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Notes largely based on [1, 2].

1 A few useful formulas

Variance:
V ar(Z) = E[(Z − µ)2] = E(Z2)− (E(Z))2 = σ2

z

µ = E(Z) = mean

Covariance:
Cov(Z,W ) = E[(Z − µz)(W − µw)]
Cov(Z,Z) = V ar(Z)

Variance of the difference between two random variables:
V ar(Z −W ) = V ar(Z) + V ar(W )− 2Cov(Z,W )

Variance of linear combination of random variables:
V ar(

∑
aiZi) =

∑
i

∑
j aiajCov(Zi, Zj)

Example: V ar(2Z1 + 3Z2) = 2 × 2Cov(Z1, Z1) + 3 × 3Cov(Z2, Z2) + 2 ×
3Cov(Z1, Z2) + 3× 2Cov(Z2, Z1) = 4V ar(Z1) + 9V ar(Z2) + 12Cov(Z1, Z2)

2 Setup

Suppose we have a two-dimensional surface A and we want to estimate a value of a
continuous attribute z (e.g. elevation, precipitation, soil pH) at any unsampled lo-
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cation u using z known data points whose locations are uα, or {z(uα), α = 1, ..., n}
The overall objective of kriging is to estimate a value Z for location u as a linear
combination of known values around u. The general setup can be defined as:

Ẑ(u)−m(u) =
n(u)∑
α=1

λα(u) [Z(uα)−m(uα)]

where λα(u) is the weight assigned to each nearby known value z(uα). The quanti-
ties m(u) and m(uα) are the expected values of the random variables (RVs) Z(u)
and Z(u)α respectively.

We can define the estimation error as a random variable Ẑ(u) − Z(u). The
objective of kriging is to minimize this estimation error or its variance:

σ2(u) = V ar
{
Ẑ(u)− Z(u)

}
under the (unbiasedness) constraint that E

{
Ẑ(u)− Z(u)

}
= 0

The value Z can be decomposed into two parts, a mean component m or trend
and a residual component r:

Z(u) = m(u) +R(u)

3 Simple Kriging

In simple kriging, we assume that the mean is known and constant over A, or
m(u) = m ∀u ∈ A. The general equation becomes:

Ẑ(u)−m =
n(u)∑
α=1

λα(u) [Z(uα)−m]

But Z −m is just the residual R. Thus, we can write the unknown error to be
estimated as a linear combination of the known error terms:

R̂(u) =
n(u)∑
α=1

λα(u)R(uα)

Again, the objective of kriging is to estimate the λ’s such that the variance of
the error is minimized subject to the unbiasedness constraint. In the case of simple
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kriging, this always holds because m(u) is constant across u. Using the variance

formulas above, we can write V ar
{
R̂(u)−R(u)

}
as:

σ2(u) = V ar
{
R̂(u)

}
+ V ar {R(u)} − 2Cov

{
R̂(u), R(u)

}
=
∑n(u)
α=1

∑n(u)
β=1 λα(u)λβ(u)CR(uα − uβ) + CR(0)

−2
∑n
α=1(u)λα(u)CR(uα − u)

This can be written in matrix format in a much simplified way. CR(0) is just
a constant, call it σ2 (global variance or sill). Rearranging terms, the equation
becomes :

σ2 − 2λTc + λTCλ ≡ σ2(u)

where c is an (n × 1) column vector of covariances between the prediction point
and each of the n sample sites of known points and C is an (n × n) matrix of
covariance between all pairs of the n sample sites.

The optimal weights that minimize the error variance can be found by taking
the partial first derivative of σ2(u) with respect to λ and setting to zero:

1
2
∂σ2

∂λ
= Cλ− c = 0

Cλ = c
C−1Cλ = C−1c
λ = C−1c

In full matrix format, the solution is equivalent to:
λ1
λ2
...
λn

 =


cov11 cov12 . . . cov1n
cov21 cov22 . . . cov2n

...
...

. . .
...

covn1 covn2 . . . covnn


−1

×


covs1
covs2

...
covsn


The estimated minimum error variance (now with the σ̂2 to indicate it is esti-

mated) can be found by substituting this equality into the original equation.

σ̂2 = σ2 − 2λTc + λTCλ
σ̂2 = σ2 − 2(C−1c)Tc + (C−1c)TC(C−1c)
σ̂2 = σ2 − 2(cTC−1c) + cTC−1CC−1c
σ̂2 = σ2 − 2(cTC−1c) + cTC−1c
σ̂2 = σ2 − cTC−1c

where σ2 is the sill value of your variogram (see below).
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4 Ordinary Kriging

Recall that in simple kriging we known the constant mean m. In ordinary kriging,
the mean is unknown and is allowed to vary locally by limiting the domain of
stationarity to the neighborhood of (u). The linear estimator is similar to the
simple kriging one, except now the mean is m(u).

Ẑ(u) =
n(u)∑
α=1

λα(u)Z(uα) +

1−
n(u)∑
α=1

λα(u)

m(u)

The unknown local mean m(u) is filtered from the linear estimator by forcing
the kriging weights to sum to 1. The ordinary kriging estimator is thus written as
a linear combination of the surrounding values with a constraint as follows:

Ẑ(u) =
n(u)∑
α=1

λα(u)Z(uα)

with
n(u)∑
α=1

λα(u) = 1

To see why the unbiasedness constraint must sum to 1, we write

E
{
Ẑ(u)− Z(u)

}
=
∑n(u)
α=1 λα(u)m(u)−m(u)

= m(u)−m(u) = 0

Just like in simple kriging, we want to minimize the error variance E[(Ẑ(u)−
Z(u))2]. Since now we have a constrained optimization, the problem calls for the
definition of a Lagrangian function L(u) with corresponding lagrangian multiplier
2τ(u):

L(u) = σ2(u) + 2τ(u)

n(u)∑
α=1

λα(u)− 1


The optimal weights λ? are obtained by taking each first partial derivative and

setting to zero:

1
2
∂L(u)
∂λα(u)

=
∑n(u)
β=1 λβ(u)CR(uα − uβ)− CR(uα − u) + τ(u) = 0

1
2
∂L(u)
∂τ(u)

=
∑n(u)
α=1 λα(u)− 1 = 0
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Although we assume the mean m(u) is stationary within the local neighbor-
hood, in practice the residual covariance is taken from the global covariance in-
ferred from all data available, leading to the system:

1
2
∂L(u)
∂λα(u)

=
∑n(u)
β=1 λβ(u)C(uα − uβ)− C(uα − u) + τ(u) = 0

1
2
∂L(u)
∂τ(u)

=
∑n(u)
α=1 λα(u)− 1 = 0

The minimum error variance can be calculated by plugging the first equation
of the system into the definition of variance:

σ?2(u) = C(0)−
n(u)∑
α=1

λα(u)C(uα − u)− τ(u)

In full matrix format, this solution is similar to simple kriging, except that we
add an extra row and column to account for the constraint and lagrange multiplier:

cov11 cov12 . . . cov1n 1
cov21 cov22 . . . cov2n 1

...
... . . .

... 1
covn1 covn2 . . . covnn 1

1 1 . . . 1 0

×


λ1
λ2
...
λn
τ

 =



cov01
cov02

...
cov0n

1


Returning to the introductory remarks, ordinary kriging assumes local constant

mean, which is a viable assumption in general. It does not need to explicitly
calculate any global trend in the data. A possible drawback is that the variogram
relies on the global dataset and therefore, it can distort local estimation if global
trends are not explicitly estimated and removed before variogram modeling.

5 Kriging with a trend model

Kriging with a trend model (also known as universal kriging) is a natural extension
of ordinary kriging. KTM implicitly calculates a global trend model for the data.
The first order trend component (m(u) ≡ V Tβ) is modeled as a linear combina-
tion of external variables, typically a polynomial function of the coordinates. For
example V Tβ ≡ β1x + β2y + β3xy, where x, y are the coordinates of each point
in S (here x, y are not independent, dependent variables; both are independent
variables). If we define p variables in V as v1, v2, ..., vp, we can solve a system of
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equations of the form C+λ+ = c0+, just like in ordinary kriging, by including the
implicit trend model variables to create an expanded matrix as follows:



cov11 . . . cov1n v11 . . . vp1
...

. . .
...

...
. . .

...
covn1 . . . covnn v1n . . . vpn
v11 . . . v1n 0 . . . 0

...
. . .

...
...

. . .
...

vp1 . . . vpn 0 . . . 0


×



λ1
λ2
...
λn
τ1
...
τp


=



cov01
...

cov0n
v10

...
vp0


The solution is again the same as above but of course the augmented matrix is

different.

In sum, the only information needed to obtain a kriging estimate is the variance-
covariance structure between sample points and between the point to be predicted
and sample points. This is modeled through what is known as ’variogram’ accord-
ing to the following definition:

2γ(h) = V ar [Z(u)− Z(u + h)] = E
{

[Z(u)− Z(u + h)]2
}

The semivariogram γ(h) is one half of the variogram. In practice people refer to
γ(.) as the variogram. In sample notation this is:

γ =
1

2

1

N(h)

N∑
i=1

[z(ui + h)− z(ui)]
2

where the z′s are the measured values of Z at N pairs of comparisons, separated
by the distance h.

By definition, the covariance at h = 0, C(0), is the variance σ2. The covariance
C(h) is 0.0 when values h-apart are not linearly correlated.

Expanding the square term in the definition of variogram and using the for-
mulas shown in the beginning, we obtain the relation between the semivariogram
and covariance:

2γ(h) = V ar(Z(u)) + V ar(Z(u+h))− 2Cov(Zu, Zu+h)

If we assume stationarity, the variance is independent of location and the first
two variance terms are the same and the equation can be simplified to

γ(h) = C(0)− C(h) or C(h) = C(0)− γ(h)
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This relationship becomes C(h) = σ2 − γ(h), where σ2 is the global variance.
Thus, we only need to model the (semi)variogram. We typically model it by
taking pre-determined functional forms as follows

6 Variogram Models

The spherical model:

γ(h) =


σ2
(
3h
2r
− h3

2r3

)
for h ≤ r

σ2 otherwise

where r is the range and σ2 is the sill.
If we include a nugget effect a, the spherical model becomes:

γ(h) =



a+ (σ2 − a)
(
3h
2r
− h3

2r3

)
for 0 < h ≤ r

0 for h = 0

σ2 otherwise

The exponential model:

γ(h) = σ2(1− e−3h/r)

With a nugget effect, the exponential model becomes:

γ(h) =


a+ (σ2 − a)(1− e−3h/r) for h > 0

0 for h = 0

The Gaussian model:

γ(h) = σ2(1− e−3h2/r2

)

The Gaussian model with nugget is:

γ(h) =


a+ (σ2 − a)(1− e−3h2/r2

) for h > 0

0 for h = 0
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