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REPLY TO ALBERTI:

Are in vitro folding experiments relevant in vivo?
Pavel I. Zhuravleva,1, Michael Hinczewskib, Shaon Chakrabartia, Susan Marquseec, and D. Thirumalaia,1

In his letter, Alberti (1) does not challenge any of the
central results in our paper (2), including the main
proof that upward curvature in the logarithm of the
unfolding rate of a protein as a function of an applied
mechanical force implies that underlying energy land-
scape is multidimensional. However, he wonders if
the switch in pathway in Src tyrosine kinase SH3 (Src
homology 3) domain discovered in single-molecule
pulling experiments (3, 4) applies to “living cells/
physiological settings,” an issue that is not germane to
our work (2), and, by inference, to innumerable in vitro
ensemble (5–7) and single-molecule studies on pro-
teins. Although Alberti’s view point has merits, it can
be asserted that such biophysics studies and countless
others have literally revolutionized modern biology.

A few other points are worth making. (i) Previously,
we showed that there are two unfolding pathways
even if F is applied between the N and C termini (8).
The same inferences were drawn by noting upward
curvature in the denaturant-dependent unfolding
rates of I27 (6) and monellin (7). (ii) The major reason
why Alberti questions the relevance of several exper-
iments, which have used multiple pulling directions to
map the folding landscape of proteins, is that in the
proteins he lists (1), the N and C termini are solvent-

exposed. Although this fact generally appears to be
correct, there are a number of proteins in which this
fact is not the case (9). (iii ) The proposed link (1)
between chaperones and pulling experiments is even
more tenuous. The mechanism of how eukaryotic Hsp
70 interacts with substrate proteins (SPs) has not
been quantitatively elucidated. In bacterial chaperonin
(GroEL/GroES), we showed that SPs could experience
an unfolding force of ≈ 10 pN (10) [confirmed recently
(11)] due to ATP-driven GroEL domain movements. It
is unlikely that this force is directed along the N and C
termini of the misfolded SP. (iv) The transit through the
tunnel of the ribosome is facilitated by the nascent
protein experiencing a mechanical force. However,
because the translational rate is slow, force direction
on the protein could vary, especially as it reaches the
vestibule of the ribosome. Subsequent folding is a com-
plicated process involving trigger factor and folding in
confined spaces, with force being irrelevant.

It is a matter of opinion whether precise in vitro
studies are valuable in understanding physiological
processes. Only by using theory, experiments, and sim-
ulations in well-defined systems can quantitative un-
derstanding of the functions of proteins under cellular
conditions be achieved.
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