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ABSTRACT: A theoretical basis for the molecular transfer model
(MTM), which takes into account the effects of denaturants by
combining experimental data and molecular models for proteins, is
provided. We show that the MTM is a mean field-like model that
implicitly takes into account denaturant-induced many body
interactions. The MTM in conjunction with the coarse-grained
self organized polymer model with side chains (SOP-SC) for
polypeptide chains is used to simulate the folding of the src-SH3
domain as a function of temperature (T) and guanidine
hydrochloride (GdmCl) concentration [C]. Besides reproducing
the thermodynamic aspects of SH3 folding, the SOP-SC also
captures the cooperativity of the folding transitions. A number of
experimentally testable predictions are also made. First, we predict
that the melting temperature Tm([C]) decreases linearly as [C]
increases. Second, we show that the midpoints Cm,i and melting temperatures Tm,i at which individual residues acquire 50% of
their native contacts differ from the global midpoint (Cm ≈ 2.5 M) and melting temperature (Tm = 355 K) at which the folded
and unfolded states coexist. Dispersion in Cm,i is greater than that found for Tm,i. Third, folding kinetics at [C] = 0 M shows that
the acquisition of contacts between all the secondary structural elements and global folding occur nearly simultaneously. Finally,
from the free energy profiles as a function of the structural overlap function and the radius of gyration of the protein, we find that
at a fixed T the transition state moves toward the folded state as [C] increases in accord with the Hammond postulate. In
contrast, we predict that along the locus of points Tm([C]) the location of the transition state does not change. The theory and
the models used here are sufficiently general for studying the folding of other single domain proteins.

■ INTRODUCTION
In the transition from an ensemble of unfolded conformations
to the folded native state, proteins reach their native basins of
attraction (NBAs) by multiple pathways. These predictions,
which were made on the basis of theory and simulations of
precisely soluble models,1−9 have been validated by experi-
ments, especially those done at the single molecule level.10−16

Thus, instead of the restricted view that folding occurs in
discrete steps, the intrinsic heterogeneity of the folding
pathways demands that it is best to describe the unfolded
state, the transition state, and even the folded states as
ensembles. Each state should be described in terms of
distributions of features that best capture the structural
characteristics of the protein. The simplest two-state folding
reaction is often interpreted as conversion of unfolded states to
a low free energy native state without populating any
discernible intermediate states as the denaturant concentration
([C]) is decreased. From a statistical mechanics perspective,
such a folding process should be viewed as changes in the
distribution of quantities that describe the protein of interest.
Distribution (preferably joint distribution functions obtained
using multiple probes) functions of various quantities (for

example, radius of gyration (Rg), secondary structure content,
and extent of tertiary contact formation) are broad in the
unfolded basin of attraction (UBA) and narrow in the folded
native basins of attraction (NBA). Thus, a more general
description of the two-state folding reaction is

⇆ ⇆{UBA} {TSE} {NBA} (1)

where the curly brackets indicate the ensemble of conforma-
tions, and TSE is the transition state ensemble with a higher
free energy than either UBA or NBA. The more general
description based on the statistical mechanical viewpoint and
polymer concepts have led to predictions for the dependence of
folding rates and stability on the size of proteins,17−19 links
between co-operativity, stability gap, and folding kinetics,20−22

and collapse and folding.23 In addition, scenarios such as
downhill folding, which can also be explained as a special case
of the nucleation collapse mechanism,24 were anticipated on
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the basis of the energy landscape perspective.2 Many of these
predictions have found broad experimental support.10,25

In order to quantitatively describe the folding reaction (eq
1), one has to characterize in detail the statistical properties of
the UBA, NBA, and TSE. In principle, conformations that are
sampled during the folding reaction as a function of [C] can be
obtained using all-atom molecular dynamics simulations (MD).
Although MD simulations have provided useful insights into
the folding mechanisms26−30 of proteins, difficulties in
effectively sampling the conformational space of proteins and
uncertainties in the force fields for all atom MD simulations
have made it difficult to obtain thermodynamic properties that
compare favorably with experiments. The notable exception is
the study by Garcia and co-workers31 on the small protein Trp-
cage. In contrast, CG models have provided considerable
insight into the mechanisms of protein folding.9,32−34 A clear
drawback is that many of the CG models are constructed on
the basis of the folded structure with emphasis only on the
stabilizing interactions between contacts present in the native
state. In addition, simulations using the popular Go-like34,35

and self-organized polymer (SOP)36,37 models are carried out
using temperature to initiate folding or unfolding. In contrast,
in a large number of experiments, changes in [C] are used to
trigger folding and unfolding.
In order to solve some of the problems alluded to above, we

developed the molecular transfer model (MTM)38,39 for which
simulations in the presence of osmolytes and denaturants can
be carried out so that direct comparisons with ensemble and
single molecule experiments can be made. The MTM combines
simulations using a description of polypeptide chains at any
level (all-atom detail or CG) and the effect of denaturants using
experimentally measured transfer free energies for protein
backbone and side chains to describe the folding reaction. Here,
we describe the theory underlying the MTM, which not only
reveals the approximations but also exposes its limitations. As
an application, we use the MTM to fully characterize the
folding of the src-SH3 domain, which has been extensively
characterized using experiments as well as computations.40−45

The present work has led to a number of experimentally
testable predictions.

■ THEORY, MODELS, AND SIMULATIONS

MTM Theory. Consider a ternary system consisting of
monomer protein (p), solvent (s), and denaturant (d). The
energy for the system can be written as

= + + +
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where {ri
p}, {rj

s}, and {rk
d} are the coordinates of the protein

atoms, solvent, and denaturant, respectively, Ep({ri
p}) corre-

sponds to interactions between the protein atoms, Es({rj
s}) is

the energy of the solvent (water), and Ed({rk
d}) represents the

interactions involving the denaturant molecules. Interactions
between protein and solvent are represented by Eps({ri

p},{rj
s}),

Epd({ri
p}, {rk

d}) denotes the interactions between protein and
denaturant, and Eds({rk

d}, {rj
s}) represents the interactions

between the denaturant and solvent. The partition function for
the system is

∭= β−Z r r rd{ } d{ } d{ } ei j k
E r r rp s d ({ },{ },{ })i j k

p s d

(3)

Here, β = 1/kBT, where kB is the Boltzmann constant and T is
the temperature. If we formally integrate over the coordinates
of the denaturant molecules, we obtain
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The manipulations leading to eq 5 are formally exact. To
make progress, one has to construct the energy functions such
as Ep({ri

p}) and other terms in eq 5. In order to devise practical
strategies, we use the MTM, which can be formally obtained
from eq 5 using approximations, to solve the problem of
including osmolytes (denaturants or stabilizing agents) in a
natural manner. In order to render the formal expressions in eq
5 practical, we make two crucial approximations: (1) We
assume that ECG({ri

p})  Ep({ri
p}) + ΔGs({ri

p}), the solvent
averaged interaction between the various protein interaction
centers, can be represented using a suitable CG model. (2) The
effect of denaturants, ΔGd

p({ri
p}), is included using the

molecular transfer model (MTM). According to MTM, the
free energy cost of transferring a polypeptide chain with
conformation {ri

p} (includes all interactions of the polypeptide
chain) to an aqueous denaturant solution at concentration [C]
is approximated as
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where the summation is over all the amino acid side chains and
the backbone peptide groups, δgtr,l

exp([C]) is the experimentally
measured transfer free energy of side chain or backbone l, αl is
the solvent exposed area of l, and αl,G‑l‑G is the solvent exposed
area of l in the tripeptide Gly-l-Gly. Although the MTM
expression for ΔGd

p({ri
p}) appears to be a sum of the single

particle terms, the dependence of δgtr,l
exp([C]) and αl({ri

p}) on all
the coordinates of the polypeptide chains shows that many
body interactions are implicitly taken into account. In addition,
the contributions to ΔGd

p({ri
p}) even for two identical residues

(Ala, for example) in a polypeptide chain will depend on the
extent of solvent exposure of the two residues, which in turn
would be determined by the residues that are in the
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neighborhood of the two residues. By way of contrast, it is
worth noting that, in the standard transfer model used to
calculate m-values46 for proteins, δgtr,l({ri

p}, [C]) is taken to be
independent of {ri

p}. The values of the various parameters such
as van der Waal’s radii of the protein bead required to estimate
αl({ri

p}), αl,G‑l‑G values for all the amino acid residues, and mk
and bk values to calculate δgtr,l

exp([C]) (=mk[C] + bk) are given in
the Supporting Information of ref 47.
Coarse-Grained Model for ECG({ri

p}). In order to sample
the conformational space thoroughly and to ensure that the
protein can make multiple transitions between folded and
unfolded states, we use the SOP-SC (self-organized polymer-
side chain) model. Each amino acid residue is represented using
two interaction centers, one at the Cα atom and the other
centered at the center of mass of the side chain.47 The stability
of the protein in the SOP-SC model is guaranteed by taking
attractive interactions between side chains (SCs) and backbone
atoms that are in contact in the native structure. Although
neglect of non-native interactions can have important
consequences (see below), the folding mechanism and
potential thermodynamics are not greatly compromised, as
shown in recent applications of MTM.
Previous studies showed that m-values (defined using

ΔGNU[C] = ΔGNU[0] + m[C], with ΔGNU[C] (=GN[C] −
GU[C]) being the free energy of stability of the native (N) state
with respect to the unfolded state (U) are accurately
reproduced, using the strict assumption of complete lack of
correlation between interaction centers.46 Because of the
connectivity of the backbone Cα atoms and the covalent
linkage between the SC and the Cα atoms, the αl (eq 6) for the
lth group depends on ({ri

p}). As a result, ΔGd
p({ri

p}) captures
approximately correlations between various SC and the
backbone Cα atoms even though eq 6 contains only single
particle terms.
With these two approximations, the partition function of

MTM (eq 5) is written as

∫= β δ− +∑−Z rd{ } ei
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p [ ({ }) ({ },[ ])]i l l iSOP SC
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In the first applications38,48 of MTM used to predict
equilibrium properties of protein L and cold shock proteins,
we further rewrote eq 7 as
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‐

− Δ
‐Z Z e G r

MTM SOP SC
({ })

SOP SC
id

p p

(8)

For computational expediency, we used low friction Langevin
simulations (see below) to get thermodynamic properties of
the protein in various denaturant concentrations, [C], using the
conformations of the protein obtained at [C] = 0. We further
used the weighted histogram technique (WHAM)49,50 to
combine the simulation data obtained at [C] = 0 to calculate
protein thermodynamic properties at [C] ≠ 0 condition. The
WHAM38 equation used to calculate the thermodynamic
property A([C], T) is
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where Z([C], T) is the partition function, R is the number of
independent simulations, nk is the number of conformations
from the kth simulation, and nm and fm correspond to the
number of conformations and free energy in the mth

simulation, respectively. Ak,t([0]) is the value of property A,
ESOP‑SC
k,t ([0], {ri

p}) is the potential energy of the SOP-SC model
(eq 10) of the protein, and Gd

k,t([C], {ri
p}) is the MTM free

energy of transferring (eq 6) protein conformation from [C] =
0 solution to a solution with denaturant concentration [C]. The
subscripts or superscripts k and t refer to the tth protein
conformation of kth simulation. The use of conformations
generated at [C] = 0 to estimate eq 8, although not necessary,
was made solely for computational expediency. We show
explicitly here that eq 8 provides a good estimate of ZMTM.
Indeed, eq 8 is exact, provided the conformational space can be
extensively sampled at finite T, and merely states that if the
entire space of conformations of a system is known then the
partition at any arbitrary external condition can be computed.

SOP Side Chain Model for Polypeptide Chains. The
SOP-SC model of the 56 residue src-SH3 protein studied here
is constructed using the crystal structure (Protein Data Bank
ID: 1SRL). The effective energy ESOP‑SC({ri

p}) (i = 1, 2, ..., 112)
of the protein is a sum of bonded (B) and nonbonded (NB)
terms, which are a sum of native (N) and non-native (NN)
interactions. Interaction between two sites separated by at least
two other sites is native, if the distance between them is less
than a cutoff distance, Rc, in the SOP-SC contact map of the
crystal structure. The functional form of ESOP‑SC is
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In eq 10, NB (=2N − 1) is the number of bonds in the coarse
grained model of protein and NNN is the number of non-native
interactions; NN

bb, NN
bs, and NN

ss are the number of backbone−
backbone, backbone−side chain, and side chain−side chain
native interactions, respectively. The distance between the ith
pair of residues that are either bonded or interact natively or
non-natively is ri, and rcry,i is the corresponding distance in the
crystal structure. The sum of the radii of the ith pair of residues
is σi, σi,i+2 is the sum of the radii of the interaction sites i and i +
2, and ri,i+2 is the distance between the sites i and i + 2. The
radii of the side chain, σss/2, is defined as the distance between
the position of the backbone bead and the side chain bead in
the PDB structure. The strength of interaction between a pair
of SC beads i, εi

ss, is taken from the Betancourt−Thirumalai
statistical interaction potential,51 and scaled by λ = 0.3. The
other interaction parameters in the energy function are given in
Table 1. The effective energy function for the protein at [C] ≠
0 is the sum of ESOP‑SC, where ESOP‑SC is given by eq 10, and the
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{ri
p}-dependent transfer free energy ΔGd

p({ri
p}) is calculated

using eq 6.

= + Δ‐E E G r({ })iMTM SOP SC d
p p

(11)

Simulations. Extensive thermodynamic sampling of the
protein is achieved using low friction Langevin dynamics
simulations and the SOP-SC model of the src-SH3. The
equations of motion for the position of a protein bead, ri, are
integrated using the equation

ζ̈ = − ̇ + + Γmr r Fi i c (12)

Here, m is the mass of the protein bead, Fc = −∂EMTM/∂ri, and
Γ(t) is random force with a white noise spectrum satisfying the
autocorrelation function in the discretized form ⟨Γ(t)Γ(t +
nh)⟩ = (2ζkBT/h)δ0,n,

52 where δ0,n is the Kronecker delta
function and n = 0, 1, 2, ....
We used the Verlet leapfrog algorithm to integrate the

equation of motion. The velocity, vi, at time t + h/2 and the
position, ri, at time t + h of a bead are given by
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The value of the time step used to integrate eqs 13 and 14 is h
= 0.005τL, and a low friction, ζ = 0.05m/τL (τL is the unit of
time) is used to obtain enhanced sampling and converged
equilibrium thermodynamic data.
Brownian dynamics simulations are used to simulate the

folding kinetics of the protein. The simulation algorithm is a
straightforward implementation of the Ermak and McCammon
algorithm53 without hydrodynamic interactions. The equation
of motion involving the positions of the interaction centers in
the protein, ri, are integrated using

ζ
+ = + + Γr t h r t

h
F t t( ) ( ) ( ( ) ( ))i i

H
c

(15)

We simulated the kinetics of folding by generating a large
number of trajectories with ζH = 50m/τL, which represents the
overdamped limit and corresponds to the friction in water.52

The time step used to integrate eq 15 is 0.01τH. The natural
unit of time for overdamped condition at the simulation
temperature Ts is τH ≈ ζHa

2/kBTs = (((ζHτL/m)el)/kBTs)τL. To
convert simulation time to real time, we chose el = 1 kcal/mol,
average mass m = 1.8 × 10−22 g,52 and a = 4 Å, which makes τL
= 2 ps. For ζH = 50m/τL, we obtain τH = 148 ps.
Data Analysis. We defined a structural overlap function54

χ = −
N
N

1 k

T (16)

as an order parameter to monitor the folding reaction; Nk is
defined as
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In eq 17, ri,j is the distance between interaction centers i and j,
ri,j
o is the corresponding value in the native conformation, Θ(x)
is the Heavyside function, and δ = 2 Å. Nk is the number of
interacting pairs that are within δ = 2 Å in the kth conformation
and NT (=5724) for src-SH3 in the folded state, and it is
obtained by setting all the Θ(x) in eq 17 to unity.
To determine whether a protein conformation belongs to

NBA or UBA, we defined χc such that conformations with χ ≤
χc belong to the NBA. In order to determine χc, we calculated
the distribution P(χ) at the melting temperature Tm([C]). At
Tm([C] = 0), P(χ) as a function of χ shows a bimodal
distribution due to the frequent transitions of the protein from
low χ (NBA) to high χ (UBA). From the observed bimodal
distribution, we surmised that χc = 0.65 (see the Supporting
Information in ref 47 for additional details).

■ RESULTS
Melting Temperature Decreases Linearly as [C]

Increases. In order to test the applicability of using eq 8 in
estimating the exact partition function, we calculated the
specific heat as a function of temperature, T, at different
denaturant concentrations, [C] (Figure 1). The results obtained
from the exact partition function (eq 7) and the approximate
partition function (eq 8) are displayed in Figure 1. At the two

Table 1. Parameters for the SOP Side Chain Model
Described in eq 10

parameter protein

Ro 2.0 Å
k 20 kcal/(mol Å2)
Rc 8 Å
εh
bb 0.55 kcal/mol
εh
bs 0.40 kcal/mol
εl 1.0 kcal/mol
σbb 3.8 Å

Figure 1. Specific heat as a function of temperature for various GdmCl
concentrations, [C]. The data in black, red, and green are for [C] = 0,
1.0, and 2.5 M, respectively. The data in solid and dashed lines are
obtained from the exact partition function (eq 7) and the approximate
partition function (eq 8), respectively. The good agreement between
the solid and dashed lines shows that thermodynamic properties at
nonzero [C] can be obtained by extensive conformational sampling at
[C] = 0. The inset shows the linear decrease in the melting
temperature of the protein as [C] increases. The equation of the line is
also displayed.
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values of [C], the entire shapes of Cv are in quantitative
agreement, which implies that as long as the conformations are
extensively sampled at a given temperature with [C] = 0 then
the partition function at nonzero [C] can be accurately
estimated. The excellent comparison in Figure 1 justifies using
ZMTM to evaluate thermodynamic properties at finite [C]. The
melting temperature of the SH3 domain, Tm, which is identified
with the peak in Cv, decreases in a linear fashion (inset of
Figure 1) as [C] increases. The predicted linearity has
previously been observed in the melting of S6.55

Since the energy fluctuations in the unfolded states are
greater than the folded state, we expect that the heat capacity at
high T corresponding to the unfolded state must exceed the
low temperature value.56−58 However, the opposite trend is
seen in our model and other coarse-grained models.59 The
most likely reason is that water-mediated interactions, which
are known to contribute to this difference in the specific heat
between folded and unfolded states,56 are not captured in CG
models. Despite this limitation, the extent of cooperativity is
not severely compromised (see below).
To assess if thermal melting is a two-state process, we

calculated the ratio λ = ΔHvH/ΔHcal, where ΔHvH is the van’t
Hoff enthalpy and ΔHcal is the calorimetric enthalpy. If λ ∼ 1,
then folding is co-operative, although in a strict sense it merely
shows that folding behaves thermodynamically as a two-state
system. We calculated van’t Hoff enthalpy ΔHvH using ΔHvH =
4kBTm

2|df NBA/dT|Tm
, where f NBA is the fraction of molecules in

the NBA (Figure 2a). It is well-known that, in order to calculate
the calorimetric enthalpy, ΔHcal, accurate care must be taken to
ensure that possible drifts in the baselines of the Cv are
accounted for.59,58 Since the Jackson−Brandts baseline is

theoretically exact for a two-state process, we calculated the
calorimetric enthalpy using

∫ ∫ ∫Δ = − −H C T C T C Td d d
T

T

v
T

T

v
T

T

vcal
NBA DSE

I

II

I

m

m

II

(18)

where TI is the lowest temperature in the heat capacity, at
which the system is assumed to be entirely in NBA. Similarly,
TII is the highest temperature, at which the system is assumed
to belong entirely to the UBA. The melting temperature, Tm, is
given by the peak in (solid lines in Figure 1)

= ⟨ ⟩ − ⟨ ⟩
C

E E
k Tv

2 2

B
2

(19)

Cv
NBA is given by the specific heat at low temperatures. Cv

NBA is
taken to be

=
⟨ ⟩ − ⟨ ⟩

C
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NBA NBA

2
NBA

2

B
2

(20)

and Cv
DSE is

=
⟨ ⟩ − ⟨ ⟩

C
E E

k Tv
DSE DSE

2
DSE

2

B
2

(21)

The ratio λ for [C] = 0.0, 1.0, and 2.5 M is 1.00, 0.95, and 0.91,
respectively, which shows that according to the traditionally
accepted definition the SH3 domain folds in a two-state
manner. These results show that SOP-SC can accurately predict
λ values.
A more robust way to assess how co-operative a folding

transition is to calculate the dimensionless measure,60 with a
much larger dynamic range,

Ω =
Δ

⎛
⎝⎜

⎞
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T
T

f

T

d

dc
m

2
NBA

(22)

where ΔT is the full width at half-maximum of the derivative of
the probability of being in the f NBA with respect to T, and
df NBA/dT is to be evaluated at Tm. We calculated fNBA using

δ χ χ
=

∑ − β−

f
Z

( )ei i
E

NBA
c

MTM

MTM

(23)

In the above equation, χi is the overlap function for the ith
conformation and χc (=0.65) is the boundary between the NBA
and the unfolded state (see the Supporting Information in ref
47 for details). The extent of cooperativity increases as Ωc
increases. We find that Ωc values are 1084, 1158, and 1203,
respectively, at [C] = 0, 1.0, and 2.5 M, respectively. These
results are not inconsistent with the van’t Hoff criterion for src-
SH3.

GdmCl-Dependent Thermodynamics. The changes in
stability of the folded state with respect to the unfolded state
are calculated using a two-state description, which is valid for
src-SH3 folding. We calculated ΔGNU[C] using

Δ = −
−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G RT

f

f
ln

1NU
NBA

NBA (24)

The dependence of fNBA as a function of T at [C] = 0, 1.0, and
2.5 M shows (Figure 2a) that the probability of being in the
NBA shifts to lower values as [C] increases at a fixed T. The
decrease in the melting temperatures, Tm, obtained from

Figure 2. (a) Fraction of molecules in the native state as a function of
temperature, T, for GdmCl concentrations [C] = 0, 1.0, and 2.5 M
calculated using the exact partition function (eq 7). The inset shows
the free energy of the native state with respect to the unfolded state as
a function of T at three GdmCl concentrations. (b) Distribution P( fss)
of secondary structure content, fss (see text for definition of fss), for [C]
= 0, 1.0, and 2.5 M at T = 339 K. At [C] = 2.5 M, the areas under the
two peaks coincide. The ribbon diagram of src-SH3, the secondary
structural elements (SSEs), along with the sequence and location of
SSE is displayed.
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fNBA([C], Tm) = 0.5 shows, in accord with experiments, that
GdmCl destabilizes src-SH3. In the inset, we show the T
dependence of ΔGNU at the three concentrations of GdmCl.
The predictions for the combined T and [C] dependence of
ΔGNU can be validated using standard ensemble experiments.
Dependence of Secondary Structure Formation on

Denaturant Concentration. The distributions P( fss) of the
fraction of native contacts formed by the secondary structural
elements (displayed in the inset in Figure 2b) for [C] = 0, 1,
and 2.5 M at T = 339 K are shown in Figure 2b. The fraction of
native contacts, fss, in the secondary structural elements (helix,
β12, β23, β34, β45) is defined as fss = Nss/Nss

o , where Nss
o (=Nhelix

o +
Nβ12

o + Nβ23
o + Nβ34

o + Nβ45
o ) is the total number of contacts in the

secondary structural elements in the native state. For src-SH3,
Nhelix

o = 12, Nβ12
o = 60,Nβ34

o = 49, Nβ34
o = 19, and Nβ45

o = 37 are the
numbers of contacts in the native state in the helix, β12, β23, β34,
and β45, respectively. As shown in Figure 2b, the probability of
formation of the fraction of native contacts decreases as [C]
increases. At [C] = 2.5 M, which is the midpoint GdmCl
concentration ( f NBA([Cm], T = 339 K) = 0.5), P( fss) exhibits a
bimodal behavior. At Cm, the probabilities of formation and
disruption of contacts involving the secondary structural
elements are equal.
Variations in the Residue Dependent Unfolding

Transition Midpoints. The dependence in the fraction of
native contacts that each residue i forms, ⟨Qi⟩, as a function of
[C] at T = 339 K for all 56 residues in the protein is shown in
Figure 3a. The midpoint concentration, Cm,i, of the melting

transition of residue i is defined as the peak position of d⟨Qi⟩/
d[C]. The range of Cm,i is between 2.2 and 2.7 M (Figure 4a). It
follows from Figures 3a and 4a that the transition midpoints
depend on i, which means that various residues acquire their
native contacts at [C] values that are different from Cm, the
midpoint at which f NBA([Cm]) = 0.5. The dispersion in Cm,i is a
consequence of finite size effects and is determined by the
specific context-dependent interactions associated with various

residues.61 A similar result is found for i-dependent melting
temperatures (Figures 3b and 4b). However, the dispersion in
Tm,i for the temperature induced transition in ⟨Qi⟩ at [C] = 0
(Figure 4b) is smaller (Figure 4a), indicating that the thermal
melting of the protein is more cooperative than the denaturant-
induced unfolding. In a previous paper, we showed that for a
number of proteins Ωc values are larger upon thermal unfolding
compared to unfolding at high [C]. The molecular reason for
this observation is unclear. Thermal perturbation acts uniformly
on all parts of the protein, whereas a more specific set of
interactions between denaturants and proteins results in global
unfolding.62 This could be the reason for reduced cooperativity
in denaturants.
Deviations from the global melting temperature or Cm have

been previously reported in experiments beginning with the
report by Holtzer and co-workers63 who showed there is a
dispersion in the melting temperature in leucine zipper as
assessed by shifts in one-dimensional NMR chemical shifts.
Various residues order at temperatures that are different from
the global Tm. In a much more exhaustive study, it has recently
been shown that for BBL64 there is a great dispersion in the
melting temperature around Tm.

Distance Distribution Functions as a Function of [C].
In order to further characterize the structural changes as [C] is
altered, we calculated the distance distribution function, the
inverse Fourier transform of the scattering intensity, which is
being now routinely measured using small-angle X-ray
scattering (SAXS) experiments. The normalized distance
distribution function, P(r), as a function of r for various [C]
at T = 339 K is plotted in Figure 5a. The function P(r), which is
the distribution of distances between all noncovalently linked
atoms, broadens as [C] increases. As the protein unfolds with
increasing [C], the distance between different interaction
centers increases, leading to the broadening seen in P(r). The
Rg of SH3 calculated using the relation Rg = [∫ r2P(r) dr/2]1/2
for [C] = 0, 1.0, 2.5, and 5.0 M is 11.03, 11.75, 17.3, and 23.19
Å, respectively. These are in good agreement with the values
11.57, 11.994, 16.56, and 22.94 Å calculated using Rg = ((1/
2N2)∑rij

2)1/2. The predictions for P(r) can in principle be
tested using SAXS experiments.

Figure 3. (a) Average fraction of native contacts of residue i in src-
SH3, ⟨Qi⟩, as a function of [C] at T = 339 K. Each color represents a
different residue i, and data are shown for all 56 residues. (b) Same as
part a except here ⟨Qi⟩ as a function of T at [C] = 0 M for the 56
residues are shown.

Figure 4. (a) Distribution of the residue dependent midpoints Cm,i at
T = 339 K. (b) Same as part a except these correspond to melting
temperatures Tm,i for the 56 residues at [C] = 0 M.
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In the inset to Figure 5a, we show plots of log⟨Rij⟩ as a
function of log|i − j| at [C] = 5.0 M, where ⟨Rij⟩ is the distance
between interaction centers i and j. If high GdmCl is a good
solvent for src-SH3 protein, then we expect that ⟨Rij⟩ ∼ |i − j|v

with ν ≈ 0.6. The inset shows that ⟨Rij⟩ does increase as a
power law for both backbone atoms (green) and for backbone
and side chain (red). The effective fractal dimension exponent
is 0.56 for the green line and 0.52 for the red line. Both of these
values are less than what is expected for a random coil, which
suggests that even 5.0 M GdmCl is not a good solvent for src-
SH3 (see below).
In order to assess whether SH3 behaves as a random coil at

high [C], we also calculated the distribution P(Ree) of the end-
to-end distance Ree. At concentrations below Cm = 2.5 M,
P(Ree) is sharply peaked at Ree ∼ 10 Å (Figure 5b) because SH3
is predominantly in the native state. The distribution at [C] =
5.0 M is broad, reflecting the heterogeneous nature of the
unfolded states. If [C] = 5.0 M (≈2Cm) is a good solvent for
src-SH3, then we expect that the distribution function should
take the form

= −θ ν+ −P y c y c y( ) exp( )1
2

2
1/(1 )

(25)

where y = Ree
DSE/⟨Ree

DSE⟩ (⟨Ree
DSE⟩ = 55.0 Å), θ = (γ − 1)/v ≈

0.28, ν ≈ 0.6 is the Flory exponent, c1 = 3.7, and c2 = 1.2.
Comparison of the plot using eq 25 and the simulated result for
P(y) (blue symbols in the inset in Figure 5b) shows that the
simulated P(y) deviates from the expected universal behavior

for a random coil even at 5 M GdmCl. This finding that even at
[C] values that greatly exceed Cm proteins are not true random
coils has also been reported for other proteins.38 Thus, it is not
surprising that even at high [C] there is residual structure in the
DSE.

Kinetic Cooperativity in Folding. In our previous study,47

we showed at nonzero [C] SH3 folds in a single step
characterized by near simultaneous acquisition of all the
contacts involving the various secondary structural elements
and the global contacts characterizing the tertiary structure. In
addition, the formation of secondary structural elements was
coincident with the global collapse of the protein. We repeated
these calculations for [C] = 0 M by generating folding
trajectories starting from initial conformations generated at a
high temperature and subsequently quenching T to 339 K.
From these folding trajectories, we probed the collapse kinetics
using ⟨Rg(t)⟩ as a function of time, t. The time evolution of
⟨Rg(t)⟩ can be fit using a single exponential function with the
rate of collapse, kc([C] = 0.0) = 815 s−1 (red line in Figure 6a).
The collapse time, τc = kc([C])

−1 ∼ 1.2 ms, compares favorably
with theoretical prediction (τc ≈ τ0N

2.2, with τ0 ≈ 1 μs) for
heteropolymer collapse.17

Interestingly, during the process of folding, interactions
between various secondary structural elements are consolidated
nearly simultaneously. The first passage times for the formation
of various secondary structural elements for 50 folding
trajectories at [C] = 0.0 M and T = 339 K are shown in
Figure 6b. The overlap of the first passage times for contacts
between the secondary structural elements for 50 different
trajectories demonstrates that the protein folds into the native
state with all the secondary structures forming and coming

Figure 5. (a) Distance distribution function P(r), the inverse Fourier
transform of the scattering intensity, for 0 M (black), 1.0 M (red), 2.5
M (green), and 5.0 M (blue) GdmCl. Here, r is the distance between
all noncovalently linked atoms. The inset shows a plot of log⟨Rij⟩ as a
function of the separation, log|i − j|, between the interaction centers i
and j. The symbols are obtained from simulations at 5.0 M. Green
(red) corresponds to backbone atoms (backbone atoms and side
chains). Solid lines are fits to ⟨Rij⟩ ∼ |i − j|veff, where νeff is 0.56 and 0.52
for green and red, respectively. Both of these values are less than the
Flory exponent v ∼ 0.6, which implies that 5.0 M is not a good solvent
for the src-SH3 domain. (b) End-to-end distribution P(Ree) at three
GdmCl concentrations. The color code is the same as in part a. The
inset shows the distributions of y = Ree

DSE/⟨Ree
DSE⟩ at [C] = 5.0 M. The

black line is the expected distribution for a self-avoiding walk (see text
for the analytic expression), and the red line is the result for a Gaussian
chain.

Figure 6. (a) Collapse kinetics monitored by the time-dependent
average ⟨Rg(t)⟩ as a function of t. The decrease in ⟨Rg(t)⟩ can be fit
using a single exponential function shown in red. (b) First passage
time for the formation of contacts between various secondary
structural elements from 50 kinetic folding trajectories at [C] = 0 M
and T = 339 K. The solid black symbols show the correlation between
τi
β12 and τi

β23, which are first passage times for formation of interactions
β1−β2 and β2−β3, respectively.
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together at the same time. This is further demonstrated by the
perfect correlation (black dots in Figure 6b) between the first
passage times for the formation of contacts between β1−β2 and
β2−β3 (see inset in Figure 2 for secondary structure labels β-
sheets) for the 50 trajectories.
Free Energy Profiles and the Movement of the

Transition State. In order to assess the response of the
transition state location SH3 to changes in temperature and
denaturant, we calculated the free energy profiles G(χ) and
G(Rg). Although the use of restricted order parameters may not
accurately represent the multidimensional nature of the
underlying folding landscape, the kinetic cooperativity in the
folding of SH3 suggests that both χ (eq 16) and Rg could
capture the salient features of the energy landscape. The
calculated profiles G(χ) and G(Rg) at a fixed T = 339 K are
shown in Figure 7. At [C] = 0 M, the native state is stable

compared to the unfolded state (black curves in Figure 7a and
b). The free energy difference between the folded and unfolded
states obtained from G(χ) at [C] = 0 is ΔGNU = −3.8 kcal/mol.
This value, which is in good agreement with experiment, also
coincides with our previous estimate.47 As [C] increases, the
free energy difference between the native and unfolded states
increases. At [C] > 2.5 M, src-SH3 unfolds (Figure 7a), and the
unfolded state is more stable compared to the native state.
Interestingly, the width of the NBA is broad as measured by

χ, whereas, as expected, it is narrow as assessed by Rg (Figure
7). The free energy profile G(χ) is a projection of a
multidimensional landscape onto a collective dimensional
coordinate. Hence, this intrinsic averaging masks the rugged-
ness of the NBA, which is reflected in a broad native basin in
G(χ). The ruggedness is most likely due to disorder in the side
chains in the NBA at finite temperatures. The profiles in Figure
7 can also be used to estimate the Tanford βF parameter, which
can be estimated using (χTS − χNBA)/(χUBA − χNBA), where χTS
is the location of the transition state with respect to the
minimum, χNBA, in the NBA and χUBA is the corresponding
minimum in the UBA. At [C] = 0, χTS = 0.69, χUBA = 0.82, and
χNBA = 0.38. Thus, the calculated value of βF is 0.7, which agrees
well with the experimental estimate based on Chevron
plots40,41 and also coincides with our previous value obtained
by an entirely different method.47 As [C] increases, there is a

discernible increase in χNBA, which leads to a decrease in βF.
Thus, upon increasing [C], the global location of the transition
state ensemble moves toward the more stable state (NBA),
which is in accord with the Hammond postulate.
A different picture emerges in analyzing the free energy

profiles (Figure 8) calculated along the phase boundary in the

T−[C] plane. As [C] is altered, the melting temperature Tm
changes linearly (Figure 1). The calculated G(χ) and G(Rg) at
different Tm[C] are shown in Figure 8. Because all the profiles
are computed at Tm[C], they display the expected bistable
behavior. The differences in these profiles are in the values of
the stabilities and the barrier heights. We constructed rescaled
free energies GR(χ) and GR(Rg) such that the values at the
transition state for [C] ≠ 0 coincide. This is achieved using
GR(χ) = G(χ) − [G(χTS) − G0(χ

TS)], where χTS is the
transition state location and G0(χ

TS) is the value of the free
energy profile at χTS at 0 M. A similar rescaling was done for
G(Rg). We find that [G(STS) − G0(S

TS)] = −(1.02 + 2.61[C])
kcal/mol, where S is either χ or Rg. All the rescaled profiles fall
on a single curve (see the bottom panels in Figure 8). The
rescaled free energies show that βF does not change. From this
observation, we conclude that the transition state location does
not change by moving across the phase boundary in the T−[C]
plane. Thus, the response of the transition state expressed in
terms of the stiffness parameter βF depends on the conditions
at which the experiments are carried out.

■ CONCLUSIONS
The theoretical basis for the MTM, which is a physically
motivated way of including the effects of denaturants and
osmolytes, shows that it is a mean-field-like model. Because we
have combined the experimental measured transfer free
energies with the underlying polymeric nature of the
polypeptide chain, the theory implicitly accounts for multi-
particle interactions. In addition, the amino acid context
dependence of the response of denaturants is also implicitly
taken into account. Perhaps, it is for these reasons that the
MTM is successful in predicting a number of aspects of
denaturant-dependent folding in applications to a variety of
single domain proteins. Here, we have shown that the MTM

Figure 7. (a) Free energy profiles G(χ) as a function of the structural
overlap function χ at different GdmCl concentrations. (b) Same as
part a except the free energy profiles are calculated as a function of the
radius of gyration, Rg. In both parts a and b, T = 339 K. The values of
[C] measured in M from top to bottom are 0, 1, 2, 2.5, 3, 4, 5, 6, 7, and
8.

Figure 8. (a) Dependence of G(χ) at various GdmCl concentrations.
These profiles are calculated along the boundary, Tm([C]), at which
the folded and unfolded states are of equal stability. In the bottom
panel, we show GR(χ) obtained by scaling the profiles above in such a
way that the values at the transition state coincide. (b) Same as part a
except these profiles correspond to G(Rg) and GR(Rg). The GdmCl
concentrations are the same as in Figure 7.
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accurately reproduces the cooperativity of the folding transition
when used in conjunction with the SOP-SC representation of
src-SH3. The near coincidence of the van’t Hoff and
calorimetric enthalpies attests to the two-state nature of SH3
folding. Moreover, the calculated probability of being in the
NBA as a function of GdmCl concentration at a fixed T agrees
with experimental measurements.
In addition to merely reproducing known experimental

results, the current application of MTM to folding of the src-
SH3 domain has produced a number of predictions. (1) We
have shown that the melting temperature decreases linearly as
the GdmCl concentration is increased. (2) Computing the
temperature-dependent changes in the fraction of molecules in
the NBA at different GdmCl concentrations (Figure 2) allows
us to obtain a phase diagram for the SH3 domain as a function
of T and [C]. (3) We have predicted that both the midpoints
and the melting temperatures should be residue dependent.
Interestingly, thermal melting is more cooperative than
unfolding by GdmCl (smaller dispersion in the melting
temperatures compared to dispersion in the denaturant
midpoints). (4) We have predicted changes in the distance
distribution functions as a function of [C]. The characterization
of the UBA shows that SH3 is not a Flory random coil even at 5
M GdmCl. (5) The transition state ensemble moves in accord
with the Hammond postulate at a fixed T when [C] is
increased. However, the transition state location is invariant
along the locus of points Tm([C]). In other words, at the [C]-
dependent melting temperatures, the Tanford βF does not
change. All of these novel predictions are amenable to
experimental test using standard experimental techniques
(SAXS, measuring chemical shifts using one-dimensional
NMR, stopped flow experiments).
We note in closing that the theory outlined here is not

without limitations. First, the MTM itself does not explicitly
take into account atomic details of the denaturants. It is worth
emphasizing that not including water explicitly is solely for
computational reasons, and is not an inherent limitation of
MTM. In the MTM, what is needed is extensive sampling of
protein conformations at a fixed temperature. Such simulations
can be performed using all atom molecular dynamics
simulations in explicit water. The resulting ensemble of
conformations can be used to obtain thermodynamic properties
as a function of denaturants using the method proposed here
and elsewhere.38 Thus, there is freedom in choosing the level of
description for both water and the proteins. The use of transfer
free energy implies that in the MTM theory denaturants are
treated implicitly.
Second, we have used a coarse-grained SOP-SC native-

centric model for the SH3 domain. As such, it is open to
criticism that non-native interactions could affect the folding of
SH3 domains. Several previous studies have taken partial
account of non-native interactions in simulations.65−68 In all
these insightful studies, only a subset of non-native interactions
among a subset of residues are taken into account often with
reduced strength and/or altered interaction range. Thus, the
extent to which non-native interactions affect the folding
thermodynamics of proteins that ostensibly fold in a two-state
manner remains an open question. It is extremely unlikely that
the presence of persistent non-native interactions contributes
significantly to the thermodynamics of folding, at least for the
proteins that we have studied. Had this been the case, the good
agreement between simulations and experiments across the
board would not be possible. The effect of non-native

interactions on the kinetics is harder to assess. Undoubtedly,
they are relevant in at least the early stages (time scales on the
order of collapse times) of folding, as has been known for some
time through detailed studies of simple models69 and more
recently in the all atom simulations of cytochrome c by Elber.70

It remains unclear whether the effect of non-native interactions
can be adequately accounted for using a roughness-dependent
diffusion coefficient at least in rationalizing the rates of folding.
Although studies based on lattice models show that to a large
extent the folding mechanisms are unaltered by non-native
interactions,71,72 additional work is required to fully quantify
their effect on the folding reaction.
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