arXiv.cond-mat/0601426v1 [cond-mat.soft] 19 Jan 2006

Kinetics of Interior Loop Formation in Semiflexible Chains

Changbong Hyeon and D. Thirumalai
Biophysics Physics Program,
Institute for Physical Science and Technology
University of Maryland,

College Park, MD 207/2

Loop formation between monomers in the interior of semiflexible chains describes
elementary events in biomolecular folding and DNA bending. We calculate ana-
lytically the interior distance distribution function for semiflexible chains using a
mean-field approach. Using the potential of mean force derived from the distance
distribution function we present a simple expression for the kinetics of interior loop-
ing by adopting Kramers theory. For the parameters, that are appropriate for DNA,
the theoretical predictions in comparison to the case are in excellent agreement with
explicit Brownian dynamics simulations of worm-like chain (WLC) model. The inte-
rior looping times (77¢) can be greatly altered in cases when the stiffness of the loop
differs from that of the dangling ends. If the dangling end is stiffer than the loop
then 77¢ increases for the case of the WLC with uniform persistence length. In con-
trast, attachment of flexible dangling ends enhances rate of interior loop formation.
The theory also shows that if the monomers are charged and interact via screened
Coulomb potential then both the cyclization (7.) and interior looping (77¢) times
greatly increase at low ionic concentration. Because both 7. and 7;¢ are determined
essentially by the effective persistence length (léR)) we computed ll(,R) by varying the
range of the repulsive interaction between the monomers. For short range inter-
actions lz(,R) nearly coincides with the bare persistence length which is determined
largely by the backbone chain connectivity. This finding rationalizes the efficacy
of describing a number of experimental observations (response of biopolymers to

force and cyclization kinetics) in biomolecules using WLC model with an effective

persistence length.
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I. INTRODUCTION

The kinetics of formation of contact between the ends of a polymer chain has a rich history.:2

3456789 and simulations'®12 have been used to address the ele-

Both experiments2 theory,
mentary event of the dynamics of end-to-end contact formation (or cyclization kinetics) (Fig[IF
A). Contact formation between two reactive groups separated by a certain distance along the
chain is a basic intramolecular rate process in a polymer. Recently, there has been renewed
interest in understanding the looping dynamics that has been studied both theoretically2:4:5:6:7
and experimentally*2:13:14:15.16 hecause of its fundamental importance in a number of biological
processes. The hairpin loop formation is the elementary step in RNA folding A’ structure for-
mation in ssDNA 812 and protein folding13:20:21:2223 (Cyclization in DNA has recently drawn
renewed attention not only because of its importance in gene expression?23 but also it provides
a way to assess DNA’s flexibility. The promise of using single molecule technique to probe the
real time dynamics of polymer chains has also spurred theories and simulations of cyclization
kinetics. Using loop formation times between residues that are in the interior as the most ele-
mentary event in protein folding, it has been argued, using experimental data and theoretical
expression for probability for loop formation in stiff chains, that the speed limit for folding is
on the order of a 1 us2 These examples illustrate the need to understand quantitatively the
elementary event of contact formation between segments of a polymer chain.

Even without taking hydrodynamic interactions into account theoretical treatment of cy-
clization kinetics in polymer chains is difficult because several relaxation times and length and
energy scales are interwined. At the minimum the variation of time scale for cyclization (7,)
with polymer length is dependent on polymer relaxation time (7g). In biopolymers additional
considerations due to chain stiffness and heterogeneity of interactions between monomer (amino
acid residue or nucleotides) must be also taken into account. Majority of the cyclization kinetics
studies on synthetic polymers? have considered examples in which the contour length (L) of the
polymer is much greater than its persistence length (I,). In contrast, loop formation dynamics
in biopolymers have focused on systems in which L/I, is relatively small. In disordered polypep-

tide chains L/l, can be as small as 3,227 while in DNA L/l, < 1128 Thus, it is important to

develop theoretical tools for the difficult problem of loop formation dynamics for arbitrary L



and [,. Despite the inherent complexities in treating loop formation in biopolymers it has been
found that the use of polymer-based approach is reasonable in analyzing experimental data on
cyclization kinetics in proteins®2® and DNA A6

In this paper we are primarily concerned with the looping dynamics between interior segments
of a semiflexible chain. While a lot of theoretical and experimental works (mentioned above)
have been done on the end-to-end looping (Figllt(a)), only a few studies have been reported
on the contact formation between monomers in the interior of a chain (interior looping) (Fig[I}
(b)).22:30:31:32.33 There are a few reasons to consider kinetics of interior looping. (1) The biological
events such as hairpin formation and DNA looping often involve contact formation between
monomers that are not at the ends of the chain. For example, it is thought that the initiation
of nucleation in protein folding occurs at residues that are near the loop regions2* The residues
that connect these loops are in the interior of the polypeptide chain. Similar processes are
also relevant in RNA folding.#> (2) It is known that for flexible chains with excluded volume
interactions (polymer in a good solvent) the probability of loop formation is strongly dependent
on the location of the two segments. For large loop length (S) the loop formation probability,
P(S), in three dimensions for chain ends ~ S% where 6; ~ 1.9 while P(S) ~ 8% with 0, ~ 2.1
for monomer in the interior¢ Although the values of 6; and 6, are similar it could lead to
measurable differences in loop formation times.32

The rest of the paper is organized as follows. In section II we present the physical consider-
ations that give rise to the well-established results for 7. for flexible chains. The extension of
the arguments for flexible chains to semiflexible polymers suggests that the local equilibrium
approximation can be profitably used to analyze both cyclization kinetics and interior looping
dynamics. The basic theory for the equilibrium distance distribution between two interior
segments s; and so (Figllk(b)) is presented in section III. Using the equilibrium distribution
function and adopting Kramers theory and following the suggestion by Jun et. al..2” we obtain
an analytical expression for time scale 7;o for interior contact formation in section I'V. Explicit
results of simulations of worm-like chain (WLC), which validate the theory, are presented in
section V. In section VI we consider the kinetics of interior loop formation in WLC in which
the stiffness of the loop is different from that of the dangling ends. Section VII describes

the consequences of screened Coulomb interaction between monomer segments on cyclization



kinetics and interior looping dynamics. Because the results in section VIII are expressed in
terms of a renormalized persistence length (léR)) of WLC we present simulation results for l,(,R)
variation for a number of potentials that describe interactions between monomers in section

VII. The conclusions of the article are summarized in section IX.

II. PRELIMINARY CONSIDERATIONS

The pioneering treatment of loop formation dynamics due to Wilemski and Fixman (WF)3:38

has formed the basis for treating cyclization kinetics in flexible polymer chains. Using
a generalized diffusion equation for the probability density, %f}’“ = LppP({rV},t) —
ES({rV})P({rN},t) (Lrp is a generalized diffusion operator, kS is a sink term) for a N-segment
polymer, and local equilibrium approximation within the sink, WF expressed the cyclization time
T. in terms of an integral involving a sink-sink correlation function. From the WF formalism
and related studies it is known that even in the simplest cases (ideal chains or polymers with
excluded volume interactions) the validity of the local equilibrium approximation depends on
the interplay between 7, and the chain relaxation time, 7. If 7. > 75 then the local equilibrium
approximation is expected to hold because the polymer chain effectively explores the available
volume before the monomers at the end (reactive groups) form a contact. In this situation,
T. can be computed by considering mutual diffusion of the chain ends in a potential of mean
force (F'(R.)). For ideal chains, F(R.) = —kgTlog P(R.) ~ Sk:BTRz/2§2 where R, is the
end-to-end distance, R ~ aN'/? is the mean end-to-end distance, a is the size of the monomer,
T is the temperature, and kg is the Boltzmann constant. By solving such an equation sub-
ject to the absorbing boundary condition, Szabo, Schulten, and Schulten (SSS)¢ showed that
Tsss = T,N*/2. Simulations* and theory2 show that if the capture radius for contact formation
is non-zero, and is on the order of a monomer size then 7, ~ % ~ 1y N#*t1 where v = 1/2
for Rouse chains and v ~ 3/5 for polymers with excluded volume, and D, is a mutual diffusion
coefficient. The use of these theories to analyze the dependence of 7. on N in polypeptides shows
that the physics of cyclization kinetics is reasonably well described by diffusion in a potential

of mean force F(R.) which only requires accurate calculation of P(R.) the end-to-end distri-



bution functionA237 For describing interior looping times 7;¢ for contact between two interior
monomers s; and s, we need to compute P(Rj2,|s1 — sa|) where Rjy is the distance between
s1 and sy. With P(Rya, |s2 — s1]) in hand 7. can be computed by solving a suitable diffusion
equation.

Because the use of F'(R,.) in computing 7. and 7;¢ is intimately related to chain relaxation
times it is useful to survey the conditions which satisfy the local equilibrium approximation. By
comparing the conformational space explored by the chain ends compared to the available volume
prior to cyclization®? the validity of the local equilibrium approximation in flexible chains can
be expressed in terms of an exponent 6 = d:’—g.7 Here d is the spatial dimension, the correlation
hole exponent (des Cloizeaux exponent )} g describes the probability of the chain ends coming
close together, and z is the dynamical scaling exponent (7g ~ EZ). If & > 1 the local equilibrium
approximation is expected to hold and 7, is determined essentially by the equilibrium P(R.) as
R. — a the capture radius. Using the scaling form of P(R.) for small R, P(R.) ~ % (%)g
and R ~ N” (v is the Flory exponent) we find 7, ~ N*(¢+9) For Gaussian chains v = 1/2 and
g = 0 and hence 7955 ~ 7. ~ N%2. This result was obtained fifty years ago by Jacobsen and
Stockmayer. 2t However, in the free-draining case (2 =4, ¢ =0, v = 1/2, d = 3), § < 1 and
hence the condition 7, > 75 is not satisfied. In this case 7, ~ 7 ~ N*¥ ~ N2. Thus, for ideal
Gaussian chains it is likely that 7995 < 7. < Twr 22 Indeed, recent simulations show that if the
number of statistical segments is large (= 20) then for ideal chains 7, ~ N? which signals the
breakdown of the condition 7, > 7. Experiments on cyclization of polypeptide chains show that
7. ~ N3/%a is obeyed for N in the range 10 < N < 20 (see Fig.(5) in Ref12). Deviations from
ideal chain results are found for N < 10, either due to chain stiffness'® or sequence variations 42
For polymer chains in good solvents with hydrodynamic interactions (d = 3, g = 5/18, z = 3,
and v = 3/5), # = 59/54 > 1. Thus, in real chains the local equilibrium approximation may be
accurate.

For stiff chains bending rigidity severely restricts the allowed conformations especially when
the contour length (L) is on the order of the persistence length (I,). Because of high bending
rigidity the available volume is restricted by thermal fluctuations. Clearly in this situation,

the chain is close to equilibrium. This may be the case for short DNA segments. In effect

these chains satisfy the 7, > 75 condition which enables us to calculate 7, or 7;¢ by solving an



appropriate one dimensional diffusion equation (see below) in a suitable potential of mean force.
Effect of chain Stiffness : Many biopolymers are intrinsically stiff and are better described by
worm-like chain (WLC) models. The persistence length, which is a measure of stiffness, varies
considerably. It ranges from (3 —7) A (proteins)® (10 — 25) A (ss-DNA1244 and RNA 45:46) 50
nm for ds-DNA. Typically, loops of only a few persistence length form, which underscores the
importance of chain stiffness. In order to correctly estimate the loop closure time, consideration
of the stiffness in the loop closure dynamics is necessary unless the polymer looping takes place
between the reactive groups that are well separated and the chain length L is long. If L > [,
(persistence length), the looping dynamics will follow the scaling law for flexible chains. However,
at short length scales loop dynamics can be dominated by chain stiffness ¢ If the chain is stiff
then WLC conformations are limited to those allowed by thermal fluctuations. In this situation,
the time for exploring the chain conformations is expected to be less than 7.. Thus, we expect
local equilibrium to be a better approximation for WLC than for long flexible chains.
Recently, Dua et. al4” have studied the effect of stiffness on the polymer dynamics based
on Wilemski-Fixman formalism and showed, that for free-draining semiflexible chain with-
out excluded volume 7, ~ N?22~24 at moderate values of stiffness. However, the proce-
dure used to obtain this result is not complete, as recognized by the authors, because they
use a Gaussian propagator G(r, t|r’,0) = (%)3/2 exp( M) which is not

2m(r2) (1-o(t - 2(e2)(1-4(1))
valid for WLC. The end-to-end distance distribution becomes a Gaussian at equilibrium,

3/2
lim; oo G(r, 81", 0) = P.y(r) = (ﬁ) exp (—232;";), which is incorrect for semiflexible chain

especially when [, ~ L (see Figll and Refs4849).

As an alternative method we include the effect of chain stiffness assuming that local equilib-
rium approximation is valid. This is tantamount to assuming that 7. > 7 which, for reasons
given above, may be an excellent approximation for WLCAT In this case we can compute 7,
by solving the diffusion equation in a one dimensional potential F'(R.) = —kgT In P(R.) where
P(R,) is the probability of end-to-end distance distribution for WLC. For the problem of in-

l_37

terest, namely, the computation of 7;o, we generalize the approach of Jun et. al?* who used

Kramers theory in the effective potential F'(R,) to obtain 7.. In general, the time for cyclization



can be calculated using
r 1 L
. / dyePFo L / dre—BF) (1)
a DJ,

where a is the capture (contact) radius of the two reactive groups. We show that Eq.([Il) provides
accurate estimates of 7., thus suggesting the local equilibrium approximation is guaranteed.
Here, we address the following specific questions: What is the loop formation time between
the interior segments in a semiflexible chain? Does the dangling ends (Figllk(b)) affect the
dynamics of loop formation? How does the effect of interaction between monomer segments

(e.g. excluded volume, electrostatic interaction) affect loop closure kinetics in WLC models?

III. DISTANCE DISTRIBUTION FUNCTION BETWEEN TWO INTERIOR
POINTS

A key ingredient in the calculation of the potential of mean force is appropriate distribution
function between the two monomers that form a contact. In Refs 4259 the equilibrium end-to-end
(R.) radial distribution function of a semiflexible chain P(R,) was obtained in terms of the per-
sistence length (I,) and the contour length (L). Despite the mean field approximation employed
in RefsA250 the distribution function P(R,) is in very good agreement with simulations® The
simplicity of the final expression has served as a basis for analyzing a number of experiments
on proteins> RNA#2 and DNA .22 In this section, we use the same procedure to calculate the
distribution function P(Ris;l,, $1, 2, L) where 0 < s1,s2 < L, and Rjo is the spatial distance
between s; and s,.

For the semiflexible chain in equilibrium we write the distribution function of the distance

R15 between s; and so (Figlll) along the chain contour as

G(Rup: 51, 59) = (0(Ryp — / " a(s)ds)) i
[ Dus)]6(Raz — [;* u(s)ds) Varr[u(s)] @
J Dlu(s)]¥yplu(s)]

where u(s) is a unit tangent vector at position s. The exact weight for the semiflexible chain is

Wlu(s)] o exp [~ 2 fOL ds (2—2)2] [T6(u%(s) — 1). The nonlinearity, that arises due to the restric-

tion u?(s) = 1, makes the computation of the path integral in Eq.(®) difficult. To circumvent



the problem we replace ¥[u(s)] by the mean field weight W, r[u(s)];>

Brlu e[ [ (8‘;—“)d 3 [ () s ol - 1)+ 0 - 1)L 9

0 0
The Lagrange multipliers A and §, which are used to enforce the constraint u?(s) = 1,24 will
be determined using stationary phase approximation (see below). The path integral associated
with the weight Wy p[u(s)] is equivalent to a kicked quantum mechanical harmonic oscillator
with “mass” [, and angular frequency 2 = \/M. Using the propagator for the harmonic

oscillator

3
_ (msinh (Qs) ) 2 (u? + u?) cosh (Q2s) — 2u, - uy
Z(ug, 19, 8) = ( a, ) exp (=€, Sinh () ) (4)

and defining €2, = % the isotropic distribution function becomes

d*k
G(Ry2, $1,82) = N LMA20 / W /duodusldUSQduLe_‘S“gZ(uo, Ug,; S1)
. 2 'k 'k
v 6zk-R12—Z_A\S1—sz|Z(usl + ;_)\’ u,, + ;_)\; S — 81)
X e“s“QLZ(us27 up; L — s9). (5)

By writing the distribution function as G(Rua, 51, 50) = [0 dX [ dS exp (—F[A, d]) it is clear
that the major contribution to G (in the thermodynamic limit L — oo) comes from the saddle
points of the free energy functional F[\,d], i.e., 2£ = 2= = (. The functional F[, 6] is (see

Appendix A for details of the derivation)

FIN O] = —(LA+29)
3 sinh QL 3 A2
+ —1In 5% 4+ Q2 + 260 cothQL)——ln
2 < q, (0 T2 coth QL) ) = oI D)
N R2,
4+ — 6
Q(51752§)\75) ( )

To obtain the optimal values of A and 0 we first take the L — oo limit and then solve

stationarity conditions %—f = %—’; = 0. Technically, the optimal value of § and A should be

calculated for a given L and then it is proper to examine the L. — oo limit. The consequences of

reversing the order of operation are discussed in Appendix B. Using the first procedure (taking

L — oo first) we obtain Q(s1,$2; A, ) — |s2 — s1|A in the limit L > sy > s; > 1, and thus



FIA, 9] becomes

FIN 6] ~ — (LA + 26)
+ ;ln[%(% +1)% + glnﬁz + gln |52 ; ul + |S?%_221|
3 — R?
- I <§Q _ )\(1 . |$2 7 31| |s2 _12$1|2)>
G 1+ Gl =] -2 (7

where we have omitted numerical constants. The major contribution to the integral over A\ and
0 comes from the sets of A and ¢ which pass the saddle point of a stationary phase contour on
the Re{F} plane. Since the term linear in L dominates the logarithmic term in [, even when
L/l, ~ O(1), the stationary condition for A can be found by taking the derivative with respect
to A by considering only the leading term in L (cf. see Appendix B for details). The stationarity

condition leads to

Al 3 1
2 = TP - 11 _ s2=sif o (8)
L
where r = S?_liﬂ with 0 < r < 1. Similarly, the condition for § can be obtained as
3

Determination of the parameters A\ and 0 by the stationary phase approximation amounts to
replacing the local constraint u?(s) = 1 by a global constraint (u?(s)) = 1.5 Finally, the

stationary values of A and ¢ in the large L limit give the interior distance distribution function:

N 9]s9 — s1]

1— [sa—s1],.9 9/2 eXp(_8l |so—s1] 1 — |sa—s1] .9
(1— =472 p(FH) (1 = E )

The mean-field approximation allows us to obtain a simple expression for the internal segment

G(Rm, So — 51) = ) (10)

distance distribution function. The previously computed P(R.)* can be retrieved by setting
|se — s1| = L. The radial probability density, for the interior segments, in three dimensions, for

semiflexible chains is

r2 3t
xp (

e —
(1— |82281\T2)9/2 4(\82;81|)(1 _ |82281\T2)

P(r; sy — s1,t) = 4nC

) (11)
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where r = Ris/|ss — s1| = R/|s2 — s1| and t = |se — s1]/ly with [y = %lp. The normalization

constant C'is determined using fol P(r,s;t)dr = 1. The integral is evaluated by the substitution

\/ —"”zsl‘r = —=— to yield

C — 1 (‘32 Z 51‘)3/2 </:c0 d:ms2(1 +x2)6—a(1+x2))
0

-1

4r
4 |S2 — 31| - x?
= — 5 () 2Vamee (15 4 20 (6 + 5af + 2a(1 + 7))
15
+ ofe */merf[axo] (1 + 3o~ + Zoz_z)]_l (12)

where o = 4‘323%51‘, To = L‘_stj_ls‘l‘ , and erf(z) is the error function. The peak in the distribution
Tz s \V

function is at

2
I \/H— v+ 14 (13)

7‘82 — Sl‘/L

3t
[sg—s1l *
1=z

In Figll we compare the distribution functions P(R.) and P(Rj2,s2 — s1). When

Wheren:g— For |sg — s1| = L, rae — 0 as t — oo and 74, — 1 as t — 0.

|s1 — so|/L =1 Eq.(d]) gives the end-to-end distribution for semiflexible chains. By adjusting
the value of ¢ (or equivalently [y) we can go from flexible to intrinsically stiff chains. As the chain
gets stiff there is a dramatic difference between the P(r;|s1 — sof,t) and P(r;|s; — so| = L, t)
(see Figfl(b)). Contact formation between interior segments are much less probable than
cyclization process (compare the green and red curves with the black in Figl(b)). Physically,
this is because stiffness on shorter length scales (|s; — so|/L < 1) is more severe than when
|s1 — so|/L ~ O(1). However, when the chain is flexible (large t) the difference between the
probability of contact between the interior segments and cyclization is small (Figf2(a)). In the
limit of large t(ox L/l,) the Hamiltonian in Eq.(Bl) describes a Gaussian chain for which the
distance distribution between interior points remains a Gaussian. However, if excluded volume
interactions are taken into account there can be substantial difference between P(x,|s; — g, t)

and end-to-end segment distribution even when t is moderately large.



11
IV. INTERIOR LOOP CLOSURE TIME USING KRAMERS THEORY

Having obtained the effective potential between interior segments of semiflexible chain we can
evaluate Eq.(dl) using F'(R) = —kgT log P(R) with P(R) given by Eq.() with »r = R/L. For
clarity we have suppressed the dependence of P(R) on |sy — s1|. The expression for the mean
first passage time (Eq.(dl)) can be approximated by expanding the effective potential F(R) at
the barrier top and at the the bottom as F(R) ~ F(R;) — sV4F(R)|r=p,(R — R;)*> + -+ and
F(R) = F(Ry) + sV#EF(R)|p=r,(R — Ry)* + - - -, respectively (FigH)). Evaluating the resulting
Gaussian integrals yields the Kramers equation
B kT
- DV/VRF(B) o, VEF (B
When evaluating the Gaussian integral at the barrier top with R = R, (Figl), we assume that

exp (AFH/kpT). (14)

Te ~ TKr

only the integral beyond R > R; contributes to the result. In the overdamped limit the mean
first passage time, which is roughly the inverse of the reaction rate, is determined by the barrier
height (AF* = F(R;) — F(Rp)), and the curvatures of the bound state, the curvature at the
barrier top, and the friction coefficient, that depends on D(= 2Dy) where Dy is the monomer
diffusion coefficient. The curvatures of the potential at the bottom (R, = Rp) or at the top
(R, = R;) (FigB right panel) is obtained using \/V%F(R)|r=r., = \/k;BT (R% _ M)

G(RCUSvL)

by imposing the condition ViR F(R)|gr=g, = 0, i.e., (% + %

uncertainty in the evaluation \/V%F(R)|g—g, because F(R) does not really form a barrier at

) |r=r, = 0. There is an

R = R;. Thus, we assume that the curvature at the barrier top is ~ 1/R; using dimensional

analysis. We express lengths in terms of the persistence length l,(,o) = lp. Setting % = s,
l;(z% = [, and l,(,% = z the radial probability density is
4 C'(s,1 z 3
P(z,s,1) = ﬂ exp [~ ], (15)
(1—5)%2 A(s/D)(1 = 37)

with [ dzP(x,s,l) = 1. When the dimensionless contact radius z, = o(= a/ll(,o)) < 1, the

a?2G(0,s,1)
:(:?)G(xb,s,l) :

exponential factor can be approximated as exp (—AF*/kpT) = P(a, s,1)/P(xy, s,1) ~
The function P(r) (Eq.()) is not appropriate for estimating the contact probability of
semiflexible chains even though the overall shape of the mean field distribution function is in

excellent agreement with the simulations and experiment. The contact probability for DNA is
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well studied by Shimada and Yamakawa,®® thus we use their result for G(0,1). If z = 0 and

s < 10 then the Shimada-Yamakawa equation gives a reliable estimate of the looping probability

(G(O> S, l) = GO(S))

~896.32
- =

Go(s) exp (—14.054/s 4 0.2465s) (16)

At a large s(> 10) value an interpolation formula Go(s) ~ s™%?2 due to Ringrose et. al.2¢
can be used. Note that as the chain gets stiffer (I decrease) Gy(s) decreases substantially
indicating a great reduction in the loop formation probability for intrinsically stiff chains. It
should be stressed that Eq.(If) has been obtained only for cyclization process and does not take
into account the effect of dangling ends (Figlll(b)). The contact probability (r — 0) between
interior segments should be different from the one for the end-to-end contact. In other words
G(r — 0,s,1) should depend on s/l. Unfortunately, we do not know of analytical results for
G(0,s,1). We simply use Gy(s) for G(0,s,) and resort to the values of z, and G(x,s,1) to
account for end effects. We validate the approximation that G(0,s,[) does not depend on [
(Go(s) = G(0, s,1)) explicitly using simulations (see below).

With these approximations the loop formation time in the presence of dangling ends (Figl+

(b)) is
1 (1))

(s D) ~ {Za2C (xy, s E—iG”(Ib’S’Z) Iy _— P )
o) = (Fad Gl 5./ (3 = Gy s (17)

Nt/ n?+14

7
the uncertainty in computing the curvature at the barrier top, i.e., \/V2F(2)|zez,=a = gx/kBT.

where z = x, = sl and £ is the adjustable parameter we introduced to account for

Note that the structure of Eq.([d) is identical to our previous estimate of tertiary contact

formation time used to interpret kinetics of loop formation in proteins 7(n) & foﬁ"(zl ) where n is

the loop length, (R2) is the mean square distance between the two residues, Dy is an effective
monomer diffusion constant, and P(n) is the loop formation probability. 83457 The differences
between the two lie in the numerical prefactor inside {...}. In addition, in the dimensional
argument used to obtain 7(n) we used (R}) instead of [2 that arises in the present theory.
FigB shows that the estimates of looping time using Eq.([d) and the results of simulations
for the same set of parameters are in excellent agreement when & ~ 7.3 (see the next section
for details of the simulations). First, 7. increases and converges to the finite value with the

increasing size of end tails (decreasing s/l) and this trend manifests itself as the chain gets
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stiffer and shorter (small s) (see Refs2? and??). The inset shows that, at s = 3, 7. increases by
a factor of ~ 1.5 when the total contour length of the dangling end is 5 times longer than the

contour length of the loop. Second, 7, is a minimum (77") when the contour length between

lé,o) and 7min

7 shifts towards the large s value

loop formation sites, |s; — so, is around (3 ~ 4)
with the increasing size of dangling ends. Note that when the loop size becomes large (s > 6)
T. does not depend on the length of the dangling ends. In non-interacting Gaussian chains the
equilibrium distribution of any two segment along the chain is always Gaussian. In this case,

the presence of the dangling ends does not affect the chain statistics.

V. SIMULATION OF LOOP CLOSURE DYNAMICS

To check the validity of the theoretical estimates for loop closure time we performed simu-
lations using a coarse-grained model for ds-DNA. The simulation procedure is identical to the
one used by Podtelezhnikov and Vologodskii (see details in Ref2%). Because the time scale of
~ ms is computationally difficult to accomplish, even using Brownian dynamics (BD), we use
a coarse-grained model of ds-DNA by choosing the pitch of the helix (10 base pairs with the
diameter [y = 3.18nm) as a building block of a ds-DNA chain. The energy for a worm-like chain,
that is appropriate for ds-DNA| is taken to be the sum of the bending rigidity () term and

the chain connectivity (E;) term, which respectively are given by

N-1
Ey,=aRTY 0} (18)
=1
and
BRT & )
E, = - ;(zi —Ip)%. (19)

where T is the temperature, R is the gas constant, 6; is the i-th bond angle, [; is the i-th bond
length. By choosing the parameters o = 7.775 and § = 50 one can get the typical persistence
length of 50nm for ds-DNA.

Despite the simplification in the energy function computation of the looping time through
direct BD simulation still is prohibitively difficult. From Eq.(IT) it is clear that the loop forma-

tion time can be even up to O(1) sec for certain values of [, and L. To overcome this problem,
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Podtelezhnikov and Vologodskii used the relation between the equilibrium probability of loop
formation and the loop closure and opening times,

To

P(ro;|ss — s1], L) = P

(20)

T, is the loop opening time of the closed loop. In general 7, < 7;¢. This observation enables
us to perform direct BD simulation for the loop dissociation rather than loop closure. Since
P(ro; |s2 — s1|, L) is normally very small for small o (ro = 5nm), there is a sampling problem.
However, P(rg; |s2 — s1|, L) can be found using the Markov relation

n—1

P(ro;|so — s1], L) = HP(Tz'|7“i+1) (21)

i=1
where P(r;|r;41) is the conditional probability that conformations with r < r; in the subset of
conformations with r < 7;1. To obtain P(r;|r;+1) we performed (n — 1)-Monte Carlo samplings
using the pivot algorithm®® by iteratively adjusting the interval of the end-to-end (or interior-
to-interior) distance ro < r; < --- < r, such that P(r;|r;s1) ~ 0.2.

The results of our simulations for P(rq; L) and 7, for both end-to-end contact and contact
between segments are shown in Figll Note that there is minor difference between the contact
probabilities of the end-to-end and of the interior-to-interior (|s2 — s1|/L = 0.5) segments
whereas the loop opening dynamics for the chain with dangling ends is slower than the case
without dangling ends by about ~50%. The independence of P(ro;|s2 — s1|, L) justifies the
approximation, Go(s) — G(0,s,1), used in obtaining Eq.([d). The values of 7, and 7;¢ can
be computed knowing P(rg;|sy — s1|, L) and 7,. The results, which are shown in Figh] are in

excellent agreement with theory.

VI. INTERIOR LOOPING DYNAMICS IN SEMIFLEXIBLE CHAIN WITH
VARIABLE PERSISTENCE LENGTH

In many cases stiffness of the loop, which is involved in interior looping, is different from
the overall persistence length of the chain. A simple example is the formation of a (-hairpin

in peptides. In this case, the stiffness of the loop is typically less than the (-strands. If the
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[B-hairpin-forming polypeptide chain is treated as a WLC then it is characterized by three
fragments, namely, the loop with a persistence length [,, and the strands whose persistence
lengths are [, and l,3. Such a variable persistence length WLC is also realized in the DNA-
RNA-DNA construct in which [, ~ 10 A and lp1 =~ lpg =~ 500 A. Constructs consisting of three
WLC fragments are also used routinely in laser optical tweezer experiments.

The Kramers type theory, used to calculate interior looping in WLC with uniform [,, can
be adopted to compute 77¢ in WLC with variable [,. The mean field equilibrium distribution
function P(r) (with r = Rys/|se2 — s1|), which is needed to calculate 7;¢ is (see Appendix IIT for

ArCr? 3t 1
P(r)= L2 %ﬂ exp (——7_ Qﬂ) (22)

the derivation)

41
where Ly = |sy — s1] is the contour length of the loop part of WLC with persistence length 1,2,
L is the total contour length of the chain, t = L/ lgf 7. The effective persistence length of the

WLC, consisting of three segments 0 < s < s; with 1, s1 < s < sy with [,2, and sy < s < L

e = (Z 7 \/,>_ , (23)

In the mean field approximation, the WLC in which [, varies along the contour in a discrete

with lpg is

manner, is equivalent to a WLC with an effective persistence length. It follow from EqE3 that
the effective persistence length is determined by the smallest [,,.
Consider the simplest case Ly = L, L1 = Ly = %, lpr = 13 = Zf, and [y = l](go). In this
case,
l;ff _ 1 24)

(0)
Iy {(1 — ), [ +x]

where © = Liy/L. It follows from EqP4 that if [T > 1Y (handle is stiffer than the loop)

then l;f > l](go). Because in the Kramers description 7;¢ is controlled by ll";f f we expect that
interior looping time is greater than 7;c for a chain with uniform /,. In the opposite limit,
lf < ZS)), (handle is softer than the loop) l;f F < l}(}o). Consequently, attaching a soft handles
should enhance the rate of interior looping.

The interior looping kinetics for a WLC copolymer for different values of the loop and handle

persistence lengths are shown in Fighl In accord with the arguments given above, we find
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that when '/ l},o) = 2 (stiff handles) 7;¢ increases substantially compared to 7¢(= 77) for
1y I =1 for all values of |sg — s1]/ I (FigH). Similarly, when the handle is softer than that
of the loop, 7;¢ decreases appreciably compared to 77~ which is the interior looping the case
when the chain has uniform stiffness. In the interesting regime of |sy — s1|/ 1Y) ~ (2 —4) we
predict a dramatic increase in 77 compared to 77, when ZII,{ / léo) > 1 and a substantial decrease
in 77¢/7fe when [[1/ Y <1 (see inset in FigH). Thus, stiff handles retard interior loop kinetics

whereas soft handle enhances rates of interior loop formation.

VII. EFFECT OF MONOMER-MONOMER INTERACTION ON LOOP CLOSURE
TIMES

Majority of the recent experiments on dynamics of loop formation have been analyzed using
simple polymer models that do not explicitly consider interaction between monomer segments.
In a number of cases there are physical interactions between monomers. For instance, DNA
is charged and the interaction between the monomers can be approximately described using
the short ranged Debye-Hiickel potential. Similarly, solvent-mediated interactions also arise
especially when considering proteins. For these reasons it becomes necessary to consider an
interplay between chain stiffness, entropic fluctuations of the polymer and nonlocal interaction
between monomer segments.

The non-linear problem, that arises from the constraint u?(s) = 1, in a non-interacting
semiflexible chain is further exacerbated when interactions between monomers are taken into

.82 To circumvent this problem we assume that the effect of intra-chain interaction is to

accoun
only alter the effective persistence length. We compute the loop closure kinetics using Eq. (1)
with a renormalized persistence length that explicitly depends on the nature of the interac-
tion between the monomers. This approximation is in the same spirit as the local equilibrium
assumption used in this study.

To calculate the renormalized persistence length léR) we follow the procedure due to Hansen
and Podgornik® who used a mean-field weight (similar to ¥, (u(s)) in the presence of non-local

interaction, V(r(s) —r(s’)) between monomers s and s’. The standard field-theoretic procedure

is to use the Hubbard-Stratonovich transformation via auxiliary fields to eliminate the non-
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Markovian nature of V(r(s) — r(s’)). Using stationary phase approximation to evaluate the
optimal values of the auxiliary fields they®! obtained an expression for léR) for arbitrary potential

V(r(s) —r(s')). In our applications, we assume that the charged monomers interact via the

screened Coulomb interaction V' (r) = 'ﬂ#g where [p is the Bjerrum length (e?/4meokpT =
Ip), and A is the effective separation between charges on the monomer. The use of Debye-Hiickel
potential is appropriate when considering ds-DNA in monovalent (Na™) counterions. With this

choice of V(r) the renormalized persistence length becomes l;gR) = ZI(,O) + 5l;§,R), and is given by®

0 = 10+ VAW LA, €) )

p

with

_ [t /1 1
I(LJID, &) = /O dzzte VB <£:B + = /2) (26)

where Vi = 15/(12v/2dA?), B(z) = 2z — 1 + ¢~2, and € = 1/(v2xl\”). The integral I(L/15",€)
has different asymptotic behavior depending on the two parameters xl\™ and L/ 19, (i) If
l,(,R) > k7! (€ < 1), i.e., the persistence length is greater than the screening length, then the
contribution due to electrostatic interaction can be treated perturbatively. In this case the

upper limit of the integral in Eq.([H) is effectively set to infinity. We find B(z) ~ 22 and

I(L/ l,(,R),E) ~ Ez, which is also small since € < 1. Therefore, 615" ~ -8 which coincides with

R2AZ)

the OSF result.®2:82 For electrostatic contribution to persistence length of a polyelectrolyte chain
the limit I > x~! is most appropriate for DNA . (ii) if I < gt (€ > 1), i.e., the persistence
length is smaller than the screening length, there is substantial interaction between the chain
segments beyond the length scale of l},R). We believe this situation is difficult to be realized in
experiments involving biopolymers. In this case, the integral up to z = 52 becomes important,

B(z) ~ z and I(L/1S,€) ~ €. Therefore, 5l ~ 12

KTA2"

To calculate loop closure times the renormalized persistence length l;gR) is numerically com-
puted for each parameter set (contour length L, inverse screening length x~') and we use 7.
(Eq.(d)) with 1Y — 1. For the ds-DNA in the monovalent salt solution (concentration c)
the parameters in the semiflexible chain model are Iz = 7.1A, A = 1.7A and x = v/871lgc. The
results for 7. and 7;¢ are plotted in Figsfl, [ First, the cyclization times are computed as a

function of L at various salt concentrations (Figl). We find that 7, shows a dramatic increase as
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¢ is varied at small values of L/ l;go). The electrostatic repulsion retards loop closure times, as the
salt concentrations (strong inter-segment repulsion) decrease (Figl]). Because of the interplay
between bending rigidity and chain entropy 7. has a minimum at ¢ = t*. The value of ¢* shifts
from t* = 3 to t* = 6 as ¢ decreases. The inset in Figld shows that there is practically no change
in 7, at t = 3 if ¢ 2 100 mM, which is near the physiological concentration (150 mM Na™).
In this range of ¢ the electrostatic contribution to the persistence length is small so that l,(,R) is
almost the same as I\, Note that the ¢ corresponding to the condition l,k =1 for [, = 50 nm
is ¢ =~ 40 mM.

The dependence of 77, which examines the effect of the dangling ends, at high and low
concentrations and various values of |ss — s1|/L on |sy — s1| is shown in Figll The insets of
Figll show an increased time scale at low salt concentration (10 mM) compared with high salt
concentration (500 mM). When 7;¢ for |se — s1|/L = 0.2 is compared with |sy — s1|/L =1, 7.
increases by a factor of ~ 2.7 at ¢ = 10 mM whereas the increase is about a factor of ~ 1.5
for ¢ = 500 mM. The effect of dangling ends on loop formation dynamics manifests itself more
clearly at low salt concentration when electrostatic repulsion is prominent and at small ratio of

|53 — s1| /1.

VIII. DEPENDENCE OF léR) ON THE MONOMER-MONOMER INTERACTION
POTENTIAL

In our theory 7. and 7;¢ can be determined provided l,(,R) and the distance distribution
functions are known. To examine the variation of léR) on the nature of monomer-monomer in-
teractions we have computed l](gR) for different potentials V'(r). Sets of equilibrium conformations
of 50-mer bead-spring model (see Eq.([I8),(Td)) are generated with different bending rigidity, &y,
and with different non-local potentials V'(r) = 1/r%(a =1, 2, 4, 6, 12). In each case the effective
persistence length l;(,R) is computed by #5«9)64 where (0) is the ensemble average of the angle
formed by three consecutive beads. We show the simulated radial distribution function and the
effective persistence lengths for different x; values for the various ranges of nonlocal interaction
in Fig(a),(b). The results from radial distribution function (Figl8(a)) and the persistence

length show that léR) ~ ll(,o) when the interaction is short-ranged, i.e., a > 4. When o < 4
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then the effective interaction between monomers leads to an increase in the persistence length
(Figl(b)). These results are consistent with the field theoretical approach by Hansen and

Podgornik.%! Considering that the excluded volume potential is of short range nature (modeled

using ~ 7! or delta function) we conclude that the excluded volume effect on the looping

dynamics of rigid polymer chain is negligible. Note that the screened electrostatic potential

e*ﬁ’f‘

V(r) = “— can be either a short or a long range potential depending on the value of .

These calculations, especially changes in [, as the range of interaction is altered, explain
the reason that a simple WLC model works remarkably well in a number of applications.

A 8256 and proteins®” to mechanical force has been

For example, the response of DNA, RN
routinely analyzed using WLC. Surprisingly, recent analysis of small angle x-ray scattering
measurements® on ribozymes have shown that the distance distribution function can be
quantitatively fit using P(R.). In these biopolymers the interactions that determine the
conformations are vastly different. However, the results in Figl&(b) show that as long as these

effective interactions are short-ranged [, should not differ from the bare persistence length.

This key result rationalizes the use of WLC in seemingly diverse set of problems.

IX. CONCLUSIONS

In this paper we have used theory and explicit simulations of worm-like chains to examine
loop formation dynamics with emphasis on kinetics of contact formation between monomers that
are in the interior of the chain. The Kramers theory, adopted to describe looping time scales
using the analytically computed potential of force between the contacting (or reacting) groups,
gives results that are in quantitative agreement with simulations. The theory3’ for 7;¢ and 7,
contains one parameter that was introduced to account for the uncertainty in the estimate of the
frequency at the transition state (Fig) in the intramolecular reaction (Figlll). The present study
also provides a justification for the use of Kramers-like theory in describing looping dynamics
by explicit comparison with simulations of semiflexible chains. Although several questions of
fundamental theoretical importance remain previous studies, beginning with the pioneering work

by WF, and the present study have given a practical analytic formula to analyze most of the
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recent experimental data on proteins and DNA. We conclude the paper with a few additional

comments.

15.37.57.58 which have examined the effect

1. The present work and several previous studies,
of stiffness on looping dynamics, have shown that the rates of cyclization and interior
looping must slow down as the loop length becomes small. In other words, there must
be a turnover in the plot of k, (o« = ¢ or IC) as s decreases (see FigBl in which 7;¢ as
a function of s is shown). For the parameters used in FigB the turnover occurs around
s &~ (3 —4). Such a crossover has been observed in the cyclization kinetics of DNA and in

simulations of worm like chain models. When s is small the time scales for loop formation

can be substantially large (~ O(1) sec).

The effect of stiffness on cyclization rate in disordered peptides has also been emphasized A2
For the construct Cys — (Ala — Gly — Gln); — Trp with j from 1 — 6 the stiffness effects
are evident at j ~ 312 However, these authors did not observe the theoretically predicted
turnover in this construct for which the persistence length is estimated to be [, = 0.7nm.
Using the results in Fig. (3) we predict that the turnover must occur only when the
number of peptide bonds is less than about 3. This limit has not been reached in the
experiments by Lapidus et. al!® For the construct (Gly — Ser); Hudgins et. al%* have
clearly observed a turnover when the number of peptide decreases below about 4. The
observation of Hudgins et. al. is consistent with our prediction that turnover in cyclization
rates in disordered polypeptides occurs when s < 3. When the number of residues in the
polypeptides chain becomes too small then measuring 7. using bulky donor-acceptor pairs

in FRET experiments is difficult. In this situation other methods?? could be used.

2. For the parameters used in Fig. (3) the difference between 7, and 7;¢ is no more than about
a factor of four. However, if charged interactions between monomers become relevant then
Trc can be very different from 7.. At both low and high values of the salt concentration
the 7. and 7;7¢ can differ by nearly an order of magnitude (see Fig.(6)). These variations
are significant because 7, in polypeptide chains studied thus far varies by less than a factor
of ten as the number of residues is varied from 5 to 20. It would be interesting to probe

looping dynamics by varying the net charge on polypeptides. We should also stress that as
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the salt concentration increases the electrostatic interactions in a high dielectric medium
are effectively short ranged. In this case 7;¢ is determined essentially by the bending

rigidity of the backbone (Fig[Q]).

3. The Kramers based theory for 7, and 7;¢ is a convenient way to measure persistence length
of polypeptide chains as a function of temperature and denaturant concentration. Recent
measurements suggest that [, depends on urea concentration.?* More importantly, there
appears to be strong sequence effects in 7. which, at the level of polymer-based theories,
must reflect changes in {,,. For example, 7, for polyproline deviates substantially from ideal
chain behavior.4? Similar measurements of 7, for other polypeptides along with the simple

theory can be used to extract how [, varies with sequence.

4. The dependence of interior looping time on the ratio of the persistence lengths of loop
and the handle shows that in the interesting range of s ~ (2 —4) ;¢ can be substantially
larger than 7f for a chain in which [[f/ 1) = 1 (sce inset in Figh). This case is directly
applicable to S-hairpin formation that is controlled by formation of a loop with persistence
length that is less than that of the strands:2® From FigHl it follows that as the stiffness
of the loop increases the interior looping time also increases. This conclusion is in accord
with explicit simulations of coarse-grained models of S-hairpin formation that showed that

enhancement of loop stiffness retards rate of 3-hairpin formation.2

APPENDIX A

In this Appendix we outline the steps leading to Eq.(@). The distribution function G(Rs, $1—
Sg) is
d*k
(2m)?3

X 6_5“3Z(u0, Ug,; S1)

G(ng, S1 — 52) = e)‘L+26/ /duodusldu32duL

207777 0 20
x e Z(u,,,u: L — ) (A1)

K s |+ik-
x e~ axls2msilrikRi iy oy ;89— S1)
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Using the expression Eq.(H) for Z(us, up, s) and carrying out the integrals over the u variables

Eq.([A) becomes

G(R12 S1 — 82) — 6AL+26 (M) _3/2 <7T Slnh Q(SQ — Sl))_3/2 (ﬂ.slnh Q(L . 52))_3/2

Q Q Q

— 52)

d’k K’ K2 1
X / 2n)? exp (zk Ry — —\32 — 51|+ 2)\29 (coth Q(sg — s1) — e 51)))
T \3/2 1. 7 .
(Fa) o <1b (k)A b(k)> (A.2)
where
d + Q, coth sy — Singgﬁ 0 0
A= ~mhfe Splcoth Qs+ coth sz —51)) St 0
0 _sinhﬂg(l#sl) Q,(cothQ(s2 — s1) + coth Q(L — s2)) _sinhﬂgzﬁ
’ 0 _sinhﬂgzﬁ §+Qp cothQ(L
(A.3)
and
1k 1
b” = = Q,(coth Q(sy — s1) — ( ) ' A4
b\ »(co (52 — 1) sinh Q(sy — 51)) 0110 (A.4)

The integration with respect to k leads to

G(Rya, 51, 55) = eMA% (M)—:&m (71 sinh Q(sy — 31))—3/2 (w sinh Q(L — 32))—3/2

QP QP QP
ToN32 1 ATTA2 32 md,
Q(s1,52;X,9) A.
“(wa) @y <@<s1,sQ;A,5>) ¢ (4-5)
where
02 sinh QL
det A = i {(6% + 02) + 269, coth QL}, (A.6)

sinh Qs7 sinh Q(sy — s1) sinh Q(L — s3)

1

. = |59 — — 20, (coth Q(sy — 51) —
Q51,523 4, 0) = |52 — 512 p(coth sz =) sinh (sy — s1)

) —I—M(Sl,SQ), (A?)

and

. Q(s2—s1 2 Q(s2—s1)
Q smhftanh —

M (s1,89; A, 0) = 250, COShQL+(52+Q2)SthL
(460 cosh 2L =02 =00 o gy i HCL= (52 = 1)

(8% — 02 (sinh 2L ;’81 = 52) g 2L = 1 352) 1y (A8)
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In limit L > s3> s1 > 1, M(s1,52) — Q, and Q(s1,52;A,0) — |s3 — s1|]A — Q,. As a
result of translational symmetry along the chain G(R, s1, s2) = G(R, |s2 — s1]). Using F(\,§) =
—In G(Ry2, s1, s2) leads to Eq.(@l).

APPENDIX B

In obtaining the stationarity condition to evaluate A and ¢ we first took the thermodynamic
limit (L — oo) and then calculated the optimal values of A and §. It is technically necessary to
solve the stationarity condition 8—]; = %—? = 0 before taking the L — oo limit. In this appendix
we examine the consequence of taking the thermodynamic limit after solving for optimal values

of A and 4. For simplicity, set |ss — s1| = L. The variational equations for A and § become

5+Q¢:g (B.1)

3 R\ L [9 1
BEANN T L (UL § B.2
L [(49,, 1+ L2) i3 (8912, 29,,)] 0 (B2)

From the second relation we find two roots for (2,,, namely,

and

ML, 3(1+h [ 12(1 — r2)
+ p t
O Sy o2t B.
2 2 a1 |27\ T s 1)z (B:3)

where t = L/ly, Iy = %lp and r = R/L. There are no restrictions on the values of L and [, in
Eq.([@ in which the thermodynamic limit is taken first. However, when the order of operation
is exchanged there is a possibility that the two roots are Q;,t that can be imaginary. For (0 we
retrieve the same stationary phase condition as Eq.(8) only if L > [,(t > 1) The second root
2, = 0 but this can be discarded since A # 0. Although there are multiple saddle points, we

can always deform the contour such that the contour passes the saddle point with F'(€2) = 0

1

, (10—t —3) < r? < 1 should be always

which satisfies the stationarity condition. In addition

satisfied for €, to be real (Eq.(B3)).
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APPENDIX C

We calculate P(Rys, |s2 — s1]) for a semiflexible chain in which the persistence length of the
loop is different from that of the dangling ends. The chain can be thought of as a triblock
WLC copolymer which is an appropriate model for RNA hairpins or §-hairpins in disordered
polypeptides. The interior Ris distribution function is

G(Rua; Ly, Lo, L3) = (0(Ry2 _/L u(s)ds))vr

[ Dlu(s)] R12 - fL (s)ds)¥rrp[u(s)]
J D[u(s)]¥arr[a(s)] ’
where u(s) is a tangent vector at position s. Suppose the chain consists of three different parts

(C.1)

characterized by the persistence lengths (l,;) and the contour lengths (L;) with i =1,2,3 (L =
52 L;). The exact weight U[u(s)] oc exp [~ 327, % ds (2—2)2] [T6(u%(s) — 1) is replaced by
]

L;

the mean field Welght Uyr(u(s)

Waefu(s)] o exp[~ 3 2 / (% ) d—ZA [ (ws) = s dl(u ~ 1)+ (1))
Z ; (C.2)

As in Appendix A, the Lagrange multipliers A and ¢ are used to enforce the local constraint

u?(s) = 1. Following, exactly the procedure outlined in Appendix A we find that in the L — oo

limit, the analogue of Eqlll becomes,

FIN 6] ~ _(L>\ +26)

ehiki 3 3. Ly RLHA
- Z ln 5 In (6 + Qp1) (1 + Qp2) (L2 + Dp3) (0 + Qp3)] + 5 5 In By + L,

I3 L Ly Ls Ly R3,
_4 (QIL 0.2 k) - Ly

3 Q 2 1) Q 1 Q 3 ) 3
—In |2 —+1 | | — 41 —1In Ly — 26. )
+2H{>\ (Qp1+)<9p2+)(Qp2+)<Qp3+)}+2n ’ (03)
where §; = \/2\/l,; and Q,; = ;1,,;/2. The major contribution to the integral comes from the
sets of A and § which pass the saddle point of a stationary phase contour on Re{F} plane. The

stationary condition for A by taking derivative with respect to A by retaining the leading term

in L, which leads to

3
3 2 L,
pULI R — =2 (C.4)
4(1— 22 (; Ly L)
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Rio

where 7 = 72, Similarly, the condition for ¢ results

1 1 4
. 5
519, 510, 3 (C:5)

Substituting EqIC.Aland [CHto G(R) ~ exp (—F[R; A, §]) gives the desired distribution function,

2
N 9 L 1L
(Ruzi (i}, 1) = (7 zyyo & 81—%7"2(22 . ) (C.6)

The effective persistence length in the mean field approximation is

. (i% L >_ , (C.7)

i=1 lpi

The result derived for a triblock WLC can be generalized into N-block WLC with persistence
lengths {/,;} and contour lengths {L;}. The distribution function is

47 Cr? 3t 1
P(r) = Lo L 2072 exp (—271 — %72) (C.8)

—2
e e N i _ . . .
where t = L/IS/7 1977 = %(lel%ﬁ) , 7 = Ris/|ss — s1| and C is a normalization
constant.
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FIGURE CAPTIOINS

Figure[ll: Loop formation in semiflexible polymer chains: (a) Cyclization event. (b) Interior
contact (IC) formation between monomers s; and s, in the chain interior. The segment length
s1 and L — sy are referred to either as dangling ends or handles in the text.

Figure Bl : Comparison between the interior distance distribution functions for different
size of the loops (@ =1, 0.8, 0.5). The value of |sy — s1|/L = 1 corresponds to end-to-
end distribution function. The flexible chain limit (¢ = 10) is on the left and the right panel
is for stiff chains (¢ = 2). The panel on the right shows a sketch of the effective potential
F(r) = —kgTlog P(r) for the case |sy — s1|/L = 0.8. The wells at R, and the barrier top R;
are highlighted.

Figure B : Plots of loop formation time (77¢) obtained using Eq.(Id) as a function of the
distance between site s; and s, expressed in terms of l,(,o) for various size of dangling ends
expressed by s/l(= |s; — so|/L). Here | = LI and s = |s, — s1|/1}"”). The specific values for
parameters are [\ = 50 nm, D = 2D, = 1.54 x 107''m?/s and o = 0.1. The insets are for the
loop closing time at |s; —52\/l,(,0) = 3 as a function of s/I. For two sites separated by |s; —s2| along
the chain the longer loop closing time is expected if the sites of interest are connected by long
dangling ends. If the separation is much larger than the persistence length (|s; — s >> l}(}o)) the
effect of dangling end on loop closing time vanishes. The results of simulations for the same set
of parameters are shown in symbols. The excellent agreement between theory and simulations
validates the assumptions leading to Eq.(I1).

Figure [ : Plot of looping probability, P(rq;S), (left) and dissociation time, 7,, (right) as a
function of interior loop contour length S. The capture radius ro = 5nm. The simulations are
performed for both end-to-end (S/L = 1) (black circle) and interior-to-interior (S/L = 0.5) (red
triangle). The parameters of the semiflexible chains are the same as in Figll Note the loop
dissociation time is much shorter than 7;¢.

Figure [ : Interior looping time (7;¢) as a function of the reduced distance between sites s;
and s, for the dangling ends of s/ = 0.3 for WLC with variable persistence lengths (I / 1 =2
in green, triangle up, lf/ll(,o) = 1 in red thick line, and lf/ll(,o) = 0.5 in blue, triangle down). The
physical situation corresponds to Figlllin which the persistence length of the two handles (0, s1)
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and (sg, L) is Zf and the contour lengths of three segments are identical. For comparison the
cyclization time (7, with s/l = 1 and the chain persistence l}(}o)) as a function of s(=1 =L/ l}(}o))
is shown in black dashed line. The inset shows the ratios of looping times (7;¢) for the chain
with variable persistence length with respect to the looping time (77.) of the chain with uniform
persistence. The up triangle in green is for the ratio between llff /ZS)) = 2, s/l = 0.3 and
1y I =1, s/1 = 0.3 (stiff handle), and the dpwm triangle down in blue is for the ratio between
/Y =05, s/1=03 and I7/1)” =1, s/l = 0.3 (soft handle).

Figure @ : Plots of cyclization time (7.) as a function of L (expressed in terms of léo)) for
various salt concentrations. The same parameters (ZI(,O), D, «) with those in Fig[ are used. The
inset shows 7. at L/ ZI(,O) = 3 as a function of ¢. The cyclization time 7. increases sharply below
c < 50mM.

Figure [0 : Interior looping time (77¢) as a function of the reduced distance between site
s1 and s9 for various size of dangling ends under two salt concentrations. The length of the
dangling end is given by the parameter s/l(= |s; — s3|/L). The same parameters (ZS)), D, «a) as
in Figl are used. The values of the salt concentration (10mM, 500mM) are explicitly shown. At
each value of ¢ the different curves correspond to distinct values of s/l. The values of s/l range
from 0.2 to 1. The inset shows 7/¢, at the two values of ¢, as a function of s/l for |so— 52|/l§;0) =3
(the vertical dashed line).

FigureR: (a) End-to-end radial distribution function for a semiflexible chain with bending
rigidity (k, = 3, 10, 20, 50, and 100 in unit of kgT') for various non-local interaction potentials
between monomers. The form of the potential is V' (r) = r~®. with a = 1,2,4,6,12: Results
are obtained using Brownian dynamics simulation using the energy function FEy o = Ey,+ E, +
>icj V(rij). (b) The effective persistence length for various potentials V' (r) at different values
of the bare bending rigidities.
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