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Abstract. We consider a repeated game where a player self-reports her
usage of a service and is charged a payment accordingly by a center.
The center observes a partial signal, representing part of the player’s
true consumption, which is generated from a publicly known distribu-
tion. The player can report any value that does not contradict the signal
and the center issues a payment based on the reported information. Such
problems find application in net metering billing in the electricity mar-
ket, where a customer’s actual consumption of the electricity network
is masked and complete verification is impractical. When the underly-
ing true value is relatively constant, we propose a penalty mechanism
that elicits truthful self-reports. Namely, besides charging the player
the reported value, the mechanism charges a penalty proportional to
her inconsistent reports. We show how fear of uncertainty in the future
incentivizes the player to be truthful today. For Bernoulli distributions,
we give the complete analysis and optimal strategies given any penalty.
Since complete truthfulness is not possible for continuous distributions,
we give approximate truthful results by a reduction from Bernoulli dis-
tributions. We also extend our mechanism to a multi-player cost-sharing
setting and give equilibrium results.

Keywords: Energy economics · Equilibrium analysis · Repeated
games · Electricity market · Penalty mechanisms

1 Introduction

Consider the following repeated game where a center owns resources and one or
more strategic players pay the center to consume the resources. In every round,
a player self-reports their usage, which will then be used to determine their
payment to the center. However, it is not always possible for the center to verify
the submitted information from the players. Instead, only part of the actual
consumption is revealed to the center based on some publicly known distribution.
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A player can report any value that is at least the revealed amount. Without any
external interference, a player will naturally report exactly the revealed amount
(potentially lower than the true consumption) to minimize their payment. The
center then needs to determine a payment mechanism such that each player is
incentivized to report their true value.

The electricity market is facing precisely the described problem. As the num-
ber of electricity prosumers increases each year, new rate structures are designed
to properly calculate the electricity bill for this special type of consumer while
ensuring that every customer is still paying their fair share of the network costs.
Prosumers are those who not only consume energy but also produce electricity
via distributed energy resources such as rooftop solar panels. Among different
rate structures, net metering is a popular billing mechanism that is currently
adopted in more than 40 states in the US [22]. Net metering charges prosumers
a payment proportional to their net consumption, i.e., gross consumption minus
the production [26], demonstrated in Fig. 1. The payment includes the electricity
usage as well as grid costs that are incurred by using the electricity network.

Fig. 1. Net metering for electricity prosumers.

The controversy in net metering lies in that prosumers fail to pay their share
of the grid costs when they do not have local storage equipment [9]. In the United
States, only 4% of the solar panel owners also own a battery to store the produced
solar energy [18]. For those who do not own battery storage, the generated power
has to be transmitted back to the grid. Accordingly, the daily consumption of
power by these prosumers also needs to come from the grid instead of directly
from the solar panels. In this way, most prosumers have under-paid their share
of the network costs and become “free-riders” of the electricity grid. The grid is
often subject to costly line upgrades and net metering unevenly shifts such costs
to traditional consumers, who usually come from lower-income households [15].
Indeed, previous research works have suggested that prosumers should pay a part
of the grid costs proportionally to their gross consumption, not net consumption
[9,16]. However, the gross consumption is hidden from the utility companies
since only net consumption can be observed from the meter. Meanwhile, there
is no incentive for prosumers to voluntarily report their true consumption as it
will only increase their electricity bills.
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Fortunately, the production from solar panels usually follows some pattern
while the gross consumption of electricity for a typical household stays relatively
constant, which is especially true for industrial sites – the major consumers for
utilities [21,27]. Thus, the observed consumption can be assumed to follow some
natural distribution and the center is able to detect dishonesty when a player’s
report differs from their reporting history. With this idea, we propose a simple
penalty mechanism, the flux mechanism, that elicits truthful reports from players
in a repeated game setting when only partial verification is possible. Particularly,
a player is charged their reported value as well as a penalty due to inconsistency
in consecutive reports in each round. The main goal is to ensure that every
player reports their true values and no penalty payment is collected. We show
that the combining effect of (i) the penalty rate and (ii) the length of the game
is sufficient for inducing truthful behavior from the player for the entire game.
As the horizon of the game increases, the minimum penalty rate for truth-telling
as an optimal strategy decreases. In other words, it is the fear of uncertainty in
the future that incentivizes the player to be truthful today.

1.1 Our Contribution

We address the problem of eliciting truthful reports when the center is able
to observe a part of the player’s private value based on some publicly known
distribution. The strategic player reports some value that is at least the publicly
revealed value and is charged a payment accordingly. We propose a truth-eliciting
mechanism, flux mechanism, that utilizes the player’s fear of uncertainties to
achieve truthfulness. In each round, the player is charged a “regular payment”
proportional to the consumption they report. Starting from the second round,
the player is charged an additional “penalty payment”, which is r times the
(absolute) difference between the reports in the current and the previous round,
where the penalty rate r is set by the center before the game starts.

Intuitively, a player can save their regular payment by under-reporting their
consumption, but they will then face the uncertainty of paying penalties in future
rounds due to inconsistent reports. Under most settings, if r is set to be infinitely
high, the players will be completely truthful to avoid any penalty payment.
However, a severe punishment rule is undesirable and discourages players from
participating. Therefore, we want to understand the following question.

What is the minimum penalty rate such that the player is willing to report
their true value?

We observe that no finite penalty can achieve complete truthfulness for arbi-
trary distributions as a player’s true consumption may never be revealed exactly.
We can, however, obtain approximate truthfulness for a general distribution by
analyzing complete truthfulness for a corresponding Bernoulli distribution. For
Ber(p), the partial signal equals the true consumption with probability p and 0
with probability 1 − p for p ∈ (0, 1). We give results for Bernoulli distributions
in Main Results 1 and 2. For arbitrary distributions, we redefine p as the prob-
ability of having a partial signal that is at least α times the true consumption,
for α ∈ [0, 1], to obtain α-truthfulness (Main Result 3).
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Main Result 1 (Theorem 1). For a T -round game with Bernoulli distribution
Ber(p), the player is completely truthful if and only if the penalty rate is at least

1 − (1 − p)T

p − p(1 − p)T−1
.

Main Result 1 gives the minimum penalty rate that guarantees complete
truthfulness for Ber(p) distributions. We also want to understand how players
would behave if the penalty rate is not as high, which describes the situation
when the center is willing to sacrifice some degree of truthfulness by lowering the
penalty rate. Given any penalty rate, we show that a player’s optimal strategies
can be described as one or a combination of three basic strategies, lying-till-
end, lying-till-busted and honest-till-end. Specifically, with a low penalty rate,
the player is always untruthful to save regular payment, i.e., lying-till-end is
optimal. As the penalty rate increases, the player’s optimal strategy gradually
moves to lying-till-busted, which is to be untruthful until the partial signal is
revealed as the true consumption for the first time and then stays truthful for
the rest of the game. When the penalty rate is sufficiently high, the player would
avoid lying completely and reports the truth, i.e., she is honest-till-end.

Table 1. Optimal strategy given penalty rate r under Ber(p) distributions

Bernoulli Prob. Penalty Rate Optimal Strategy

p ≥ 0.5 r ≤ 1
2p lying-till-end

1
2p < r ≤ 1 lying-till-busted

+ lying last round

1 < r < 1−(1−p)T

p−p(1−p)T−1 lying-till-busted

r ≥ 1−(1−p)T

p−p(1−p)T−1 honest-till-end

p < 0.5 r ≤ 1 lying-till-end

h(t − 1) < r ≤ h(t) lying-till-end first t rounds
+ lying-till-busted for rest

h(T − 1) < r < 1−(1−p)T

p−p(1−p)T−1 lying-till-busted

r ≥ 1−(1−p)T

p−p(1−p)T−1 honest-till-end

Main Result 2 (Theorems 1 and 2). For a T -round game with Bernoulli dis-
tribution Ber(p), given any penalty rate r, the player’s optimal strategy is sum-
marized in Table 1, where

h(t) =
1 − (1 − p)t

2p − p(1 − p)t−1
, for1 ≤ t ≤ T.

For arbitrary distributions, including uniform distributions, it is impossible
to obtain complete truthfulness without setting the penalty to infinity. Main
Result 3 gives a reduction from Bernoulli distributions to general distributions
for approximate truthfulness.
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Main Result 3 (Theorem 3). Given α ∈ [0, 1] and an arbitrary distribution
with CDF F , if a penalty rate r achieves complete truthfulness for Ber(p) where
p = 1 − F (αD) and D is the player’s true gross consumption, then the same r
achieves α-approximate truthfulness for distribution F .

Finally, we extend our results to multiple players. We note that if the play-
ers are charged independently, applying the flux mechanism to each individual
elicits truthful reports. A more complicated and realistic setting is the cost-
sharing problem where the players split an overhead cost based on their sub-
mitted reports. We propose the multi-player flux mechanism where the penalty
payment is the same as before but the regular payment is now a share of some
overhead cost. Again, if the penalty rate is sufficiently high, the players stay
truthful, regardless of others’ behavior, to avoid any penalty payment, i.e., the
truthful report profile forms a dominant strategy equilibrium. As the penalty rate
decreases, the truthfulness of a player may depend on other players’ actions. That
is, with a lower penalty rate, a truthful report profile forms a Nash equilibrium.
For both equilibrium definitions, we are interested in the following question.

What is the minimum penalty rate for the truthful report profile to form
a dominant strategy or Nash equilibrium?

We give exact penalty thresholds for both truthful equilibria under Bernoulli
distributions and use a reduction to obtain approximate results under arbitrary
distributions in Main Result 4.

Main Result 4 (Theorems 4, 5, 6 and 7). For any T -round game with distri-
bution Ber(p), a truthful strategy profile is a dominant strategy equilibrium if
and only if

r ≥ C

nD

1 − (1 − p)n−1

p

1 − (1 − p)T

p − p(1 − p)T−1
,

and a Nash equilibrium if and only if

r ≥ C

nD

1 − (1 − p)T

p − p(1 − p)T−1
.

Given α ∈ [0, 1] and any distribution with cumulative distribution function F ,
let p = 1−F (αD), where D is the true gross consumption. Then α-approximate
truthful profile is a Nash equilibrium if

r ≥ 1
α

C

nD

1 − (1 − p)T

p − p(1 − p)T−1
,

and the α-approximate truthful profile is a dominant strategy equilibrium if

r ≥ 1
α

C

nD

1 − (1 − p)n

p

1 − (1 − p)T

p − p(1 − p)T−1
.
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1.2 Related Works

The economic effect of the net metering policy has been explored for different
countries and regions [6,7,17,24,28]. It has been observed that net metering can
cause inequality issues for traditional energy consumers [8,15,17,23]. Accord-
ingly, alternative pricing mechanisms and tariff structures have been proposed
to fairly compensate the energy production [4,9,10,16,25]. In particular, Gau-
tier et al. [9] and Khodabakhsh et al. [16] proposed that individuals should be
charged based on their true consumption, not net consumption. Our work is a
continuation of [16], where a primitive version of the penalty mechanism is first
proposed for promoting a fairer electricity rate structure. We formally define the
mechanism and provide the corresponding theoretical analysis.

More broadly, fairness for the power grid has become an increasingly popular
subject. First, Heylen et al. provided various indices to measure fairness and
inequality in power system reliability [13]. Fairness is also explored for load
shedding plans [14], electric vehicle charging schemes [1], demand response [2],
etc. Moret and Pinson showed fairness can be improved with a “community-
based electricity market”, where prosumers are allowed to share their production
on the community level [20]. Our model, on the other hand, addresses the fairness
issues by modifying the current electricity structure, which is easier for utility
companies to adopt.

Theoretically, our work is related to information elicitation with limited ver-
ification ability. Caragiannis et al. [5] and Ball et al. [3] worked on probabilistic
verification where a lying player may be caught by a probability based on her
type. Our work can be viewed as an extension of probabilistic verification under
a repeated game setting where the verification is implicit and the main goal is to
incentivize truthful reports. Another related problem is strategic classification,
in which individuals can manipulate their input to obtain a better classifica-
tion outcome [11,12,19,30]. Although we also consider the strategic behavior of
players in a sequential game, our model is quite different. Strategic classification
allows the center to learn the patterns of the players via a private classifier.
In our setting, the scoring rule is transparent to the players and an additional
measure (e.g., a penalty) has to be invoked to incentivize truthfulness.

2 Problem Statement

We formally define our problem under the single player setting and defer the
extension to multiple players to Sect. 5. The player has a gross consumption
D ≥ 0, which is her private information. The game has T rounds where T > 1
as otherwise the flux mechanism becomes invalid. In each round t, the center
observes a partial signal, yt ≤ D, which is randomly and independently drawn
from a distribution F supported on [0,D]. We use r ≥ 0 to denote the penalty
rate. In a flux mechanism, a player cares more about the number of rounds
left in the future rather than the number of rounds has passed. Thus we use
t = T, T − 1, · · · , 1 to denote the current round, where t means there are t
rounds left, including the current round. For example, the first round is round
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T , the last round is round 1, and the previous round of round t is round t + 1.
For round t ≤ T , the flux mechanism runs as follows.

– The center observes the player’ net consumption yt ∼ F .
– The player submits their reported gross consumption which is at least the
net consumption, bt ≥ yt. The player may not be truthful, i.e., bt ≤ D.

– When t < T , the player’s payment consists of regular payment bt and penalty
payment r·|bt+1−bt|. When t = T , the player only pays the regular payment.

For t < T , we call bt+1 the history of round t. In each round t, the player
wants to pay the lowest expected total payment by reporting bt without knowing
the partial signals for future rounds. We call a mechanism truthful if the player
reports D for all rounds. When two reports bring the same expected payment,
we break tie in favor of truthfulness. We adopt the assumption from Khod-
abakhsh et al. [16] that D does not vary with t. We explain in the full version
of this paper an easy extension where Dt is drawn from a known range [D,D].

3 Bernoulli Distributions

We start with the analysis of Bernoulli distribution as we show later a reduction
from an arbitrary distribution to a Bernoulli distribution. We prove it is only
optimal for a player to report zero or their true consumption in each round. The
optimal strategies can then be characterized by three basic strategies (Defini-
tion 1). The penalty thresholds are computed by comparing the different com-
binations of the basic strategies. Due to space limit, we defer most proofs to the
full version of this paper and focus on explaining the intuition in this section.

3.1 Basic Strategies

In a Bernoulli distribution setting, in each round t, the partial signal yt is D
with probability p and 0 with probability 1 − p. When the partial signal equals
to the private value, i.e., yt = D, we say that the player is “busted” in round t.
We first define three basic strategies.

Definition 1 (Basic Strategies). For Bernoulli distributed net consumption
yt ∼ Ber(p), we define the following as the three basic strategies:

– lying-till-end: Report bt = 0 when yt = 0 and bt = D otherwise;
– lying-till-busted: Report bt = 0 until yt = D for the first time, then report D for

all future rounds;
– honest-till-end: Report bt = D for all rounds.

We note that a player’s optimal strategy for a given penalty rate r can
be solved by backward induction. Let OptCost(t, r, bt+1) denote the optimal
expected cost for a player starting in round t with penalty rate r and report
bt+1 for the previous round. Then

OptCost(t, r, bt+1) = min
bt

ExpCost(t, r, bt+1, bt),
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where ExpCost(t, r, bt+1, bt) is the expected cost for the player starting in round
t and reporting bt (if she is allowed to), with penalty rate r and history bt+1,

ExpCost(t, r, bt+1, bt)
= Eyt [max{yt, bt}+ r|max{yt, bt} − bt+1|+OptCost(t − 1, r,max{yt, bt})]
= p

(
D + r(D − bt+1) +OptCost(t − 1, r,D)

)

+ (1 − p)
(
bt + r|bt − bt+1|+OptCost(t − 1, r, bt)

)
.

The first term on the right side of the equation above refers to the cost when the
partial signal is revealed as D and the player has to report D. The second term
refers to the cost when the partial signal is 0 and the player chooses to report
bt. Let OptCost(0, r, b1) = 0 for all b1. When t = T , i.e., the first round, there is
no history bT+1 and the player wants to minimize the following total cost,

OptCost(T, r) = min
bT

ExpCost(T, r, bT )

= p(D +OptCost(t − 1, r,D)) + (1 − p)(bT +OptCost(t − 1, r, bT )).

Solving the recursion will give the characterization of optimal strategies in
Table 1, as we demonstrate in the full version of this paper. In what follows,
we discuss a surprisingly simpler and more constructive proof by exploiting the
properties of the flux mechanism, which may be of independent interest.

3.2 Main Theorems

We observe that there are two key elements that influence the decision making
of the player.

(1) The player’s history, bt+1 for t < T . The value of bt+1 directly affects the
penalty payment in round t. Intuitively, a player is more reluctant to lie if
bt+1 is high and better off lying if bt+1 is small.

(2) The number of rounds left to play, i.e., t, indirectly influences the probability
and the number of times a player will be busted in the remaining rounds.

Via Lemmas 1–4, we show these are the only two elements that determine
a rational player’s action. The following lemma shows that it is not optimal for
a player to report a value strictly between 0 and D. Moreover, if a player is
untruthful in the previous round, it is better off to remain untruthful. With this
lemma, we largely reduce the strategy space we need to consider.

Lemma 1. For any round t ≤ T , given yt = 0, the optimal report in round t is
bt ∈ {0,D}. Moreover, if t < T and bt+1 = yt = 0, then the optimal report is
bt = 0.

Next, we prove that in each round, the optimal strategy is determined by a
penalty threshold such that a player will be truthful if and only if the penalty
rate r is above the threshold. We call them critical thresholds.
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Lemma 2 (Critical Thresholds). For t = T , there is a threshold penalty
rate r(∅)T ≥ 0 such that reporting D is optimal if and only if the penalty rate is
at least r(∅)T ; For t < T , there is a threshold penalty rate r(bt+1)

t ≥ 0 such that
reporting D is optimal for a player in round t with history bt+1 if and only if
the penalty rate is at least r(bt+1)

t .

Lemmas 1 and 2 together imply that the optimal strategy can only be one
or a combination of the basic strategies. In particular, by Lemma 1, r(0)t = ∞
for any t. Moreover, since bt+1 can only be 0 or D, by Lemma 2, we only need
to determine the values of r(∅)T and r(D)

t for t < T to complete the picture of
optimal strategies. We now give some properties of these thresholds.

Lemma 3. r(∅)t ≥ r(D)
t for t ∈ {1, . . . , T}.

Given the same t rounds left, Lemma 3 says a player is more inclined to lie
without a history than with a truthful history. This is straightforward as lying
with a truthful history results in an additional penalty payment.

Lemma 4. Given r(∅)t ≥ 1
p , r

(∅)
t decreases as t increases.

Lemmas 3 and 4 together tell us the player is least incentivized to be truthful
on the first round and r(∅)T is the penalty threshold that ensures truthfulness for
the game. We give this important threshold in Theorem 1.

Theorem 1. The minimum penalty for truthful reporting in a game of T rounds
with Ber(p) distribution is

r(∅)T =
1 − (1 − p)T

p − p(1 − p)T−1
. (1)

We see r(∅)T → 1/p as T → ∞ and r(∅)T decreases as T increases. This implies
the increasing length of the game incentivizes the player to speak the truth today,
even when they do not have to. To understand Theorem 1, we observe that it is
sufficient to compare lying-till-busted and honest-till-end since r(∅)T ensures the
player to stay truthful after being busted. Before the player is busted for the
first time, it is not optimal to oscillate between lying and truth-telling, as it is
strictly dominated by lying completely. Therefore, the only viable strategies are
lying-till-busted and honest-till-end, and the desired threshold sets the expected
cost of these two strategies equal.

With a more involved argument, we get the exact values for the truthful
threshold given a truthful history, i.e., the r(D)

t ’s. The values of r(∅)T and r(D)
t

characterize the optimal strategies for a player and are an alternative represen-
tation of Table 1.

Theorem 2. For p ≤ 1
2 , r

(D)
t = 1−(1−p)t

2p−p(1−p)t−1 . For p > 1
2 , r

(D)
t = 1 for t = 1

and r(D)
t = 1

2p for t ≥ 2.
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The optimal strategy is visualized in Figs. 2a and 2b for p = 0.3 and p = 0.7,
respectively. The x-axis is the number of rounds left (t), and the y-axis is the
penalty thresholds for truthfulness. We give examples of penalties via the red
dashed lines. For the first round, the player refers to the blue dot representing
r(∅)T and is truthful if and only if the penalty is above the blue dot. Afterwards,
given t rounds left and history D, the player looks at the green curve represent-
ing r(D)

t and is only truthful if the penalty is above the curve. If the history is
0, she remains untruthful and reports 0. Figures 2a and 2b visualize the optimal
strategies given in Table 1. Both green curves are closely related to 1

2p . An intu-
ition is that in any round t < T , a player pays D if she is truthful and roughly
2prD if she lies, where the penalty payment rD comes from the previous and
the next round, each with probability p. The penalty that sets these two costs
equal is 1

2p . The actual r(D)
t thresholds vary upon values of t and p.

Fig. 2. Critical thresholds under two distributions with sample optimal strategies.

4 A Reduction for Arbitrary Distributions

As discussed in the introduction, only the infinite penalty rate will guarantee
complete truthfulness under arbitrary distributions, yet there is still hope to
obtain approximate results. The trick is to redefine being busted as having a
partial signal that is less than α times the true consumption, for α ∈ [0, 1].
Then any arbitrary distribution is reduced to Ber(p) where p is the probability
that the partial signal is at least αD. For approximate truthfulness, we define
being α-truthful as reporting at least αD. We reuse the arguments of comparing
basic strategies from Sect. 3 to determine an upper bound for the penalty rate
that guarantees α-truthfulness. We introduce the notion of approximate truth-
fulness in Definition 2 and give the reduction in Theorem 3. We demonstrate the
reduction with uniform distributions in Example 1.

Definition 2 (α-truthfulness). A reporting b is α-truthful when bt ≥ αD for
all t = 1, . . . , T .

Theorem 3. Given α ∈ [0, 1] and an arbitrary distribution with CDF F , if a
penalty rate r achieves complete truthfulness for Ber(p) where p = 1 − F (αD),
then the same r achieves α-approximate truthfulness for distribution F .
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Example 1. Assume partial signals follow a uniform distribution U(0,D). Let r
be the truthful threshold of Ber(p) where p = 1 − α, i.e. r = 1−αT

(1−α)(1−αT−1) .
Then using r ensures α-truthfulness for U(0,D) by Theorem 3. For uniform
distributions, it is impossible to obtain complete truthfulness unless r = ∞,
which can be verified by setting α = 1.

5 Extension: A Cost-Sharing Model

We extend the problem to the multi-player setting and focus on cost-sharing
among homogeneous players. Let N be the set of players with n = |N | ≥ 1.
Each player i ∈ N has a private value xi ≥ 0, and we assume all players are
symmetric, i.e., xi = D for all i ∈ N (see the full version of this paper for a
relaxation). All players in N split an overhead cost C, which is at least the total
gross consumption, i.e., C ≥ nD. The game has T rounds in total. Given the
penalty rate r, we analyze the following multi-player flux mechanism.

– The center observes a partial signal representing player i’s net consumption
yit ∼ F for each player i ∈ N ;

– Each player i submits their reported gross consumption that is at least their
net consumption, bit ≥ yit;

– If t < T , player i’s pays regular payment C · bit∑
j bjt

and penalty payment

r · |bit+1 − bit|. If t = T , the players only pay regular payments.

We call bit+1 the history for player i in round t and bt+1 the group history.
If everyone lies in a round, the overhead cost is split evenly among all players.
A mechanism is truthful if every player reports D for every round. We are inter-
ested in computing the minimum penalty rates such that truthful reports form
a Nash equilibrium (NE) or a dominant strategy equilibrium (DSE). Informally,
a strategy profile is a NE if no player wants to unilaterally deviate, and it is
a DSE if no player wants to deviate no matter what the other players do. We
show that approximate results for any arbitrary distribution can be deducted
from an exact analysis for a Bernoulli distribution. Due to space limit, we defer
all proofs to the full version of this paper.

Similar to the single-player setting, we avoid solving the recursion by exploit-
ing the properties of the mechanism. Again, we start our analysis with F being
a Bernoulli distribution and provide a reduction for approximate truthfulness
when F is an arbitrary distribution. In the single-player model with Bernoulli-
distributed F , we have shown that it is only optimal for a player to report 0
or her actual consumption D. We claim it is the same case for multiple players.
Moreover, if a player lied yesterday and also has an observed consumption of 0
today, they will report 0 regardless of other players’ actions.

Lemma 5. For Bernoulli-distributed F , reporting anything strictly between 0
and D is sub-optimal in a multi-player flux mechanism. Moreover, if bit+1 =
yit = 0, it is optimal to report bit = 0.
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Starting from this point, we assume that every player reports either 0 or D.
When n = 2, we show that the multi-player model reduces to the single-player
model with a multiplicative factor of C

2D . The reason for the reduction is that
the savings of switching to lying from being truthful for a player are always C

2 ,
regardless of what the other player does.

Lemma 6. When n = 2, the multi-player model reduces to a single-player
model. The truthful penalty threshold is C

2D times (1).

For general n, we show it is sufficient to analyze the maximum difference
between lying and truth-telling for player i in round t given group history bt+1.
In a DSE, a player achieves the biggest gain from lying if all players were lying
in the previous round. We then use bt+1 = 0 to compare lying and truth-telling
for a player.

Theorem 4. For the Ber(p) distribution, a truthful strategy profile forms a
dominant strategy equilibrium if and only if

r ≥ C

nD

1 − (1 − p)n−1

p

1 − (1 − p)T

p − p(1 − p)T−1
. (2)

If we slowly lower the penalty from (2), we will hit a threshold such that
truth-telling is an NE. The difference between the truthful NE and the DSE is
that now we can assume that every player j (= i is truthful in the first round
and show that player i would not deviate unilaterally. However, we shall not
assume that player j (= i remains truthful for the rest of the game. This is
because if player i lies in the first round, player j can observe the report of i
in the second round and deviate from truthful behavior. We first show that if
r ≥ C

nD
1
p , players with truthful history stay truthful. Then we can safely assume

player j (= i remains truthful throughout the game. In this way, truthful NE is
reduced to the case where there is one strategic player and n−1 truthful players.
It is not hard to see the threshold is precisely C

nD
1−(1−p)T

p−p(1−p)T−1 .

Theorem 5. For the Ber(p) distribution, a truthful strategy profile forms a
Nash equilibrium if and only if

r ≥ C

nD

1 − (1 − p)T

p − p(1 − p)T−1
. (3)

We visualize Ber(p) penalty thresholds in Fig. 3 for different T ’s and p’s. The
x-axis is the total number of rounds for a game and the y-axis is the penalty
rate that guarantees the specified equilibrium. The blue and orange lines are
penalty thresholds for p = 1

3 and 2
3 , respectively. The solid and dashed lines

are thresholds for truthful DSE and NE, respectively. All four thresholds in
Fig. 3 decrease as T increases, suggesting that the increasing length of the game
promotes truthful equilibria. From expressions (2) and (3), we see that the DSE
and NE thresholds tend to be the same as p approaches 1.



54 Y. Wu et al.

Fig. 3. Exact penalty thresholds for truthful DSE and NE, given the number of rounds
T for Ber(p) distributions. We assume n = 20, D = 1 and C = n ·D = 20.

Similar to the single-player model, we extend the results for Bernoulli dis-
tributions to approximate results for general distributions. Given α ∈ [0, 1], we
redefine being busted as having an observed consumption of at least αD. For
the dominant strategy equilibrium, we find the threshold that being α-truthful
is a dominant strategy. For Nash equilibrium, we first define the approximate
truthful NE, a natural extension of the complete truthful NE.

Theorem 6. Given α ∈ [0, 1] and some general distribution F , let p = 1 −
F (αD). The α-truthful strategy profile forms a dominant strategy equilibrium if

r ≥ 1
α

C

nD

1 − (1 − p)n

p

1 − (1 − p)T

p − p(1 − p)T−1
. (4)

Definition 3 (α-truthful Nash equilibrium). Given α ∈ [0, 1], a reporting
profile b ∈ [0,D]n×T is an α-truthful Nash equilibrium if bit ≥ αD for all i, t and
no player wants to deviate from being α-truthful in any round.

Theorem 7. Given α ∈ [0, 1] and some general distribution F , let p = 1 −
F (αD). The α-truthful strategy profile forms a Nash equilibrium if

r ≥ 1
α

C

nD

1 − (1 − p)T

p − p(1 − p)T−1
. (5)

We see that both the penalty thresholds, (4) and (5) are close to 1
α times their

Bernoulli thresholds, (2) and (3), for p = 1 − F (αD). Recall that in the single-
player model, α-truthfulness can be obtained by directly using the Bernoulli
threshold with p = 1 − F (αD). In the multi-player model, however, we have to
multiply the Bernoulli threshold with a factor of 1

α , which suggests it is more
difficult to get every player to speak the truth under the cost-sharing setting.
We note that both penalty rates (4) and (5) are upper bounds for the actual
thresholds. This is because we treat any report greater than αD as αD. We
conjecture that the exact thresholds are not far from thresholds (4) and (5).
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6 Conclusion and Open Problems

We propose a penalty mechanism for eliciting truthful self-reports when only
partial signals are revealed in a repeated game. A player faces trade-off between
under-reporting today and paying a penalty in the future due to the uncer-
tainty of partial signals. We find that the length of the game naturally reduces
the minimum penalty rate that incentivizes truth-telling. Given any penalty
rate, we give a characterization of the optimal strategies under both single- and
multiple-player settings for any distribution. We identify a penalty rate that
achieves complete truthfulness for Bernoulli distributions, which can be used in
a reduction to obtain approximate truthfulness for arbitrary distributions.

A possible future direction is to extend our results to asymmetric multi-
player settings where players do not have the same gross consumption or the
same distribution for partial signals. For heterogeneous players, we may then
consider, in addition to truthfulness, the fairness of the mechanism. It would
be interesting to develop a definition of fairness for the cost sharing model and
compute the fairness ratios accordingly. It is also worthwhile to derive other
truthful and fair mechanisms that do not involve penalty.
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authors would like to thank the anonymous reviewers for their insightful and con-
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