate well with simulation results.
We performed Langevin dynamics simulations for 21 globule
proteins (Fig. 5). The set includes both all-a and all-b proteins
as well as a + b and a/b proteins according to Structural
Classification Of Proteins (SCOP).

The simple form (sum of Gaussians) of the interaction
energy in eqn (2) was devised in order to obtain analytic
expression for ky so that collapsibility of two thousand or more
proteins could be easily analyzed. The potential in eqn (2) has
no hard core, which is physically not realistic. Because of the
soft interactions it is clear that the theoretical values of ky
have to be an upper bound. In order to firmly establish the
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qualitative predictions obtained using theory we use a realistic
interaction energy in the simulations. The potential function in
the simulations is,

VS ¼
3kBT

2a0

XN�1
i¼1

ri;iþ1
2 þ

X
i;j=2con

ev
a0

rij

� �12

þ
X

i;j2con
FWCA ev; ekð Þ;

(B1)

where

FWCA ev; ekð Þ ¼
ev

s
r

� �12
�2 s

r

� �6
þ 1

� �
� ek ðrosÞ

ek
s
r

� �12
�2 s

r

� �6� �
ðr � sÞ

8>>>><
>>>>:

: (B2)

The first term, describing chain connectivity, is the discrete
version of the first term in eqn (1) with a0 = 0.38 nm. The
second term accounts for excluded volume interactions used
for any pair of residues not included in the contact map. We
chose ev = 1.0 kcal mol�1 so that monomer particles do not
overlap with each other. In this crucial respect, the potential
function is drastically different from the interaction potential
used in the theory, in which the Gaussian-type soft core
potential was used in order to solve the problem analytically.

The summation in the last term in eqn (B1) runs over all
pairs in the contact map. The potential, FWCA, is the Weeks–
Chandler–Andersen potential,72 a variant of Lenard-Jones
potential, consisting of well-separated repulsive and attractive
terms (Fig. 7c and d). This is necessary in order to vary the
strength of the attraction potential without affecting the repulsive
interactions. The coefficient of the attractive term is ek = k�kBT.
We varied k between 0.0 and 5.0 to find the collapse-transition
point, k = ky. The contact distance is the same as in the theory,
s = 0.63 nm.

For each protein and k value, we generated 100 independent
simulation trajectories. Initial conformations were generated
in a preliminary simulation at high temperature T = 400 K with
k = 0. Each production run at T = 300 K lasts for 108 steps.
We discarded the first 2 � 107 steps in analyzing the data.
Conformations are sampled every 104 steps. In total, 8 � 105

conformations were sampled to calculate the average radius of
gyration, hRgi for each k.

We also investigated the nature of contacts that stabilize
homopolymers with N = 64, which is the same size as protein L,
by performing simulations as described above. The potential
function used in numerical simulations is,

VSH ¼
3kBT

2a0

XN�1
i¼1

ri;iþ1
2 þ

X
ji�jj	2

ev
a0

rij

� �12

þ
X
ji�jj4 2

FWCA ev; ekð Þ;

(B3)

where FWCA is same as in the case of VS. The value of kHP
y was

determined as for the protein models.
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