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1 Analysis with Binary Maps

Note: This material comes largely from Bonham-Carter [1994] book. I highly
recommend it for those interested in these types of methods.

Suppose you have two binary maps A and B. Cross-tabulate both maps to
obtain a 2× 2 table.

A A
B T11 T10 T1.
B T01 T00 T0.

T.1 T.0 T..

The subscript 1 denotes the presence of a certain characteristic and 0 its absence
(row, column). ‘B’ could be for example the epicenter of earthquakes and A a buffer
distance from a fracking operation or from a geological fault. Let T11 denote the
count of cells (or area) of characteristics that are present on both maps, T10 is the
count of cells where B is present and A absent (A), T01 where B is absent (B) and
A is present, and T00 where both are absent. T1. is the total number of cells where
B is present, T0. total cells where B is absent, T.1, total where A is present, and T.0
total where A is absent; T.. is the total number of cells or extent area. If all cells
are of same size, which is often the case in GIS, then the math below can be done
either by area or by cell count because this is a multiplying constant that vanishes
in all ratios.
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The Venn Diagram looks as follows:

BA

Extent

A ∩B A ∩B A ∩B

A ∩B

In set notation, we have these relationships translated into areas as follows:

Area(A ∩B) = T11
Area(A ∩B) = T01
Area(A ∩B) = T10
Area(A ∩B) = T00

and of course, T1. is set B, T.1 is set A, and the extent is T...

2 Conditional Probabilities and Odds

The conditional probability of B occurring given the presence of A is written as
P (B|A). Conditional probability is defined as P (B ∩ A)/P (A). This can be
expressed in terms of cross-tabulation areas as:

P (B|A) =
P (B ∩ A)

P (A)
=
p11
p.1

=
T11
T.1

where the little p is for probability. The last equality basically says that these
probabilities can be expressed in terms of areas.
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We can express the relationship between A and B in terms of conditional odds
(probability of occurrence over probability of non-occurrence). Since these are
binary maps, these values can be easily determined as follows:

O(B|A) =
P (B|A)

1− P (B|A)
=
P (B|A)

P (B|A)

This can also be expressed in terms of area:

O(B|A) =
p11/p.1
p01/p.1

=
p11
p01

=
T11
T01

Similarly, we can calculate the conditional odds of B given the absence of A,
O(B|A):

O(B|A) =
p10/p.0
p00/p.0

=
p10
p00

=
T10
T00

Combining the two conditional odds expressions we obtain a measure of as-
sociation between the two binary patterns known as the odds ratio OR, defined
as:

OR =
O(B|A)

O(B|A)
=
T11T00
T10T01

If we take the natural log of this expression, we convert the odds ratio to a
logit scale. This new index is called contrast, CW .

CW = lnO(B|A)− lnO(B|A)

With a little bit of manipulation using Bayes’s law (see note), you can also
show that (Bonham-Carter, pg. 307):

O(B|A) = O(B)
P (A|B)

P (A|B)

where the term P (A|B)

P (A|B)
is known as the sufficiency ratio.

Likewise, we can write:

O(B|A) = O(B)
P (A|B)

P (A|B)

and the term P (A|B)

P (A|B)
is called necessity ratio.
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3 Weights of Evidence

The contrast however is usually expressed as the difference between the weights in
“weights of evidence.” A pair of weights W+ and W− are defined as the difference
between the unconditional or ‘naive’ and the conditional or posterior logits. In
other words, what is the “gain” or difference in our knowledge about event B
before and after having information A?

W+ = lnO(B|A)− lnO(B) = ln

[
O(B|A)

O(B)

]
= ln

[
T11/T01
T1./T0.

]
= ln

[
T11T0.
T01T1.

]

and

W− = lnO(B|A)− lnO(B) = ln

[
O(B|A)

O(B)

]
= ln

[
T10/T00
T1./T0.

]
= ln

[
T10T0.
T00T1.

]

The above equalities follow from the fact that O(B|A) = P (B|A)/P (B|A),
which in area becomes T11/T01. And O(B|A) = P (B|A)/P (B|A), which becomes
T10/T00.

The contrast is then CW = W+ −W−. The magnitude of contrast reflects the
overall strength of the spatial association between factors A and B (could think of
causality between buffer distance to faults and earthquakes).

From those relationships, we can produce the posterior logit:

lnO(B|A) = lnO(B) +W+

and
lnO(B|A) = lnO(B) +W−

You can think of O(B) as the naive odds (in a Bayesian sense, see below). Let
the proportion of B in the extent of the study area be δ, then the ‘naive’ odds is
δ/(1−δ). This δ is what is known as a “naive” probability because it is essentially
the proportion of the event B in the area.

Suppose you have five different binary maps A1, A2, ..., A5. Then the posterior
logit when all factors are present is,

lnO(B|A1, A2, ..., A5) = lnO(B) +
5∑

i=1

W+
i ≡ ζ

4



and the posterior odds are exp(ζ) ≡ ρ. We can finally convert that back to posterior
probabilities π = ρ/(1 +ρ). This follows from the definition of odds ρ = π/(1−π),
where π is the posterior probability. Note that you can use any combination of
weights depending on whether each one of the factors are present or absent (see
Excel spreadsheet) and calculate its posterior probability given the factors. A
general posterior logit equation would be:

lnO(B|Â1, ..., Ân) = lnO(B) +
n∑

i=1

W+,−
i

where the (+,−) superscript indicate whether the weight is for presence or absence
(symbol̂) of the ith factor.

4 A note on Bayesian theory (skip)

You probably have heard about Bayesian theory. It all starts with the definition
of conditional probabilities. We know that

P (B|A) =
P (B ∩ A)

P (A)

Likewise,

P (A|B) =
P (A ∩B)

P (B)

It turns out that P (B ∩ A) = P (A ∩ B). Check the Venn diagram and see if you
agree with this statement. Setting those two equalities and rearranging terms, we
get:

P (B|A)P (A) = P (A|B)P (B)
P (B|A) = P (A|B)P (B)/P (A)
or
P (A|B) = P (B|A)P (A)/P (B)

Either one of the last two equations is the famous Bayes’ law. This is really
a device for “inverting” probabilities. If we take the last equation for instance,
P (A|B) is called the posterior distribution of A given the data B. P (A) is called
the prior distribution and P (B|A) is called the likelihood. In Bayesian analysis
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we are typically interested in obtaining a set of parameters, say Θ, given a set of
data X. Bayes rules can be written as:

p(Θ|X) =
p(X|Θ)p(Θ)

p(X)

and we typically “ignore” the marginal probability p(X) because it does not de-
pend on Θ and, for fixed X, is just a constant. This term is also difficult to obtain
algebraically because it involves multidimensional integration over a set of parame-
ter values. p(X) essentially normalizes the probabilities to one but we can do some
tricks to get over this difficult problem (i.e use conjugate priors or computational
methods, see below). Thus, Bayesian analysis uses:

p(Θ|X) ∝ p(X|Θ)p(Θ)

where the term ∝ means “proportional to.” This means that if we know the
likelihood that we get a particular set of data given some (prior) parameters and
an idea of the prior probability, we can get the posterior given the data.

The intuition behind Bayesian analysis is quite simple. Of course, implemen-
tation of it is much more complicated. It was often the case to use “conjugate
priors,” which are distributions of the same family as the likelihood. Therefore,
once those two were multiplied, we would know the distribution of the posterior,
which made the whole process more attainable but it did constrain our choices
for likelihoods and priors distributions. A breakthrough occurred with a paper by
Gelfand and Smith [1990] who showed that we could use computers and algorithms
(e.g. Metropolis-Hastings, Gibbs sampler) to implement what is know as Markov
Chain Monte Carlo approach to obtain a distribution very close to the posterior by
drawing sequentially from each distribution (prior and likelihood) one at a time,
hundreds or thousands of times. The theory behind this paper was laid out much
earlier (e.g. Fundamental Theorem of Markov Chains, algorithms) but it did make
Bayesian analysis more popular among many practitioners (myself included).
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