# Advanced GIS - Class Notes on Weight of Evidence 

Eugenio Arima

November 30, 2018

## 1 Example using deforestation and 1 km buffer distance to roads

We are interested in examining whether there is any evidence that deforestation is more prevalent closer to roads or not. We have two binary raster files: deforestation, represented by the letter $D$ and within 1 km from nearest road, represented by $R$. The Venn Diagram looks as follows:


Cross-tabulate both maps to obtain a $2 \times 2$ table.

| $\mathrm{R} \quad \bar{R}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| D | $T_{11}$ | $T_{10}$ | $T_{1}$. |
| $\bar{D}$ | $T_{01}$ | $T_{00}$ | $T_{0}$. |
|  | $T_{.1}$ | $T_{\text {. }}$ | $T$. |

The conditional probability of $D$ occurring given the presence of $R$ is written as $P(D \mid R)$. Conditional probability is defined as $P(D \cap R) / P(R)$. This can be expressed in terms of cross-tabulation areas as:

$$
P(D \mid R)=\frac{P(D \cap R)}{P(R)}=\frac{p_{11}}{p_{.1}}=\frac{T_{11}}{T_{.1}}
$$

where the little $p$ is for probability. The last equality basically says that these probabilities can be expressed in terms of areas.

We can express the relationship between $D$ and $R$ in terms of conditional odds (probability of occurrence over probability of non-occurrence). Since these are binary maps, these values can be easily determined as follows:

$$
O(D \mid R)=\frac{P(D \mid R)}{1-P(D \mid R)}=\frac{P(D \mid R)}{P(\bar{D} \mid R)}
$$

This can also be expressed in terms of area:

$$
O(D \mid R)=\frac{p_{11} / p_{.1}}{p_{01} / p_{.1}}=\frac{p_{11}}{p_{01}}=\frac{T_{11}}{T_{01}}
$$

Similarly, we can calculate the conditional odds of $D$ given the absence of $R$, $O(D \mid \bar{R})$ :

$$
O(D \mid \bar{R})=\frac{p_{10} / p_{.0}}{p_{00} / p_{.0}}=\frac{p_{10}}{p_{00}}=\frac{T_{10}}{T_{00}}
$$

Combining the two conditional odds expressions we obtain a measure of association between the two binary patterns known as the odds ratio $O_{R}$, defined as:

$$
O_{R}=\frac{O(D \mid R)}{O(D \mid \bar{R})}=\frac{T_{11} T_{00}}{T_{01} T_{10}}
$$

If we take the natural $\log$ of this expression, we convert the odds ratio to a logit scale. This new index is called contrast, $C_{W}$.

$$
C_{W}=\ln O(D \mid R)-\ln O(D \mid \bar{R})
$$

These results can also be achieved by using an odds formulation, which will give a nice Bayesian interpretation of posterior probability, given information and naive probability.

From Bayes law, we have:

$$
P(D \mid R)=\frac{P(R \mid D) P(D)}{P(R)}, \quad P(\bar{D} \mid R)=\frac{P(R \mid \bar{D}) P(\bar{D})}{P(R)}
$$

We can obtain the odds $O(D \mid R)$ from the above equalities:

$$
O(D \mid R) \equiv \frac{P(D \mid R)}{P(\bar{D} \mid R)}=\frac{P(R \mid D) P(D)}{P(R \mid \bar{D}) P(\bar{D})}=O(D) \frac{P(R \mid D)}{P(R \mid \bar{D})}
$$

because $\frac{P(D)}{P(\bar{D})}$ is just the odds $O(D)$. The term $\frac{P(R \mid D)}{P(R \mid \bar{D})}$ is known as the sufficiency ratio.

Likewise, we can write:

$$
O(D \mid \bar{R})=O(D) \frac{P(\bar{R} \mid D)}{P(\bar{R} \mid \bar{D})}
$$

and the term $\frac{P(\bar{R} \mid D)}{P(\bar{R} \mid \bar{D})}$ is called necessity ratio.
If we take the log of those odds, we obtain the definition of weights $W$ :

$$
\ln O(D \mid R)=\ln O(D)+W^{+}, \quad \ln O(D \mid \bar{R})=\ln O(D)+W^{-}
$$

These equations above are related to Bayes theorem: $O(D)$ can be thought of as the naive probability (i.e. raw probability without any conditioning), $W^{+,-}$the likelihood or updating information and $O(D \mid R)$ the posterior probability.

Rearranging terms, we obtain the definition of weights of evidence:

$$
W^{+}=\ln O(D \mid R)-\ln O(D)=\ln \left[\frac{O(D \mid R)}{O(D)}\right]=\ln \left[\frac{T_{11} / T_{01}}{T_{1 .} / T_{0 .}}\right]=\ln \left[\frac{T_{11} T_{0 .}}{T_{01} T_{1 .}}\right]
$$

and

$$
W^{-}=\ln O(D \mid \bar{R})-\ln O(D)=\ln \left[\frac{O(D \mid \bar{R})}{O(D)}\right]=\ln \left[\frac{T_{10} / T_{00}}{T_{1 .} / T_{0 .}}\right]=\ln \left[\frac{T_{10} T_{0 .}}{T_{00} T_{1 .}}\right]
$$

## 2 Actual data from rasters

|  | $R$ | $\bar{R}$ | $T$ |
| :---: | :---: | :---: | ---: |
| $D$ | $247,116,300$ | $161,730,900$ | $408,850,200$ |
| $\bar{D}$ | $208,665,000$ | $581,883,300$ | $790,548,300$ |
| $T$ | $455,784,300$ | $743,614,200$ | $1,199,398,500$ |
|  |  |  |  |

The naive probability of deforestation, which can be calculated by summing $D$ over $(R, \bar{R})$ yielding the marginal $P(D)$ is:

$$
P(D)=\frac{408,850,200}{1,199,398,500}=0.341
$$

The deforestation odds $O(D)$ are:

$$
O(D)=\frac{P(D)}{1-P(D)}=0.517
$$

The posterior odds $O(D \mid R)$ are:

$$
O(D \mid R)=\frac{247,119,300}{208,665,000}=1.184
$$

The posterior logit is $\ln (1.184)=0.169$ and the 'naive' logit is $\ln (0.517)=-0.659$. Thus, $W^{+}=0.829$

What are the odds of deforestation outside the 1 km buffer?

$$
O(D \mid \bar{R})=\frac{161,730,900}{581,883,300}=0.278
$$

The posterior logit is $\ln (0.278)=-1.280$; the 'naive' logit is the same as before; and $W^{-}=-0.621$. The contrast $C_{W} \equiv W^{+}-W^{-}=1.449$.

Now, with those values in hand, we can 'reverse engineer' those logits into odds and into posterior probabilities.

|  | Road buffer | Posterior logit | Posterior odds | Posterior probab. |
| :--- | :---: | :---: | :---: | :---: |
| Case 1 | Inside | 0.169 | 1.184 | 0.542 |
| Case 2 | Outside | -1.280 | 0.278 | 0.217 |
|  |  |  |  |  |

Posterior probability follows from the fact that odds $\theta$ are $\theta=\frac{p}{1-p}$. Solving for $p$, we get $p=\frac{\theta}{1+\theta}$.

Compare these posterior probabilities with the naive probability. Notice that by including information about whether deforestation is inside or outside the 1 km buffer from roads, we improved our probability estimates.

Last Modified: November 30, 2018

