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We study the forced rupture of adhesive contacts between monomers that are not covalently linked in a
Rouse chain. When the applied force (f) to the chain end is less than the critical force for rupture (fc), the
reversible rupture process is coupled to the internal Rouse modes. If f=fc > 1 the rupture is irreversible.
In both limits, the nonexponential distribution of contact lifetimes, which depends sensitively on the
location of the contact, follows the double-exponential (Gumbel) distribution. When two contacts are well
separated along the chain, the rate limiting step in the sequential rupture kinetics is the disruption of the
contact that is in the chain interior. If the two contacts are close to each other, they cooperate to sustain the
stress, which results in an ‘‘all-or-none’’ transition.
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Nanomanipulation of biological molecules by force can
be used to explore and control their energy landscapes at
the single molecule level [1]. The challenge is to solve the
inverse problem, namely, to extract the unbinding path-
ways and structural features pertaining to the systems of
interest from measurements such as the force-extension
curves, lifetime distribution of adhesive contacts, and un-
binding force distributions. From these data, many charac-
teristics of the energy landscape (roughness, barrier height,
and movement of the transition states) have been obtained
using theoretical models [2,3]. In these models, the force-
induced unbinding transitions from the bound state (for
example folded conformations of RNA) are presumed to
occur irreversibly along a one dimensional reaction coor-
dinate, R, that is conjugate to the applied force, f. In this
picture, f ‘‘tilts’’ the energy landscape, thus rendering the
bound state unstable when f exceeds a critical value. On
the other hand, detailed simulations of forced unfolding of
proteins and RNA [4] show that collective topology-
dependent events that describe the internal dynamics [3]
are coupled to R. Thus, it is important to develop solvable
models for force-induced disruption of ‘‘folded’’ structures
starting from a well-defined Hamiltonian.

In this Letter, we illustrate the interplay between internal
polymer dynamics and the rupture kinetics of intramolec-
ular adhesive contacts between monomers. Such a model is
a caricature of forced-unfolding of RNA hairpins [1] where
the adhesive contact mimics the stability of the stem. Using
an exactly solvable Rouse model, with one or two adhesive
contacts between monomers that are not covalently linked,
we address the following questions: (i) For a single adhe-
sive contact, how do the lifetime distribution functions
vary with the backbone distance between monomers r
and s that are in adhesive contact? (ii) To what extent is
the binding of a ruptured contact influenced by f and the
internal polymer motions?

The model.—Consider a Rouse chain with N identical
monomers, connected by a harmonic spring with the equi-
librium distance a, with a single adhesive contact (r, s)

between two noncovalently linked monomers r and s, 1 �
r � s � N. The first monomer is fixed, and a constant
force fx is applied to the Nth monomer in the direction
parallel to the end-to-end vector X. Letting Rm �
fRxm; R

y
m; Rzmg be the monomer position, (m�1;2; . . . ;N),

the equation of motion is, � d
dtRm � �rRm

H�fRmg� �

Fm, where rRm
� @=@Rm, � is the friction coefficient,

and Fm is the random force with zero mean and
hF�m�t�F

�
n �0�i � 2�KBT�mn����t� (�, � � x, y, z). We

model the adhesive contact (r, s) using a harmonic poten-
tial with a spring constant, � � 3kBT=2b2, where b is the
equilibrium contact distance. The Hamiltonian with a
single contact under tension is taken to be H �
H0 � fN�RN �R1�, where

 H0 �
3kBT

2a2

XN
n�2

�Rn �Rn�1�
2 �

3kBT

2b2 ��B� jRrsj�jR2
rs;

(1)

with Rrs � Rr �Rs, and ��x� is the Heaviside step
function. The contact is ruptured when jRrsj � B. The
probability density function (PDF) of the (r, s)-contact
lifetimes is obtained as Prs�t; f� � �dPrs�t; f�=dt, where
Prs�t�, the probability that the adhesive contact remains

intact is Prs�t; f� �

R
jRrs j�B

d3Rrs

R
d3R0

rsQf�Rrs;t;R0
rs�PI�R0

rs�R
d3Rrs

R
d3R0

rsQf�Rrs;t;R0
rs�PI�R0

rs�
.

Here, Qf�Rrs; t; R0
rs�, the conditional probability for the

contact distance, Rrs with the initial distribution PI�R0
rs� of

the contact distance, R0
rs, is given in terms of C1�t� �

hRrs�t�i, and C2�t� � h	Rrs�t� � hRrs�t�i
2i by

 Qf�Rrs; t; R0
rs� �

�
3

2�C2�t�

�
3=2

exp
�
�

3�Rrs �C1�t��2

2C2�t�

�
:

(2)

We define the N � 3-matrices for positions, R�t� �
�R1�t�;R2�t�; . . . ;RN�t��y, random forces, F�t� �
�F1�t�;F2�t�; . . . ;FN�t��y, and the applied force, f �
�0; 0; . . . ; fN�y, where the y denotes the adjoint 3� N
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matrix. The equation of motion in matrix form is d
dtR�

MR � 1
�F� 1

� f with the N � N matrix M � !0�A0 �

�A1�. The tridiagonal Rouse matrix is A0, with a0
1;1 �

a0
N;N � 1, a0

m;m � 2, and a0
m;m�1 � a0

m�1;m � �1 [5], and
!0 � 3kBT=2a2. The interaction between monomers r and
s are included in A1, with a1

r;r � a1
s;s � 1 and a1

r;s � a1
r;s �

�1, The strength of the adhesive contact, relative to the
harmonic bond is � � �a=b�2.

Integration of the equation of motion gives R�t��
G�t�R�0���1=��

R
t
0dt

0G�t0��F�t0��f�, where G�t� is the
Greens function; G�!� � 	i!I�M
�1 in the Fourier
domain. To compute C1�t� and C2�t�, we must invert
G�!�. We rewrite A1 � PPy, where P is an N � 1 vector
with nonzero elements Pr � 1 and Ps � �1, and G�!� �
G0�!� �G0�!�P	 1

�!0
I� PyG0�!�P
�1PyG0�!� [6],

where the matrix elements G0�!�mn � 	i!I�M0

�1
mn �

1
N �p

cos	p�n=N
 cos	p�m=N

i!��p!0

and �p � �2p2=N2 are the eigen-

modes (p � 0; 1; . . . ; N) [5].
The PDF of contact lifetimes for a single contact.—

Constraining the first residue of the chain is equivalent to
excluding �0 � 0, which defines the overall translation of
the chain. The results are presented by including the first
ten modes for N � 100, a � 0:4 nm, the diffusion coeffi-
cient, D � 106 nm2=s, and kBT � 4:1 pN nm. We chose
PI�R0

rs� �
1

4��B=2�2
��jR0

rsj � B=2�, with the rupture dis-
tance set to B � 2a. To assess the effect of the strength
of the adhesive contact on the contact rupture kinetics, we
used � � 1 (strong contact) and � � 0:01 (weak contact).
The critical equilibrium force required to rupture the con-
tact is fc � �3kBTB=b2�; fc � 31 pN for � � 1, and fc �
0:31 pN for � � 0:01. The values of f were set to f �
1 pN (weak force) and f � 40 pN (strong force). At f �
1 pN, f=fc � 1 for � � 1, and f=fc 
 1 for � � 0:01; at
f � 40 pN, f=fc > 1 for � � 1 and f=fc � 1 for � �
0:01.

The survival probabilities Prs�t� (Fig. 1) of the adhesive
contact at f � 1 pN and f � 40 pN for � � 0:01 and � �
1 show striking variations with respect to jr� sj. For a
fixed f (low forces with f=fc � 1 or 
1) the decay of
Prs�t� not only depends on the strength of the contact, but
also on its location. At f � 1 pN, Prs�t� for strong and
weak bonds display markedly different kinetics, with
Prs�t� for weak contact �r; s� � �1; 100� and (20,80) decay-
ing to values close to zero on 30 	s timescale [Figs. 1(a)
and 1(b)]. However, for �r; s� � �40; 60� the asymptotic
value of Prs�t!1� � Peq

rs � 0:12 [Fig. 1(c)]. Surpris-
ingly, Prs�t�s for �r; s� � �20; 80� and (40,60) for strong
bonds are qualitatively similar [Figs. 1(b) and 1(c)] and
approach higher values of Peq

rs � 0:42 and 0.85, respec-
tively, whereas Peq

rs � 0:26 for �r; s� � �1; 100� [Fig. 1(a)].
Thus, the rupture of contacts in the middle of the chain is
strongly dependent on the coupling between the internal
modes of the chain and the dynamics of instability due to
the applied force. We refer to this as the ‘‘internal motion
dominated’’ (IMD) regime.

The stochastic nature of the bond rupture kinetics is also
reflected in the decay of Prs�t� for strong and weak bonds.
For �r; s� � �1; 100�, Prs�t� decays faster to lower Peq

rs , due
to larger chain fluctuations at the chain ends compared to
contacts �r; s� � �20; 80� and (40,60) in the middle of the
chain. In contrast to low forces, for f=fc > 1, Prs�t� for all
contacts decay to zero at long times, regardless of the
contact strength [Figs. 1(d)–1(f)]. However, Prs�t� for
strong contact �r; s� � �40; 60�, which is close to the mid-
point of the chain, decays to zero on a much slower 40 	s
timescale, compared to 10 and 1 	s time scale for �r; s� �
�20; 80� and (1,100). At f � 40 pN, Prs�t� for weak con-
tacts decay to zero on similar time scales [Figs. 1(d)–1(f)],
which shows that at large forces rupture kinetics is solely
determined by the instability caused by the applied tension,
with chain dynamics playing relatively minor role. Thus, as
f=fc increases, the rupture kinetics become increasingly
‘‘tension dominated’’, i.e., contact rupture is due to the
applied force. Interestingly, there is a significant plateau in
the decay of Prs�t� especially for � � 1. The duration of
the plateau increases as jr� sj decreases and f increases
[Figs. 1(d)–1(f)], and shows that the kinetics of rupture is
nonexponential.

The lifetime distributions, Prs�t� (insets in Fig. 1), show
longer tails for the stronger contacts; Prs�t� for the interior
contact (40, 60) [Figs. 1(c) and 1(f)], does not have a
pronounced dependence on f compared to Prs�t� for con-
tacts (20,80) and (1,100) [Figs. 1(a), 1(b), 1(d), and 1(e)].
In particular, Prs�t� at f � 1 pN and f � 40 pN agree
quantitatively for strong and weak (40,60) contacts. This
implies that the disruption of the interior contacts is medi-
ated by internal chain motions, and hence is in the IMD
regime even at high f. The influence of internal motion of

FIG. 1. The survival probabilities Prs�t� for a single contact
�r; s� � �1; 100� (a),(d), (20,80) (b),(e), and (40,60) (c),(f ), with
f � 1 pN (a)–(c) and 40 pN (d)–(f), and with � � 1 (solid
lines) and 0.01 (dashed lines). The lifetime distributions Prs�t�
are shown in the insets. Notice the variations in time scales in the
panels. The chain structures for the intact single contact (20,80),
before and after the rupture are shown.
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the chain on the contact rupture kinetics is also reflected in
the width of prs�t�s which broadens for remote contacts
(20,80) and (40,60).

Contact lifetime PDF is nonexponential.—Forced rup-
ture of noncovalent bonds is often described using two-
state kinetics, �rs� ! 0, which corresponds to the expo-
nential PDF of contact lifetimes, pexp�t� � K exp	�Kt
,
where K is the rupture rate. The results for Prs�t� in Fig. 1
deviate from pexp�t�, especially when f=fc < 1 or when
the contact (rs) is in the chain interior. The extent of
deviation is assessed using the quantile-quantile (Q-Q)
plot [7,8]. A quantile is a number xp such that 100� p%
of the probability values are � xp. The Q-Q scatterplot
compares two sets of probability values: xp, the quantile
for Prs�t�, and yp, the quantile for pexp�t�. If the two sets are
similarly distributed, the points fall on the reference line
[7]. The Q-Q plots of the lifetime distribution for the
contact �r; s� � �1; 100� at f � 40 pN and for � � 1 and
� � 0:01 show that Prs�t� is larger (smaller) than pexp�t� in
the middle range (tail) of the lifetimes (Fig. 2). The non-
exponentiality arises because it takes time (
tp) for the
force-induced tension to propagate to the contact [9].

Interplay of time scales.—The nonexponential nature of
Prs�t� is determined by the interplay of two time scales, 
tp
and the spectrum of relaxation times f
pg (p �
1; 2; . . . ; N). These determine the evolution of C1�t� due
to the applied force f, and the broadening of the Gaussian
density, C2�t�, due to the random force F [Eq. (2)]. To
reveal the richness in the rupture kinetics, we consider
Prs�t� for the (r, s) contacts close to the chain ends in the
limits f=fc < 1, and f=fc > 1. For these contacts, the
contribution from even Rouse modes is negligible [5],
and only the slowest mode with relaxation time 
1 �

�=�1 contributes significantly. As a result, Prs�t� �

c0

R
B
0 dRrs exp	� 3�Rrs�C1�t��2

2C2�t�

, where c0 is the constant,

C1�t� � Req
rs�1� e�t=
1�, C2�t� � ��Req

rs�2�1� e�2t=
1�,
and Req

rs and �Req
rs denote the equilibrium (r, s)-contact

vector and fluctuations, respectively.
1. Weak force, f=fc < 1.—In this regime jC1�t�j<B,

and hence the kinetics of Prs�t� is dominated by the broad-

ening of C2�t�. By evaluating Prs�t� and using the series
expansion of the error function, we obtain Prs�t� 

exp	�B2=2C2�t�
 At short times, t� 
1, and we can
Taylor expand the exponential function in C2�t�, which to
the first order in t� 
1 reads e�2t=
1 � 1� 2t=
1. Then,
Prs�t� 
 e

�c1
1=t (c1 is a constant). At longer times, when
t� 
1, e�2t=
1 � 1, and Prs�t� 
 exp	�c2e

�2t=
1
 (c2 is a
constant). This implies that for a weak force, in the long
time limit, Prs�t� of the contacts close to the chain ends is
described by the double-exponential (Gumbel type) distri-
bution of the largest value for the exponential density [10].

2. Strong force, f=fc > 1.—The kinetics of Prs�t� is
dominated by the dynamics of C1�t�. However, the decay
of Prs�t� is delayed by 
tp. The tension propagation time-
scale 
tp � 
1. a. Tension propagation regime: (t < 
tp).
Since jC1�t�j<B, the contact lifetime is strongly linked to
the random motions of the polymer, which results in broad-
ening of the Gaussian density due to increase in C2�t�.
Evaluating Prs�t�, and assuming jC1�t�j � B< C2�t�, we
obtain Prs�t� 
 �t=
1�

3e�c3�t=
1�
1=2

(c3 is a constant). Thus,
Prs�t� scales with force as Prs�t� 
 f3e�c4f (c4 is a con-
stant). b. Kinetic regime: (t > 
tp). The contact lifetime is
still linked to the random motions of the polymer [broad-
ening of C2�t�] but is dominated by the dynamics of
C1�t�>B. In this regime, e�t=
1 � 1 in C1�t� and
e�2t=
1 � 1 in C2�t�, and Prs�t� is again double-
exponential (Gumbel) density [10], i.e., Prs�t� 

exp	�c5e�2t=
1
, where c5 is a constant. We find Prs�t� 

f2e�c6f, where c6 is a constant.

The contact lifetimes for two contacts.—The
Hamiltonian of the chain with two contacts (r, s) and
(r0, s0) is given by H � 3kBT

2a2 �N
n�2R2

n;n�1 � fRN1 �

��i;j�
3kBT
2b2

ij
��Bij � jRijj�R2

ij, where bij (Bij) are the equi-

librium (critical rupture) distance, which we rewrite as
H � Hrs �Hr0s0 , where Hij �

1
2

3kBT
2a2 �R2

n;n�1 �
f
2 RN1 �

3kBT
2b2

ij
��Bij � jRijj�R2

ij. The population is P�t� �

Prs;r0s0 �t� � P0;r0s0 �t� � Prs;0�t�, where Prs;r0s0 �t� �
Prs�t�Pr0s0 �t� denotes that both contacts are intact,
P0;r0s0 �t� � Prs!0�t�Pr0s0 �t� means that (r, s) is ruptured
but (r0, s0) is intact, and Prs;0�t� � Prs�t�Pr0s0!0�t� implies
that (r0, s0) is disrupted but (r, s) is intact. Pij!0�t� � 1�
Pij�t� is the population of conformations with the disrupted
contact (i, j). Using r0 � r, s0 � s, and brs � br0s0 � b, the
Hamiltonian for two nearest-neighbor contacts is H �
3kBT
2a2 �R2

n;n�1 � fRN1 �
3kBT
2b2 ��B�Rrsj�R2

rs, where �b �

b=
���
2
p

is the rescaled distance. Ptot�t� [ptot�t�] is computed
using Prs�t� Prs�t� for single contact (r, s).

Plots of Ptot�t� for two separated strong contacts at f �
40 pN and 80 pN show that, in general, increasing f
facilitates more rapid rupture of the binary contacts
[Figs. 3(a)–3(c)]. The presence of interior contacts delays
their rupture [compare Figs. 3(a) with 3(b) and 3(c)] even
though f=fc > 1. The time dependence of Ptot�t� for two

(a) (b)

FIG. 2. The Q-Q plots (empty circles) of lifetimes Prs�t� for
single contact �r; s� � �1; 100� (x-axis) versus lifetimes p exp�t�
(y-axis), for f � 40 pN and � � 1 (a) and � � 0:01 (b). The
rate K in pexp�t� is set to the inverse of the average contact
lifetime (the maximum likelihood estimate) [7].

PRL 100, 248102 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JUNE 2008

248102-3



separated contacts [Figs. 3(a)–3(c)], after a lag phase, can
be analyzed using two distinct exponential functions,
which shows the rupture occurs by sequential kinetics,
with f�r; s�; �r0; s0
g ! f�0�; �r0; s0�g ! f�0�; �0�
g. The rate
limiting second step is the rupture of the more interior
contact. Comparison of Ptot�t�, for � � 1 and f �
40 pN, for the nearest neighbor contact pairs �r; s� �
�1; 100� and �r0; s0� � �2; 99�, (20,80) and (21,79), and
(40,60) and (41,59) [Figs. 3(d)–3(f) with Prs�t� for single
contact �r; s� � �1; 100�, (20,80), and (40,60) [Figs. 1(d)–
1(f)] shows that the double bond increases stability of the
contact, especially for the interior contact (40,60). The
chain with double bonds ruptures in a single step,
f�r; s�; �r0; s0�g ! f�0�; �0�g, i.e., the rip occurs coopera-
tively, so that Ptot�t� decays with a single rate constant at
long times. The decay of Ptot�t� for separated contacts,
�r; s� � �20; 80� and �r0; s0� � �40; 60�, is slower than
Ptot�t� for the nearest neighbor contacts, (1,100) and
(2,99) [Figs. 3(c) and 3(d)] and Peq

tot is larger, which shows
that the persistence of binary interactions critically de-
pends on the location of contacts in the chain. The lifetime
distributions show that increasing the force from f �
40 pN to f � 80 pN results in the decreased stability of
contacts and shorter lifetimes (Fig. 3). The contact life-
times increase when they are located in the chain interior

(Fig. 3). The lifetimes of the nearest neighbor contacts,
(1,100) and (2, 99) [Figs. 3(d) and 3(e)], are shorter than
that for the pair, (40,60) and (41,59) [Fig. 3(f)], which
shows the importance of the location of binary contacts
with respect to the point of application of the force.

Conclusions.—The present work shows that the shape of
the free energy landscape can only be discerned by analyz-
ing the topology-dependent lifetime distributions of adhe-
sive contacts that reflect the structure the molecules. The
continued increase in the temporal resolution in laser opti-
cal tweezer experiments should allow the prediction that,
the internal motions of biomolecules are coupled to global
fluctuations, to be tested. The present theory provides a
conceptual framework for interpreting such experiments
[1]. In contrast, the rich behavior predicted here cannot be
obtained by solving for the dynamics in the exactly calcu-
lable equilibrium free energy profile in the presence of
nonzero force. Accounting for the nonexponential distri-
bution of unbinding lifetimes will require models that
reflect the interplay between local chain motions and
tension-induced global unfolding.
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FIG. 3. The survival probabilities Ptot�t� for contact pairs
(1,100) and (20,80) (a); (1,100) and (40,60) (b); and (20,80)
and (40,60) (c); (1,100) and (2,99) (d); (20,80) and (21,79) (e);
and (40, 60) and (41, 59) (f), for f � 40 pN (solid lines) and
80 pN (dashed lines), all with � � 1. The lifetime distributions
Ptot�t� are shown in the insets. Time scales vary greatly in all
panels. Structures are for the intact pair (20,80) (40,60), dis-
rupted contact (20,80) and intact contact (40,60), and both
contacts disrupted are shown.
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