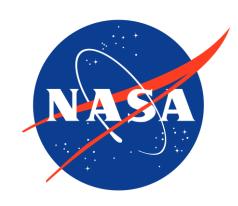


# **TEXAS SPACECRAFT LABORATORY**


Information Session

#### What is TSL?

- Undergraduate-driven laboratory led by Dr. Brandon Jones
- Laboratory focusing on the design, manufacturing, and operation of small satellites
- Focusing on primarily government-funded projects for spacecraft, payload, and algorithm design and implementation







# **Projects**

**Past Missions** 

Bevo-1

FASTRAC

RACE

Bevo-2

**ARMADILLO** 

Seeker Vision

**Ongoing Missions** 

SCOPE-1

REACT

Weather Balloon

#### **Past Missions**

#### 1. Bevo 1 (2009)

- Autonomous docking & rendezvous experiment
- Texas A&M, NASA JSC

#### 2. FASTRAC (2010)

- Formation Autonomy Spacecraft with Thrust, Relnav, Attitude and Crosslink (FASTRAC)
- AFRL (UNP-3)

#### 3. RACE (2014)

- Radiometer Atmospheric CubeSat Experiment (RACE)
- NASA JPL

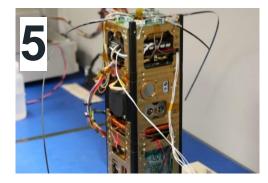
#### 4. Bevo 2 (2016)

- Autonomous docking & rendezvous experiment
- Texas A&M, NASA JSC

#### 5. ARMADILLO (2019)

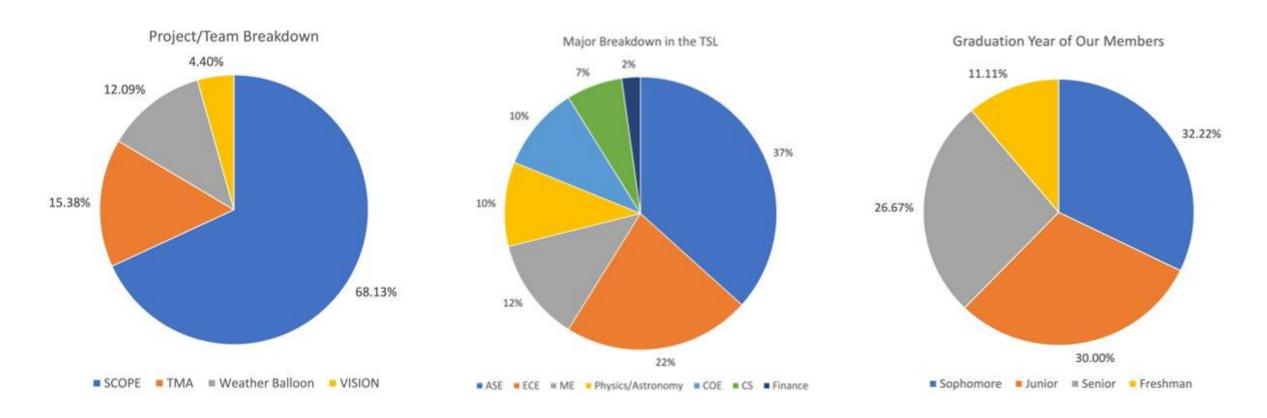
- Atmospheric Related Measurements of Sub-Millimeter Debris in Low Earth Orbit
- AFRL (UNP-7)


#### 6. VISION (Algorithm onboard JSC's SEEKER in 2019)


Visual Identification System for Intelligent Orbital Navigation














# Typical TSL demographics breakdown



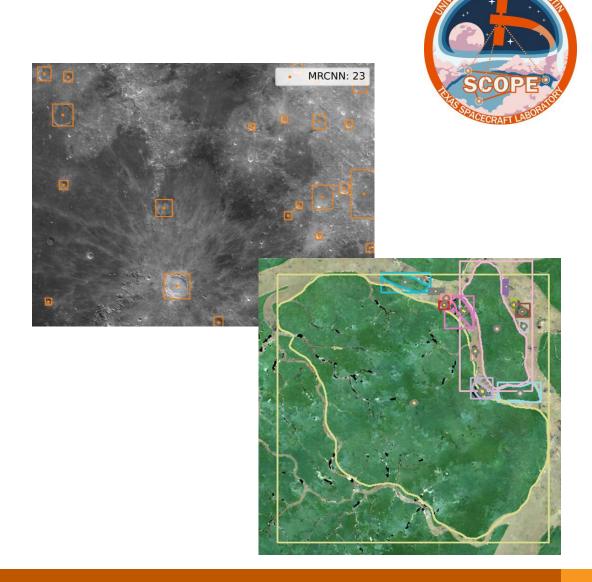
# **Ongoing Missions**



# SCOPE-1

**Spacecraft for Optical-based Position Estimation-1** 

### **Mission Overview**


Collaboration b/w TSL, UT Grad students, Dr. Jones & Dr. Zanetti

Sponsored by NASA Small Spacecraft Technology Program

Mature PNT (Position, Navigation, Timing) algorithms originally developed for lunar applications

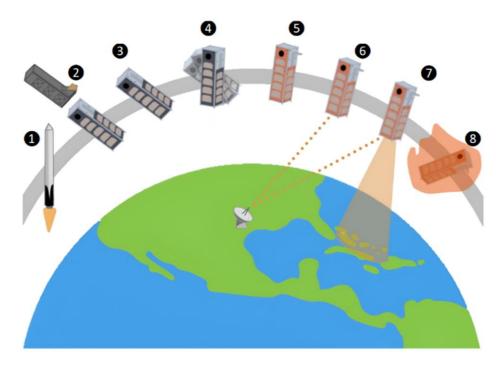
Develop new detector for Earth Islands & archipelagos

Low Earth orbit demo for future lunar application



# **Mission Concept**

SCOPE SCOPE AND STREET LAND FRANCE OF TEXAS AT THE PROPERTY OF TEXAS AT


Capture image of ground target (islands/archipelagos)

Utilizing ML (computer vision) approach, estimate spacecraft position and timing on orbit

Simultaneously collect position & timing information from GNSS

Post downlink, compare measurements and estimates to verify algorithms

Mission success: 100 m error/axis, 100 ms error



# **Mission History**

Started in Fall 2020

Completion through PDR at the end of Spring 2022

1 year hiatus until we received approval for funding in Fall 2023

Completed CDR, currently building flat sat and preparing for SIR



#### Mission Requirements Review (MRR)

Mission Proposal supported with technology gap assessment, 3+ mission options explored, timeline, overview, risk planning & mitigation, and preliminary design requirements

#### **Internal Design Reviews (IDR)**

Subsystem infrastructure establishment, subsystem requirements, added details to timeline, hardware Design To specifications, and build start of robust documentation

#### Preliminary Design Review (PDR)

Establish specifications, drawings, ICD's, qualification plans, optimize schedule and cost decisions, and resolve any system requirement conflicts

#### Critical Design Review (CDR)

Subsystem design details meeting all subsystem requirements, hardware Build to specifications, operations plan and robust documentation within design deliverables

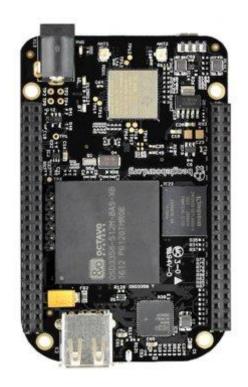
#### Test Readiness Review (TRR)

Complete set of procedures, software test configuration, quality control plans, posttest data handling plans, and acceptance criteria

#### Flight Readiness Review (FRR)

Trained personnel, operational readiness criteria, verification requirements compliance, verification procedures and data, launch facility checkout, and go/no go criteria




# SCOPE-1 Subteams



# **Command and Data Handling (CDH)**

#### What we do

- Develop software in Fprime to control other components on the satellite bus, route and store data products (telemetry, results, event logs etc.)
  - Utilizing BeagleBoneBlack as Flight computer





# **Communications (COM)**

#### What we do:

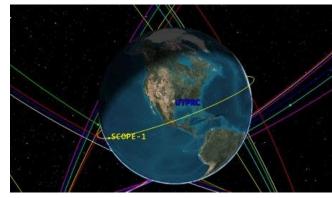
- Procure and test communications hardware including satellite radios and antennas
- Develop Link budgets and communications data requirements
  - Involves FCC RF and NOAA Imaging Licensing
- Create software to manage messages sent to and from the satellite
- Operate the Lab ground station located on the ASE garage rooftop

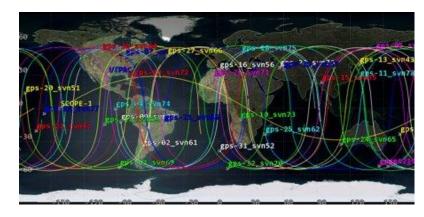






# **Electrical and Power Systems (EPS)**


- Select and test electrical power hardware, including batteries, solar panels, and ground test equipment
- Develop system Power Budget and run energy analysis simulations to predict power consumption in orbit
- Support other subsystems with PCB development, especially with power electronics and converters








- Identify, simulate, and interface with attitude determination and control hardware (reaction wheels, magnetorquers).
- Work with GPS/GNSS receiver calibration and work on mission design/modeling.
- Generate detumble analysis, pointing budgets, island coverage simulations, etc.





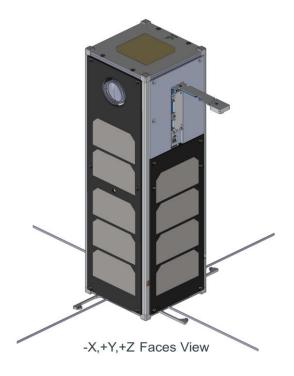


#### What We Do:

- Create and document the payload system and integrate the payload system into the overall satellite structure.
- Develop and train ML/computer vision island detector model
- Develop methods of testing hardware and software components to optimize the payload system.



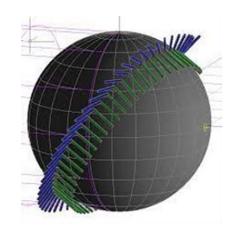


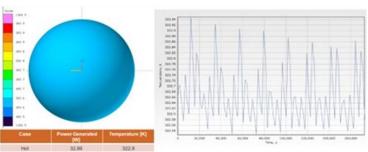



**Nvidia Jetson Developer Kit** 



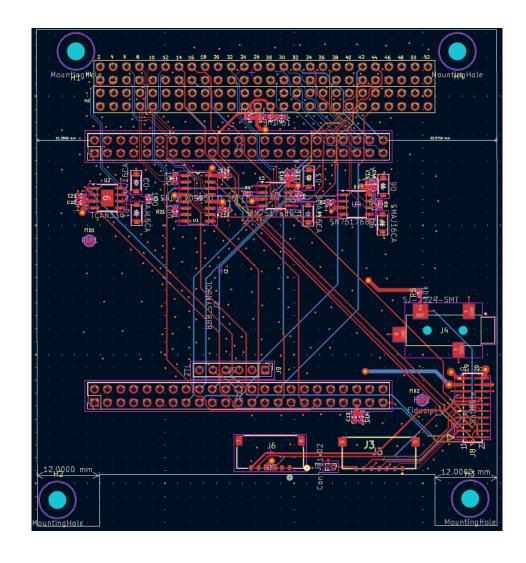
## **Structures (STR)**


- Obtain, utilize, and integrate CAD assets into highfidelity assembly
- Design custom component mounting structures
- Finite-element analysis of satellite model, including steady-state and vibrational forces
- Prepare satellite assembly procedure documents and assemble physical satellite






# **Thermal Protection Systems (TPS)**


- Analyze and model the thermal profile to ensure all components are in the working in their ideal temperatures
- Develop temperature/thermal budgets





## **PCB/SYS Team**

- Design interface boards using KiCad
- Assemble, test and integrate the boards with the rest of the flight hardware & software



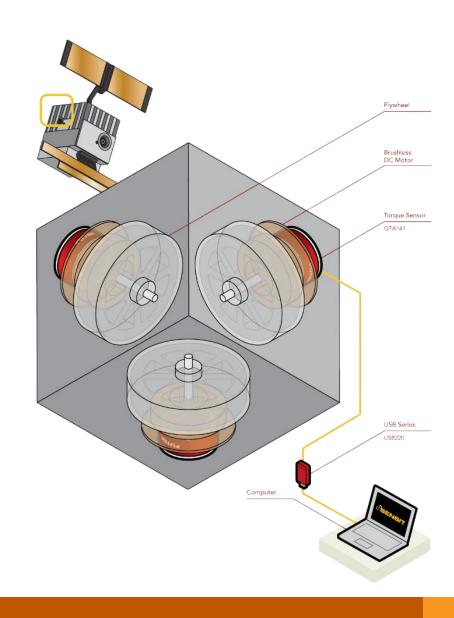


# REACT

#### Reaction-wheel Emissions and Analysis Control Team

#### **REACT OVERVIEW**

#### Focus:


Investigating magnetic field emissions from satellite reaction wheels

#### Why it matters:

Emissions can interfere with sensitive instruments and degrade satellite performance

#### **Goal:**

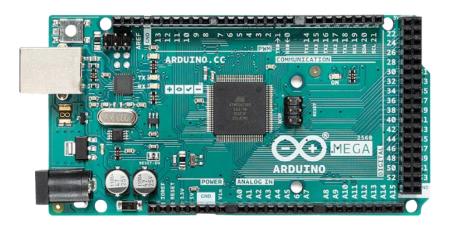
Develop and test mitigation strategies that improve satellite reliability



#### **Mission Timeline**

#### Phase 1:

Build and test our own reaction-wheel, proving the problem exists


#### Phase 2:

Research and prototype mitigation techniques

#### Phase 3:

Analyze data and publish results to push the field forward.





#### **Team Structure**

#### **Hardware**

- CAD design
- Machining
- Test stand builds
- Reaction wheel fabrication

#### **Electronics**

- Sensors
- Wiring
- PCBs
- Signal Processing
- EMI testing.

# Sensor 2 Sensor 1 $r_2$ $\Delta x=0$ $r_1$

#### **Software**

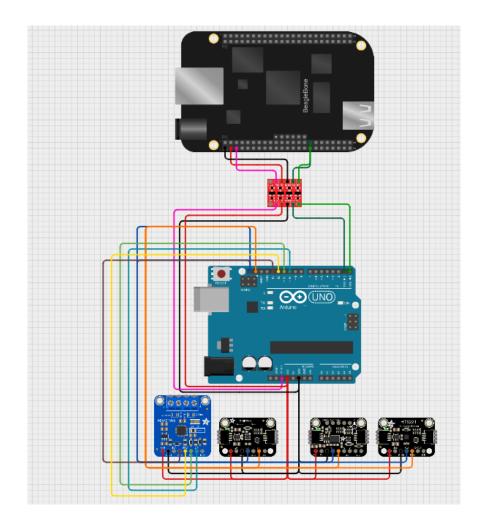
- Data collection
- Automation
- Modeling
- Control algorithms.

#### **Physics**

- Magnetic field modeling
- Data interpretation
- Paper writing
- Experimental Analysis



# Weather Balloon


## What We Do

#### Objectives:

- Designing a high altitude balloon testbed to be used as a risk testing platform by other TSL missions
- Create a testbed apparatus that is compatible with other mission's equipment to allow for testing at near space altitudes
- Payload will act as its own CubeSAT that is trackable and recoverable
- Provide an onboarding experience reflective of satellite design process







```
Serial.begin(9600);
while (!Serial) delay(10); // Wait for the Serial Monitor
// Initialize the sensor
if (!lsm.begin()) {
  Serial.println("Failed to find LSM9DS1 chip");
  while (1) delay(10);
// Set ranges for accelerometer, gyroscope, and magnetometer
lsm.setupAccel(lsm.LSM9DS1 ACCELRANGE 2G);
lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_245DPS);
lsm.setupMag(lsm.LSM9DS1 MAGGAIN 4GAUSS);
Serial.println("LSM9DS1 Found!");
```

## **Project Phases**

# **Low Altitude Balloon Test**

- Purpose: Test basic payload design and integration and establish launch procedures
- Progress: Assembly

# **High Altitude Balloon Test**

- Purpose: Test more
   advanced payload at higher
   altitudes and establish
   launch, tracking, and
   recovery procedures
- Progress: Assembly

# High Altitude Balloon Testbed

- Purpose: Create a high
   altitude testing platform for
   TSL missions and TMA
   projects
- Progress: Concept of Operations



# Other Projects/Teams



# Freshman Exploratory Team

- On-ramp for freshmen to work on SCOPE-1 and REACT
- One-semester project where you learn the NASA systems engineering process on a well-defined project
  - •Start from PI/Lab provided Neads, Goals, and Objectives to produce a working implementation
  - •Work with existing TSL leaders and learn about our ongoing projects
  - •Learn about small satellite development, ESD/Clean room protocol, and more
- Upon completion of the project, "graduate" to an existing TSL project





# Fall 2025 Exploratory Project

- Purpose: Provide a structured onboarding resource so new TSL members can quickly learn lab organization and systems engineering practices
- **Goal:** Create an extensible and easily managed resource that trains new members of the TSL on lab processes, subsystem documentation, and project fundamentals
- **Scope:** Focus on systems engineering, design, and implementing training modules; content guidance provided by leadership
- Deadline: Before start of Spring 2026 semester





# **Lab Operations**

#### Logistics

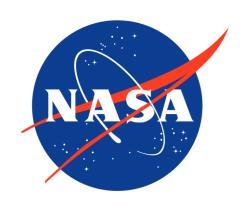
 Social media management, internal comms, event organization

#### **Facilities**

- Oversee day-to-day operations, manage documentation, streamline equipment usage
- Thermal chamber, vacuum chamber, satdex, and purchasing POCs





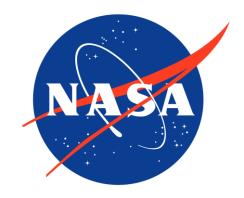

# Application Info

### **TSL Recruitment Information**

TSL!

- Application opens Monday, September 8th.
- If you apply BEFORE Monday, September 15th, we will aim to email you a decision no later than Monday, September 29th.
- If you apply AFTER Monday, September 15th, decisions will be made on an as-needed/rolling basis (you may not get a response).
- Must have a GPA of at least 3.0.
- All applicants must be a U.S. citizen or U.S. permanent resident.
  - If you'll be attending UT for at least one more year (through Spring 2027), then you may be eligible as well.
  - Come talk to us afterwards!






#### **TSL Recruitment Advice**

- All applicants must complete the Authorization and Release of Private Information form; applications will not be considered without it.
- Fill in **all** questions on the application.
  - Even if you are applying during the "rolling"/non-response-guaranteed phase.
  - We do not consider incomplete applications.
- Be prepared to talk in depth about any technical experience or projects on your resume.
- Your essays should aim to highlight all your technical experiences.
  - In the application backend, it is much easier for us to access and read your essays than your resumes.
- Upload any documents, projects, research, etc. you want to show off.
- If you apply earlier, your application will be looked at and decided on sooner.

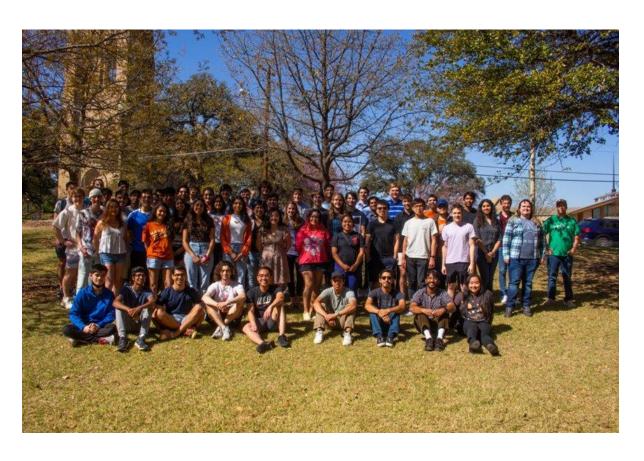






### Join Us!

TSL Email List:


https://bit.ly/3AYN08U



Follow the Instagram for application updates!

@ut.tsl

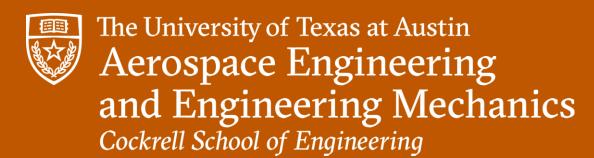




# **Attendance and Application Forms**






#### **Application Form**

https://utexas.qualtrics.com/jfe/form/SV\_bBh ARAbC2KddXXE



## **Questions?**

Stick around or email tsl.director@utexas.edu!

