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ABSTRACT

Knowledge-based contact potentials are routinely
used in fold recognition, binding of peptides to pro-
teins, structure prediction, and coarse-grained mod-
els to probe protein folding kinetics. The dominant
physical forces embodied in the contact potentials are
revealed by eigenvalue analysis of the matrices,
whose elements describe the strengths of interaction
between amino acid side chains. We propose a gen-
eral method to rank quantitatively the importance of
various inter-residue interactions represented in the
currently popular pair contact potentials. Eigenvalue
analysis and correlation diagrams are used to rank
the inter-residue pair interactions with respect to the
magnitude of their relative contributions to the con-
tact potentials. The amino acid ranking is shown to
be consistent with a mean field approximation that
is used to reconstruct the original contact potentials
from the most relevant amino acids for several con-
tact potentials. By providing a general, relative rank-
ing score for amino acids, this method permits a
detailed, quantitative comparison of various contact
interaction schemes. For most contact potentials,
between 7 and 9 amino acids of varying chemical
character are needed to accurately reconstruct the
full matrix. By correlating the identified important
amino acid residues in contact potentials and analy-
sis of about 7800 structural domains in the CATH
database we predict that it is important to model
accurately interactions between small hydrophobic
residues. In addition, only potentials that take inter-
actions involving the protein backbone into account
can predict dense packing in protein structures.

Proteins 2008; 70:119-130.
© 2007 Wiley-Liss, Inc.t

Key words: amino acid ranking; protein folding;
contact interactions; amino acid substitution; mini-
mal alphabet for proteins; protein binding protein
design; eigenvalue analysis.

© 2007 WILEY-LISS, INC.

This article is a US Government work and, as such, is in the public domain in the United States of America.

INTRODUCTION

The number of resolved protein structures and sequences depos-
ited in protein data banks increases every year by thousands.!
Nevertheless, the majority of protein structures for which sequen-
ces are known, remain unresolved. In recent years, atomistic
approaches to simulating and predicting protein structures have
evolved rapidly, taking advantage of advances in both algorithmic
and computational hardware capabilities. However, it is still not
feasible to apply atomistic methods to large scale protein structure
prediction or to studies of protein—protein interactions or binding
of small molecules and peptides to proteins. The difficulty in sim-
ulating in detail the folding or binding of even modest sized
proteins and peptides has led to the development of minimalistic
coarse-grained models.2 The need to model, at least qualitatively,
interactions between proteins, or ligand driven allosteric transitions
in biological nanomachines, has lead to the development of a
number of novel coarse-grained models. Although the level of
detail in these models varies, the energy functions in many of these
are often derived from databases of known structures.3—> Because
of the increasing popularity of coarse-grained models in the con-
text of structural biology,2®7 it is useful to assess the extent to
which they include chemical diversity of amino acids. The purpose
of this article is to dissect the relative contributions of individual
amino acids to commonly used pair potentials derived to identify
fold recognition.

Pairwise contact potentials are the most simple and widely used
representations of inter-residue interactions. Since their introduc-
tion,>8 contact potentials have been successfully used in many
applications ranging from protein structure prediction to protein
design and docking.
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The contact potentials describe the interactions
between the 20 side chains by a 20 X 20 matrix, the ele-
ments of which give the interaction strength between a
pair of amino acids at contact. Two amino acid residues
are in contact if the distance between them is less than a
cutoff distance, R.. Typically, the contact potentials are
derived from known protein structures, and hence R is
chosen to reflect the value in the X-ray or NMR struc-
tures.

A strong interest in analyzing contact potentials comes
from the need to understand the effects of amino acid
sequence complexity on the nature of the protein struc-
tural fold and their stability.>~13 Efforts have been made
to classify amino acids!4=17 with the goal of identifying
the minimal number of amino acid types that is needed
for protein design and protein folding.18-21 Rapid
methods to assess binding of ligands and peptides to
proteins require knowledge of the overall contributions
that different amino acids make to the various potentials.
For example, it has been shown2?2 that binding of anti-
genic peptides to major histocompatibility complex
(MHC), which is a prerequisite for recognition by cyto-
toxic T-cells, is better predicted by the BT23 potential
that treats hydrophilic interactions more adequately than
the MJ-96 potential,> which places emphasis on hydro-
phobic interactions.

Previous studies!®23-25 of the 20 X 20 contact
potential matrices suggest that eigenvalue analysis are
useful for investigating their specific features, and for
characterizing the underlying physical driving forces
involved in protein folding. In Figure 1 we illustrate,
using a gray scale representation, six contact potential
matrices that are further analyzed in this article. They
were developed by Miyazawa and Jernigan (M]—96,5 and
M]—9926), Betancourt and Thirumalai (BT23), Skolnick
et al. (SIKG,4 and Sko-1a and Sko-1b from Tables 1a and
1b in Ref. 27), Hinds and Levitt (HLZS), Tobi et al.2>
(TSLE-5a and TSLE-5b from Tables 5a and 5b in Ref.
25), and Buchete et al. (BST29). The BST matrices were
derived from orientational and distance-dependent inter-
actions. To reduce them to contact form, the full poten-
tials were integrated over distance and angles: BST-fu
(forward-up, 6 € [0, n/2], ¢ € [0, «]), BST-bd (back-
wards-down, 0 € [n/2, ], ¢ € [=m, 2r]), and BST (all
angles, i.e., 0 € [0, nt], ¢ € [0, 2n]). All contact matrices
were rearranged such that the amino acid order is the
same as in the Miyazawa—]ernigan5 matrix (MJ-96). We
also subtracted, the corresponding mean values from all
the analyzed matrices to prevent an extremely big largest
eigenvalue.24 In the gray scale representation (Fig. 1),
lighter shades correspond to more attractive interactions
while darker shades correspond to stronger repulsions.

Li et al24 showed that the popular Miyazawa-Jerni-
gan® potential matrix has only two dominant eigenvalues
(Fig. 2, MJ-96), and that their corresponding eigenvectors
are strongly correlated to each other and to a hydropho-
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bicity scale.30 The presence of the two dominant eigen-
values implies that only two types of residues (hydro-
phobic (H) and polar (P)) are needed to describe the
major forces that determine the nature of protein folds.
More recently, Wang and Leeld deepened the analysis of
the MJ-96 potentials, by showing that the origin of the
strong HP character of the interactions is due to impor-
tant correlations between the elements of the leading
eigenvector (g;) and the dipolar moments (Q;) of the
side chains.3! These observations support the widely
held notion that the most relevant characteristic of a
given residue’s interactions is how a residue interacts
with water.32 The relationship between hydrophobicity
and the principal eigenvector of contact potential matri-
ces was recently used to study the structure, stability and
evolution of proteins.33-37 Pokarowski et al.38 have ana-
lyzed a large set of contact potentials and have shown
that they can be largely classified in two classes, both
having strong correlations with hydrophobic transfer
energies. However, only one class is significantly corre-
lated to amino acid isoelectric points.

During the last decade, details related to chain connec-
tivity, compactness of the native state, and the effects of
secondary structure have been incorporated in contact
potentials.»>27 One example is the newer Miyazawa-Jer-
nigan (MJ-99) potentials, parameterized using an
improved self-consistent procedure that leds to enhanced
ability to discriminate native structures from non-native
folds.20 Such improvements, which account for a variety
of characteristics beyond the HP classification, result in a
more complex potential with a weaker eigenvalue separa-
tion than in the MJ-96 case (Figs. 1-3).

In this article we introduce a general amino acid rank-
ing method based on an eigenvalue analysis for pairwise
contact potential matrices. Eigenvalue analysis is a gen-
eral tool that may be employed to study any contact
potentials, and permits the ranking of the relative contri-
butions of each interacting amino acid. Our ranking
method allows us to reconstruct the contact potentials
using the most important residues. Such a “mean field”
reconstruction is indicative of the importance of amino
acids of different chemical character in the contact
potentials. The objective ranking of the amino acid inter-
actions makes possible the direct, quantitative compari-
son of various contact potentials and it may be applied
to protein structure and design, to protein—protein inter-
actions, and to the interpretation of amino acid mutation
studies.

METHODS (THEORY)

The pairwise contact potential matrices are symmetric
and self-adjoint. Thus all the eigenvalues are real, and the
corresponding eigenvectors can be constructed as a com-
plete orthonormal set.39 The eigenvalue equation for
matrix M is

DOI 10.1002/prot



Contact Potentials for Proteins

[ C
M M
F F
I |
L L
V' \'
w w
Y Y
A Al
G G
Tt T
St s
N N
Q Q
D D
E E
H HE
R R
K i K
CMFILVWYAGTSNQDEHRKP CMFI LVWYAGTSNQDEHRKP
BT

A MJ-96

B
g CF
M M
F F
I |
L L
vV Vv
W W
Y Y
A A
e G
TH T
S S
N N
Q Q
D D
E Ef
H H
R R
K K
P ; P
CMF I LVWYAGTSNQDEHRKP  CMF I LVWYAGTSNQDEHRKP
c SJKG D HL
c W c
M M
F F
I |
L L
vV V
W W
Y Y
A A
G| G
T} T
S S
N} N
Q Q
D D
E E
H H
R R
K y K
Pt__m W, % i N P e
CMF I LVWYAGTSNQDEHRKP  CMFILVWYAGTSNQDEHRKP
E TSLE F BST

Figure 1

Gray scale representation of some of the contact potential matrices. They are (a) Miyazawa and ]emigan5 (MJ-96), 511) Betancourt and Thirumalai®> (BT), (c) Skolnick
et al.? (SIKG), (d) Hinds and Levitt?® (HL), (e) Tobi et al.2> (TSLE, from Table 5a in Ref. 25), and Buchete et al.2” (BST).
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M[v') = Ailv') (1)
where A; are the real eigenvalues and (v' | v/) = §; is the
orthonormality relation of the i € {1, 2,..., 20} eigen-
vectors.

Figure 2(a,b) show the leading A; values calculated for
contact potentials such as the ones depicted in Figure 1.
If the complete set of real eigenvalues and eigenvectors
are known, the original matrix can be reconstructed
exactly using

M=) V) (V'] (2)

where (v"| is the transpose of the eigenvector |[v"), and
vi' is the j-th element. In cases where there are only a few
(Nmin < 20) dominant eigenvalues (e.g., as for MJ-96),
the following approximate reconstruction formula can be
employed with good accuracy

Niin

M = > haviv! (3)
n=1

This eigenvalue-based reconstruction procedure is illus-
trated in Figure 3 for the newer MJ-99 matrix and the
corresponding reconstructed matrices (M) using only the
first [Fig. 3(b)], the first two [Fig. 3(c)] and the first
three [Fig. 3(d)] largest eigenvalues.

To facilitate the comparison of the contact potentials
on equal footing, all the matrices M were first scaled to
the [0, 1] range, and the mean value was subtracted.24
All contact matrices were also rearranged such that the
amino acid order is the same as for the Miyazawa-Jerni-
gan® matrix. On the basis of the analysis, we conclude
that for most contact potential matrices the separation of
the leading eigenvalues is not as strong as for MJ-96. Fig-
ure 2 shows the relative magnitude of the eigenvalues for
the contact potential matrices depicted in Figure 1.

A quantitative measure of the accuracy of reconstruc-
tion is the linear correlation coefficient r which is defined
for any two matrices M and M as

r =

<MXM>_<M><N> 7 (4)
VIV X M) — (M)][(V X M) — (M)’

]

where the average (M X M) is calculated for the products
between the corresponding individual elements M;; and
M;; and not over the matrix product. Figure 4 shows the
correlation coefficients of the elements of the original M
matrices and their reconstructed values (M). Using this
analysis we can answer the question: How many eigenval-
ues are necessary and sufficient to obtain a reconstructed
matrix that has a correlation coefficient with the original
matrix of r. or better? Here, r. is a critical threshold
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The largest eigenvalues of several statistical contact potential matrices. The
eigenvalues are ranked according to their absolute magnitude. These contact
potentials were developed by Miyazawa and Jernigan (MI—96,5 and M]-9926),
Betancourt and Thirumalai (B 3), Skolnick et al. (S]KG,4 and Sko-1a

and Sko-1b from Tables 1a and 1b in Ref. 27), Hinds and Levitt (HL28),
Tobi et al.? (TSLE-5a and TSLE-5b from Tables 5a and 5b in Ref. 25),

and Buchete et al. (BST,29 see Fig. 1 and the text for details).

value of the correlation coefficient. For example, if r, =
0.9 (i.e. a very strong correlation) we see from Figure 4
that only two largest eigenvalues are sufficient in the case
of the MJ-96 matrix, while three eigenvalues are neces-
sary for the BT interaction matrix. For most contact
potentials (Fig. 4) only a few eigenvalues are required to
reconstruct the original matrix.

RESULTS AND DISCUSSION
The relative contribution of each amino acid

The eigenvalue analysis of the MJ-96 matrix revealed 18,24
strong correlations between the elements of the eigenvector
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Figure 3
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DOI 10.1002/prot

proTEINS 123



N.-V. Buchete et al.

1 2 3 4 5 6
A No. of eigenvalues

1 2 3 4
B No. of eigenvalues

Figure 4

Correlation coefficients (r) calculated between several potential matrices (see
text) and their approximate reconstructions using only a few largest eigenvalues.

corresponding to the largest eigenvalue of the MJ-96 matrix,
and physical properties of the individual amino acids such
as the hydrophobicities [see Eq. (4) and Fig. 2 in Ref. 24]
and the electric dipole moment [see Eq. (3) and Fig. 1 in
Ref. 18]. These observations suggest that the amplitudes of
the elements of the eigenvectors corresponding to dominant
eigenvalues are directly proportional to the magnitude of
the physical interactions between the corresponding amino
acids. Based on this observation, we define an importance
vector I with components

Nimin )
L= ) )

=1

The elements of I are proportional to the relative mag-
nitudes of the interactions that each residue makes to I,
To facilitate the comparison of I vectors obtained for
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different contact potentials, it is better to map the ele-
ments of each vector I to the [0, 1] range by using the
scaling relation I; — (I; — min(I))/(max(I) — min(I)).
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(a, b) The importance ranking of specific amino acids (i.e., the 1, vectors, 1
being the most important) for several contact potential matrices. (c) Representation
of the 1,4, values calculated for several, commonly used contact potentials.
Important amino acids are dark red and black, as shown in the color scale.
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We show in Figure 5 the ranking values obtained for the
vectors I for the various contact potentials. Amino acids
such as Thr, Asn, and GIn have low I values for most
contact potentials, while interactions involving hydrophobic
or charged amino acids have higher values (Fig. 5). Since in
some cases different amino acids have similar I; values, it is
useful to analyze the ranking of the various amino acids
(i.e., 1st, 2nd, etc.) corresponding to each I vector.

Although the amino acid ranking is relatively similar
for the contact matrices analyzed in Figure 5(a) (M]-96,
MJ-99, BT, SJKG, Sko-la and Sko-1b), it is different for
the other potentials [Fig. 5(b,c)]. As a confirmation of
the validity of the amino acid ranking method proposed
here, we note that Thr is ranked as the “least important”
amino acid for the BT potential, which justifies its choice
as the optimal reference state.23

Mean field reconstruction of
contact interactions

Another argument in favor of the amino acid ranking
proposed above (Eq. 5) comes from analyzing the corre-
lation coefficients between the full, original potential
matrices, and the matrices reconstructed using the mean
field approximation. If only “important” amino acid
interactions are maintained from the original matrix and
all other elements are replaced by the corresponding
mean values for each potential, one would expect that
matrices reconstructed using “less important” amino
acids should be consistently less correlated with the origi-
nal matrix. In Figure 6(a) are shown several mean field
reconstructed matrices for the MJ-96 potential, to illus-
trate this method.

The results of the correlation calculations between the
original MJ-96 matrix and its corresponding mean field
reconstructed matrices, using different combinations of
more or less important amino acids, are presented in Fig-
ure 6(b). The data points on the bottom correspond to r
values computed when only one single amino acid (cor-
responding to the nearby letter) is used. The second set
of points from the bottom, corresponds to cases when
two amino acids are used, and so on. For example, the
data point labeled “LFI” corresponds to a mean field ma-
trix M that was reconstructed by using only Leu, Phe,
and Ile. The continuous straight lines represent linear fits
for each series of data points. All fits have negative
slopes, indicating that the amino acid ranking defined
above is consistent with the mean field representation.
We have calculated this type of correlation diagrams for
all the potentials mentioned above (Figs. S1 and S2 in
Supplementary Material), and the results are shown in
Figure 7. For all contact potentials studied, the matrices
reconstructed using less important amino acids are con-
sistently less correlated with the full, original matrices,
than matrices corresponding to important amino acids.
These results, summarized in Figure 7 and Table S-I
(Supplementary Material), answer the question: How
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many and which specific amino acids are necessary and
sufficient for building a mean field reconstructed poten-
tial that has a correlation with the original potential of r,
or better? (here r. = 0.9).

The reduced sets of amino acids extracted for the con-
tact interaction potentials listed in Table S-I are shown in
Table S-1I, together with their side chain size, charged, or
hydrophobic properties, respectively.40 The same reduced
sets of amino acids are shown in Table S-III, with em-
phasis on the character of their packing in the interior of
proteins. We note that both MJ-96 and MJ-99 potentials
are strongly dominated by interactions between predomi-
nantly small hydrophobic residues, together with strong
contributions from Lys and Cys. The acidic and polar res-
idues appear to have an average role in the MJ-96 and
MJ-99 interaction schemes, as well as the amino acids
with large side chains. The interactions with large side
chains such as Trp, His and Tyr are more relevant for the
HL, SJKG, BT, and TSLE contact potentials than for the
MJ and BST interactions. The most important MJ-96
and MJ-99 (Table S-III) residues are typically found in
the interior of protein structures, with the exception of
Lys that is predominantly exposed to the solvent, and Cys
that has a strong affinity for forming Cys—Cys contacts.
Comparatively, the other contact potentials have a less
hydrophobic character, with amino acid classes repre-
sented almost uniformly in their interaction schemes. An
interesting general observation is that the polar,
uncharged Thr, Asn, and Gln amino acids are assigned
the weakest interactions by all contact potentials investi-
gated here.

Randomly generated contact potentials

As one more test of the proposed method for ranking
the 20 amino acids based on their contribution to con-
tact interactions, we estimate the probability of obtaining
a similar ranking by generating random contact potential
matrices. By extracting parameters for the best fitting
Gaussian distributions of the elements of the potentials
analyzed in this paper (Fig. 8), we can generate new ran-
dom contact potentials.

We analyzed data obtained for random matrices that
correspond to Gaussian distributions similar to the origi-
nal contact potential matrices (Figs. S3-S6). Ten thou-
sand such matrices were generated for each contact
potential analyzed in this work, and their amino acid
rankings were compared to the original reference matri-
ces. The results show clearly that the probability of
obtaining amino acid rankings similar to the original,
reference interaction matrix is extremely small (e.g., as
shown in Fig. S4) for all the types of contact potentials.
The probability to obtain an amino acid ranking from a
randomly generated matrix that has a correlation coeffi-
cient of 0.6 or better with the ranking obtained for the
original matrix, is in the [0.004, 0.006] range. However,
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(a, b) Correlation curves constructed for mean field reconstructed values for
several contact potentials. At least Nyy = 7 amino acids are necessary for any
contact potential matrices to be reconstructed with a correlation r > 0.9 to the
original matrix. For all matrices, only 7-9 important amino acids (gray zone)
are sufficient for reconstructing the full contact potential with r > 0.9.

this probability drops dramatically to the [0.0004,
0.0006] range if a correlation coefficient of 0.7 or better
is sought for the amino acid ranking. Our amino acid
ranking method seems therefore to be robust against ran-
domly generated data.

We conclude that the most commonly used contact
matrices reflect the nature of the forces that stabilize pro-
tein folds. Thus, the quasi-chemical approximation, in-
herent in these potentials, is a reasonable approximation
for describing interactions in proteins.

Contacts potentials and classes
of protein structures

Most of the available contact potentials suggest that
about 7-9 amino acid residues are required to capture
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the chemical diversity of proteins (Fig. 7). It is likely the
case that the most effective contact potential will depend
on the application, as was shown in the context of ligand
binding to MHC complexes.22 We can get further insight
into the appropriateness of the contact potentials by con-
sidering packing in proteins, which is important in the
context of structure prediction. Since our analysis per-
mits the ranking of all SC-SC interactions for any type
of contact potential, we can use it to predict the appro-
priateness of using a certain interaction scheme to mod-
eling proteins with different secondary structures.

To relate the contact potentials to protein secondary
structures, we calculate the preponderance of interactions
that are present in a variety of protein structures. For
this purpose, we use the CATH (version 3.0.0, May 2006)
database?! of representative protein classes (i.e., class (1)
mainly-«, (2) mainly-B, (3) @ + B, and (4) a class that
contains miscellaneous protein domains with low second-
ary structure content) to assess the fraction of side chain
contacts that are typically present in proteins. We use
nine classes for grouping the 20 residues types40 as:
“sH” for the small-hydrophobic (A,V,LLM), “LH” for
large-hydrophobic (Y,W,F), “sP” for small-polar (S,T),
“LP” for large-polar (N,Q,H), “pos” for the positive
(R,K), “neg” for negative (D,E) and single letter codes
for “G” “P”, and “C” The values in Table I are mean val-
ues obtained for each structural class by dividing the sets
of representative domains in the CATH database into 9
subsets. The corresponding standard error for each value
is given in brackets.

The results in Table I show that most contacts occur
between sH residues, with about 4.5% higher frequencies
for Class 1 (mainly-a) protein domains than for Class 2
(mainly-B) (i.e., 23.9 vs. 19.4%, Table IA). When consid-
ering the fraction of side chain-backbone (SC-BB) con-
tacts (i.e., by using an extra interaction site “BB” located
on the backbone, as in our previous work#2) these
results show a very high SC-BB fraction of contacts
(Table IB and IC) in all cases. However, mainly-a struc-
tures have a 20% higher fraction of SC-SC contacts
(Table IC) as compared to mainly-f structures, at the
expense of BB-BB interactions. Together with data in
Table IB, it appears that in mainly-B structures, many
sH-sH and sH-LH contacts (which are more common in
mainly-a structures), are being replaced by BB-BB back-
bone contacts.

On the basis of the above observations and on the
interaction ranking resulting from our method (e.g., see
Tables S-1I and S-III), we predict that the MJ, BT, and
SJIKG contact potentials will perform better than other
potentials in modeling secondary structure of typical
proteins because they have a good balance between con-
tacts of sH, LH, and charged residues. However, the M]
types of contact potentials may be more adequate to
model proteins that are classified as CATH Class I,
mainly-a (and, accordingly, BT and SJKG may perform
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an unbiased comparison, all interactions are first scaled to the [0, 1] interval and the mean values are subtracted. Note that some contact matrices appear to be less

normally distributed than others.

better for modeling Class 2 and Class 3 structures)
because MJ contacts appear to give higher weights to
interactions between small-hydrophobic amino acids. As
suggested for scoring functions used in protein dock-
ing,43 the direct correlation between contact potentials
suggests that a variety of interaction schemes may be
needed to predict the structure of proteins. The present
analysis clearly shows the need to develop potentials that
also include the shapes and size of amino acid residues.

CONCLUSIONS

We have presented a general method for the analysis
of pairwise contact potential matrices, which permits the
ranking of each inter-residue interaction component
according to its contribution to the global features of
contact potentials. The method is used to analyze several
widely used contact potential interaction matrices for
proteins. We show that the new ranking method (see
Eq. 5) is consistent with the mean field reconstruction
technique, and with the selection of reference states used
in previous studies (e.g., Thr for the BT potential23).
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This new method offers a theoretical basis for protein
design using a minimum number of amino acids. In par-
ticular, our results support the findings that stable and
unique designs can be achieved using only a subset of
suitably chosen amino acids.44=47 The present analysis
identifies the precise minimum subset of residues that
globally correlate with each contact potential.
Quantitatively, our analysis shows that only 7-9 residues
are sufficient for a very good approximation of the most
widely used 20 X 20 inter-residue contact interaction
schemes (i.e., such that the reconstructed interaction ma-
trix has a correlation coefficient of at least 0.9 with the full
20 X 20 matrix). The amino acid importance ranking,
resulting from the fast growing variety of contact interac-
tion potentials, was applied to study the relationship
between the different types of contact potentials and their
efficacy to model specific classes of protein secondary struc-
tures as defined by the CATH database. The correlation
between contact potentials and the analysis of the CATH
database shows that the preponderance of interactions be-
tween small hydrophobic residues must be considered for
accurately predicting protein structures. Moreover, interac-
tions involving backbone atoms must also be modeled for
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Table |

Fractions of Side Chain Contacts in Protein Structural Classes (i.e., as Defined
for the CATH Database, v.3.0.0, May 2006)

Class 1 Class 2 Class 3 Class 4
a[1877] B[1839] o + B[3956]  misc. [162]
A. Percentage of side chain contacts using the
9 amino acid (AA) groups (see text for notation)
sH-sH 23.92 (0.24) 19.4 (0.13) 24.55 (0.25) 11.29 (1.17)
sH-LH 10.87 (0.09) 9.35 (0.09) 9.46 (0.07) 6.68 (0.49)
sH-sP 6.60 (0.07) 7.00 (0.07) 6.94 (0.09) 4.91 (0.60)
sH-LP 5.93 (0.09) 472 (0.07) 4.93 (0.08) 5.27 (0.45)
sH-pos 5.33 (0.09) - - 5.67 (0.43)
sH-G - 4.54 (0.09) 4.60 (0.05) -
B. Percentage of contacts using 10 AA groups
(9 + a "BB” side on backbone)
sH-BB 15.06 (0.13) 14.06 (0.06) 15.47 (0.10) 10.55 (0.64)
sH-sH 12.72 (0.17) 6.23 (0.05) 10.08 (0.12) -
BB-BB 10.13 (0.17) ~ 28.07 (0.09) 19.79 (0.07) 19.61 (0.66)
sH-LH 5.78 (0.06) - 3.91 (0.05) -
BB-LH 4.10 (0.06) 3.83 (0.04) - 4.48 (0.38)
BB-sP - 6.05 (0.07) 4.80 (0.05) -
BB-C - - - 6.49 (0.88)
BB-LP - - - 4.78 (0.52)
C. Percentage of side chain - backbone ("BB”) contacts
SC-SC 53.14 (0.26)  32.10 (0.07) 41.05 (0.07) 37.44 (1.09)
SC-BB 36.73 (0.12)  39.83 (0.07) 39.17 (0.08) 42.95 (0.68)
BB-BB 10.13 (0.18)  28.07 (0.09) 19.78 (0.07) 19.61 (0.66)

The number of representative protein structural domains used are given in square
brackets. The standard errors estimated for each type of fraction of contacts are shown
in brackets. Only the largest five fractions of contact types are shown for each class.

describing the folded structures of proteins, especially those
involving B-sheets. Our ranking method can be used as a
guide in the development and evaluation of new potentials
for the study of protein folding, for protein structure pre-
diction and design, or for the development of novel residue
substitution matrices for protein sequence analysis.48_50
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