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Abstract: This study presents a novel three-dimensional (3D) analytical solution to the Richards equation, which takes as a basis a linear un-
saturated model that was previously proposed. Specifically, the partial differential equation governing the transient, unsaturated flow phenom-
enon could be solved when using specific constitutive hydraulic functions that linearize the problem. The new 3D analytical solution could
also be simplified to two-dimensional (2D) and one-dimensional (1D) analytical solutions, which make possible the evaluation of water flow
using the constraints relevant for field and experimental settings. Two general cases of transient moisture movement are simulated using the
new analytical solutions. The first case involves a wetting process, in which the flow within the soil mass is triggered by the initial presence of
a specific region within the domain that had been subjected to an increased volumetric water content (e.g., because of precipitation or irriga-
tion). In this case, water flows under unsaturated conditions from the region of increased moisture to the surrounding soil mass. The second
case involves the recovery of an unconfined soil mass (e.g., an aquifer) within which a limited region had been subjected to a decreased volu-
metric water content (e.g., because of a localized drying process). In this case, water flow occurs from the soil mass into the region character-
ized by an initially low moisture content. The solutions presented in the study can be implemented to address a broad range of applications,
providing insight into the complex phenomenon of soil wetting and drying. In particular, the solutions highlight the relative impact of the ad-
vective and diffusive components of unsaturated flow processes in multidimensional transient problems. DOI: 10.1061/(ASCE)GM.1943-
5622.0001461.© 2019 American Society of Civil Engineers.
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Introduction

The Richards equation is a relevant mathematical expression in soil
mechanics that governs the migration of moisture within porous
media, such as soil, under unsaturated conditions. Solutions to the
Richards equation can be particularly relevant in geotechnical and
geoenvironmental engineering applications involving unsaturated
soils. Several numerical solutions to the Richards equation have
been proposed in the technical literature to solve problems
involving transient unsaturated water flow (Wang and Dooge
1994; Basha 1999; Chen et al. 2003). However, mainly because
of the highly nonlinear form of the equation, only a few analytical
solutions were available (Warrick et al. 1991; Massabó et al.
2011; Chen and Liu 2011; Ozelim and Cavalcante 2013;
Guerrero et al. 2013; De Luca and Cepeda 2016; Bharati et al.
2017) to address problems with comparatively simple boundary
and initial conditions.

Because of the difficulty in finding analytical solutions, unsatu-
rated transient problems involving water flow within a soil mass

have been solved using numerical schemes in most cases. Although
feasible, the use of numerical approaches may entail high computa-
tional costs as well as possible mathematical errors in the numerical
predictions. In addition, numerical approaches require initial bench-
marking using closed-form analytical solutions to assess their
adequacy.

Cavalcante and Zornberg (2017a) proposed a formulation of the
Richards equation that resulted in a closed-form solution after iden-
tifying specific constitutive models that are capable of linearizing
the conservation equation. In particular, it became possible to find
analytical transient solutions, which proved particularly useful to
conduct parametric evaluations and to validate the accuracy of nu-
merical schemes.

The one-dimensional (1D) analytical and numerical solutions
obtained by Cavalcante and Zornberg (2017a, b) provided the ini-
tial analytical framework for further analytical developments.
Accordingly, the present paper proposes three-dimensional (3D)
analytical solutions to the Richards equation that are capable of
describing both the wetting and drying processes within an
unsaturated soil mass. The solutions presented in this paper are
expected to be particularly relevant for applications seeking mini-
mal computational effort to solve comparatively complex tran-
sient problems.

A commonly used 3D form of the Richards equation can be
expressed as

∂u
∂t

¼ ∂
∂x

kx cð Þ
rwg

∂c
∂x

� �
þ ∂
∂y

ky cð Þ
rwg

∂c
∂y

� �

þ ∂
∂z

kz cð Þ 1
rwg

∂c
∂x

� 1
� �� �

(1)

where u = volumetric water content of the soil [L−3L3]; kx, ky,
and kz = soil unsaturated hydraulic conductivity in the x-, y-, and
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z-directions [LT−1], respectively; c = soil suction [M L2 T−2];
rw = water specific mass [ML−1]; and g = acceleration of gravity
[L T−2].

The unsaturated hydraulic conductivity along a single dimension
is considered to vary with suction according to the following
expression (Cavalcante and Zornberg 2017a):

k cð Þ ¼ kse
�d c (2)

where ks = soil saturated hydraulic conductivity; and d = fitting hy-
draulic parameter [M−1LT2]. As described by Cavalcante and
Zornberg (2017a), the “delta” is a parameter that defines the shape
of the soil–water retention curve (SWRC) (it is proportional to its
initial slope) and of the K function (it is also proportional to its ini-
tial slope). Also, considering the model proposed by Cavalcante
and Zornberg (2017a), the soil suction is assumed to vary with the
soil volumetric water content as follows:

c uð Þ ¼ � 1
d
ln

u � u r

u s � u r

� �
(3)

where u = volumetric water content of the soil [L−3L3]; u s = satu-
rated volumetric water content of the soil [L−3L3]; and u r = residual
volumetric water content of the soil [L−3L3]. In the literature, one
can find descriptions of SWRCs with more complex models that
allow a physical description of soil properties with the least amount
of effort. Some of the commonly used analytical models of SWRC
in the literature are the Gardner (1958), Brooks and Corey (1964),
van Genuchten (1980), and Fredlund and Xing (1994) models. In
addition, models, such as Arairo et al (2012), can also represent hys-
teretic scanning curves. Using the hydraulic functions defined by
Eqs. (2) and (3), Cavalcante and Zornberg (2017a) could linearize
the Richards equation, which in its complete dimensional form can
be expressed as

∂u
∂t

¼ �Dx
∂2u
∂x2

þ �Dy
∂2u
∂y2

þ �Dz
∂2u
∂z2

� �as
∂u
∂z

(4)

with

�Dx ¼ ksx
rwg u s � u rð Þd (5)

�Dy ¼ ksy
rwg u s � u rð Þd (6)

�Dz ¼ ksz
rwg u s � u rð Þd (7)

�as ¼ ksz
u s � u rð Þ (8)

where ksx, ksy, and ksz = soil saturated hydraulic conductivity in
the x-, y-, and z-directions [LT−1], respectively; �Dx, �Dy, and �Dz =
unsaturated water diffusivity values in the x-, y-, and z-directions
[L2T−1], respectively; and �as = unsaturated advective seepage
[LT−1].

Ultimately, the nonlinear Richards equation [Eq. (1)] could
be formulated as Eq. (4), which corresponds to a linear, 3D par-
tial differential equation (PDE). This formulation can be used
to solve transient, unsaturated flow problems to predict the

changes in volumetric water content within a soil through space
and in time.

As a transient PDE, Eq. (4) defines the unsaturated flow
phenomenon within a specific domain. In addition, its solution
requires equations that govern the phenomenon within its boun-
daries and a third equation that defines the initial condition within
the domain.

The equations that define the phenomenon within the domain
must be established for each of the three dimensions of the problem.
For the z-direction, a Dirichlet boundary condition was adopted,
which involved a constant volumetric water content imposed at the
upper and lower boundaries of the domain. The equations that
define the boundary conditions of the problem under investigation
are

u x; y; 0; tð Þ ¼ u 0 (9)

u x; y; lz; tð Þ ¼ u 0 (10)

where lz = depth of the domain from the ground surface, with
0 � z � lz, and lz 2 <; u 0 2 <.

For the x-direction, the boundary conditions, indicating an imper-
meable boundary, are

lim
x!1

∂u x; y; z; tð Þ
∂x

¼ 0 (11)

lim
x!�1

∂u x; y; z; tð Þ
∂x

¼ 0 (12)

where the range of x corresponds to�1 < x < 1.
For the y-direction, the boundary conditions also correspond to

impermeable boundaries at infinitum, as follows:

lim
y!1

∂u x; y; z; tð Þ
∂y

¼ 0 (13)

lim
y!�1

∂u x; y; z; tð Þ
∂y

¼ 0 (14)

where the range of y corresponds to�1 < y < 1.
The equation adopted to define the initial condition in the prob-

lem under investigation can be mathematically expressed as

u x;y;z;0ð Þ¼ u i�u 0ð Þ H zð Þ�H z�bzð Þ� �
� H yþbyð Þ�H y�byð Þ½ �
� H xþbxð Þ�H x�bxð Þ½ �þu 0 (15)

where bx, by, and bz = length in the x-, y-, and z-directions.
The function H in Eq. (15) corresponds to the Heaviside func-

tion, which is defined as

H xð Þ ¼ 1þ sgn xð Þ
2

(16)

with

sgn xð Þ ¼
�1; if x < 0

0; if x ¼ 0

1; if x > 0

8>><>>: (17)

© ASCE 04019077-2 Int. J. Geomech.

 Int. J. Geomech., 2019, 19(7): 04019077 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
T

ex
as

 a
t A

us
tin

 o
n 

08
/1

8/
19

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



The initial condition can be represented as a cuboid within the
domain with a volumetric moisture content different from that of
the rest of the soil mass (Fig. 1). The volumetric water content
within the box is u i, and that for the rest of the domain it is u0. The
box may have a volumetric water content that is comparatively
higher or lower than that in the rest of the surrounding soil mass.
Thus, it is possible to simulate both drying and wetting processes,

as will be discussed in the first and second simulations, respectively,
for the 3D case evaluated in this study.

The solution of the transient unsaturated flow problem repre-
sented by Eq. (4), considering the boundary conditions represented
by Eq. (9) to Eq. (14), and the initial conditions characterized by
Eq. (15) could be solved using Fourier transforms. The explicit so-
lution to this PDEwas found to be

u x; y; z; tð Þ ¼ u 0 þ u i � u 0ð Þ
4

erf
bx � xffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dxt

p !
þ erf

bx þ xffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dxt

p !" #
erf

by � yffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dyt

p !
þ erf

by þ yffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dyt

p !" #

�
X1
n¼1

4�Dze
��asbz
2�Dz �2p �Dz n e

�asbz
2�Dz þ �aslz sin

pbzn
lz

� �
þ 2p �Dzn cos

pbzn
lz

� � !
�a2s l

2
z þ 4p 2 �D2

z n
2

2664
3775

� np cos
np
lz

bz

� �
þ lz �as

2�Dz
sin

np
lz

bz

� �" #
: exp �t

�a2s
4�Dz

þ
�Dzn2p 2

l2z

 !" #
: exp

�asz
2�Dz

� �
sin

np
lz

z
� �

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;

(18)

with

erf xð Þ ¼ 2ffiffiffiffi
p

p
ðx
0

e�t2dt (19)

Details on the derivation of the solution represented by Eq. (18)
are provided in the Appendix.

The analytical solution, originated on the unsaturated flow
model, has a relevant whole on simulations. The solution is capable
of estimating, with a high precision, the volumetric water content.
Thus, it can be implemented on several applications of software that
computes the water flow in a porous media. There is no doubt that
the computational cost for processing an analytical solution is

smaller than a numerical one. In addition, it is inherently more pre-
cise. Moreover, the analytical solution may be used to validate nu-
merical simulations. In other words, it can be used as a reference to
evaluate if a simulation was correctly run and if the numerical code
was correctly implemented.

The solution of the PDE presented in the paper was implemented
by the authors using Mathematica 11.3 using its functional pro-
gramming language,WolframMathematica.

Analytical Solution of 3D Transient, Unsaturated
Flow Problems

Two cases of transient moisture movement are evaluated using the
analytical solution to 3D problems represented by Eq. (18). The first

z

x

y
2bx

2by

bz

lz

2bxx
2b2bb2byyyybbb

bbzz

Fig. 1. Schematic representation of the initial condition.
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case involves a wetting process, in which unsaturated flow is trig-
gered by the presence of a cuboidal soil region with an initial volu-
metric water content that is higher than that in the rest of the do-
main. This case may correspond to a problem involving the local
release of water (e.g., from precipitation, pipe leakage, irrigation)
that resulted in a region within the soil mass characterized by a com-
paratively high initial volumetric moisture content in relation to that
of the surrounding soil mass. In this case, water is expected to flow
from the region of high moisture content to the surrounding soil
mass. The second case involves unsaturated flow triggered by the
presence of a cuboidal soil region with an initial volumetric water
content that is lower than that in the rest of the domain. This case
may correspond to the recovery of the recharge zone from an uncon-
fined aquifer in which a region had been subjected to a localized
drying process (e.g., caused by changes in vegetation or surface
water management). In this case, water is expected to flow from the
surrounding soil mass into the region characterized by low initial
volumetric moisture content.

The hydraulic characteristics of the soil adopted in the two 3D
problems are considered to be typical of sandy soils. Table 1
presents the soil hydraulic parameters adopted for the two cases
evaluated in this study. The values were selected in Table 1 consid-
ering the orders of magnitude that correspond to sandy soils. Also,
gw is the water unit weight.

Fig. 2 represents the unsaturated hydraulic function of the soil.
For cases in which the soil is isotropic, only one unsaturated hy-
draulic conductivity function needs to be described.

Fig. 3 is a representation of the SWRC, which is the graphical
form of Eq. (3). Only one SWRC is considered for the 3D problem

illustrated in this study because the soils are assumed to be isotropic.
Hysteresis was not considered in this study to simplify the mathe-
matical solution, although the model is able to reproduce the hyster-
esis of the scanning curves, as presented by Arairo et al. (2012).

Case I: 3D Simulation of a Wetting Process

In the first 3D illustrative simulation presented in this study, the ana-
lytical solution involves the presence of a region with compara-
tively high volumetric water content, which triggers wetting of the
rest of the soil mass. The initial condition defines this high-moisture
region as a box with dimensions of 4 m in width and length, and
0.5 m in height, as seen in Fig. 4. The volumetric water content in
this region is 0.50, whereas the rest of the domain has a volumetric
water content of 0.10 (Table 2). The total thickness of the soil layer
is 5 m.

It is possible to simulate the evolution of volumetric water con-
tent for several time periods using the parameters defined for
Case I. Fig. 5 illustrates the changes in volumetric water content
throughout the domain. Because the problem is symmetric in the x-
and y-directions, the two-dimensional (2D) images presented in
Figs. 5(a–d) illustrate the volumetric moisture content time history
for either the x = 0 or the y = 0 planes.

Moisture from the initial box-shaped region can be observed
to spread because of the diffusive nature of the phenomenon.
However, as given in Fig. 5(d), the moisture contours become less
rounded close to the lower boundary because of the limitation
imposed by the finite thickness of the soil layer. Additionally, the
center of the high-moisture region moves downward, which can be
observed in the movement of the darker portion in the figure.

Case II: 3D Simulation of a Drying Process

In the second 3D illustrative simulation, the analytical solution
involves the presence of a comparatively low volumetric water con-
tent, which triggers drainage out of the rest of the soil mass. The ini-
tial condition defines this low-moisture region as a box with dimen-
sions of 8 m in width and 2 m in length and height (Fig. 6). The
volumetric water content in this region is 0.10, whereas the rest of

Table 1. Soil hydraulic parameters adopted in the illustrative analyses

Parameters of the illustrative analyses Corresponding value

gw (kN/m3) 9.8
d 0.01
u s 0.61
ksx, ksy, ksz (m/s) 10–6

Dx, Dy, Dz (m
2/s) 1.7� 10–5

as (m/s) 1.67� 10–6

Fig. 2. Unsaturated hydraulic function of the soil.
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the domain has a volumetric water content of 0.50 (Table 3). The
total thickness of the soil layer is 5 m.

Fig. 7 illustrates the changes in volumetric water content through-
out the domain, considering the volumetricmoisture content time his-
tory for the y = 0 plane. On the other hand, Fig. 8 illustrates the time
history for the x = 0 plane.

Consistent with the results predicted for Case I, the center
of the low-moisture region moves downward, which can be
observed in the movement of the lighter portion in Figs. 7 and 8.
In this case, moisture from the region surrounding the initial
box-shaped region migrates into this region because of the
diffusive nature of the phenomenon, which results in the initially

Fig. 3. SWRC.

Fig. 4. Initial condition for the 3DCase I (wetting process).
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rectangular dry region to evolve into a less spread out, ovoid
region with time.

In terms of performance of the implemented solutions, a consist-
ent physical answer to the problem was typically achieved using 100
terms in the series. Additional terms were found not to considerably
add to the accuracy of the computed solutions. Although 3D simula-
tions are often characterized by requiring significant computational
cost, it took approximately 50 s to process the entire time-dependent
3D problem after running the code on a personal computer with rea-
sonably simple hardware specifications [4-GB RAM and a 2.6-GHz

dual core Intel central processing unit (CPU)]. As expected, however,
the reported processing time would vary with the actual hardware
used to conduct the simulations, with modern hardware and parallel
processing anticipated to significantly reduce the processing time.

Analytical Solution of 2D Transient, Unsaturated Flow
Problems: 2D Simulation of an Anisotropic Process
(Case III)

Cavalcante and Zornberg (2017a) proposed the linearization of the
Richards equation, which is shown in its 3D form in Eq. (4). However,
it is possible to simplify this formulation into a 2D form, as follows:

∂u
∂t

¼ �Dx
∂2u
∂x2

þ �Dz
∂2u
∂z2

� �as
∂u
∂z

(20)

Only one step is needed to find the 2D solution considering the
same boundary and initial conditions considered to obtain the 3D
solution. Specifically, the limit should be obtained for the solution
represented by Eq. (18) considering that by tends to infinity

Table 2. Soil hydraulic parameters of Case I

Parameters used to simulate Case I Corresponding value

u 0 0.10
u i 0.50
bx (m) 2
by (m) 2
bz (m) 0.5
lz (m) 5

(a) (b)

(c) (d)

Fig. 5. Volumetric water content for the 3Dwetting case for (a) t = 100 s; (b) t = 104 s; (c) t = 5.104 s; and (d) t = 105 s.
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[Eq. (20)], which implies that the phenomenon leads to the same
moisture content values for any value of y. That is

lim
by!1

u x; y; z; tð Þ ¼ u x; z; tð Þ (21)

Therefore, the solution corresponds to that obtained for a single
value of y. In this case, the solution can be represented in the x,
z-plane as

u x; z; tð Þ ¼ u 0 þ u i � u 0ð Þ
2

erf
bx � xffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dxt

p !
þ erf

bx þ xffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dxt

p !" #

�
X1
n¼1

4�Dze
��asbz
2�Dz �2p �Dz n e

�asbz
2�Dz þ �aslz sin

pbzn
lz

� �
þ 2p �Dzn cos

pbzn
lz

� � !
�a2s l

2
z þ 4p 2 �D2

z n
2

2664
3775

� npcos
np
lz

bz

� �
þ lz as
2Dz

sin
np
lz

bz

� �" #
exp �t

a2s
4Dz

þ Dzn2p 2

l2z

 !" #
exp

�asz
2�Dz

� �
sin

np
lz

z
� �

8>>>>>>>>>>><>>>>>>>>>>>:

9>>>>>>>>>>>=>>>>>>>>>>>;

(22)

The 2D simulation presented in this study involves using the
previously developed solution to analyze a 2D section of the 3D
solution. However, the opportunity is taken in this case to illus-
trate a case involving anisotropic conditions. Accordingly, the
hydraulic properties Case III are different in the x- and z-
directions. Specifically, the unsaturated hydraulic conductivity
functions considered in this case in the x- and z-directions are

those listed in Table 4 and illustrated in Figs. 9 and 10, respec-
tively. The SWRC is assumed to be the same as that adopted in
the 3D problems.

As presented in Table 4, the saturated hydraulic conductivity is
10 times bigger in the z-direction than that in the x-direction.
Table 5 presents other parameters adopted for the simulation of
Case III.

Fig. 6. Initial condition of 3DCase II.
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Fig. 11(a) illustrates the initial condition for Case III, whereas
Figs. 11(b–d) illustrate the volumetric moisture content time history
for the solution of this problem.

As illustrated by the predictions given in Fig. 11, the higher hy-
draulic conductivity in the x-direction leads to greater moisture
spread in the horizontal direction. On the other hand, the spread of

moisture in the vertical direction is shown to be comparatively less
significant.

Analytical Solution of 1D Transient, Unsaturated Flow
Problems: 1D Simulation (Case IV)

As with the considerations made to obtain the 2D solution as a
special case of the 3D one, it is possible to further simplify the 2D
solution to obtain a 1D solution. Although 1D solutions can be
obtained in either the x-direction or the z-direction, the solution is
presented in this study for the case of the 1D problem in the
z-direction because it is relevant to represent important infiltra-
tion phenomena. Thus, for the case in which bx tends to infinity,
as follows:

lim
bx!1

u x; z; tð Þ ¼ u z; tð Þ (23)

(a) (b)

(c) (d)

Fig. 7. Volumetric water content for the 3D drying case (plane y = 0) for (a) t = 0; (b) t = 103 s; (c) t = 104 s; and (d) t = 5.104 s.

Table 3. Soil hydraulic parameters of Case II

Parameters used to simulate Case II Corresponding value

u 0 0.50
u i 0.10
bx (m) 4
by (m) 1
bz (m) 2
lz (m) 5
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The solution represented by Eq. (21) for a case in which
bx tends to infinity corresponds to that obtained for a single value

of x. In this case, the solution can be represented along the z-axis
as follows:

u z; tð Þ ¼ u 0 þ u i � u 0ð Þ

�
X1
n¼1

4�Dze
��asbz
2�Dz �2p �Dz n e

�asbz
2�Dz þ �aslz sin

pbzn
lz

� �
þ 2p �Dzn cos

pbzn
lz

� � !
�a2s l

2
z þ 4p 2 �D2

z n
2

2664
3775

� np cos
np
lz

bz

� �
þ lz as
2Dz

sin
np
lz

bz

� �" #
exp �t

a2s
4Dz

þ Dzn2p 2

l2z

 !" #
exp

�asz

2�Dz

� �
sin

np
lz

z
� �

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
(24)

Case IV illustrates the use of the previously developed solution
for a 1D problem, similarly as previously done for the 2D and 3D
solutions. In this simulation, the unsaturated water flow in the

vertical direction is represented using the same unsaturated hydrau-
lic conductivity function and water retention curve as those used in
the 3D case for the z-direction (Table 1 and Figs. 2 and 3). The time

(a) (b)

(c) (d)

Fig. 8. Volumetric water content for the 3D drying case (plane x = 0) for (a) t = 0 s; (b) t = 103 s; (c) t = 104 s; and (d) t = 5.104 s.
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history of the soil volumetric water content is given in Fig. 12, in
which the initial condition is presented in Fig. 12(a).

Although it is mathematically unnecessary to do so, both the x-
and z-axes are represented in Fig. 12 to highlight the difference
between the 1D solution shown in this figure and the 3D solution
presented in Fig. 5.

When comparing the 3D and 1D solutions, it can be observed
that the maximum water volumetric content and the depth of the
zone with this maximum value (in the z-direction) are essentially
the same in the two solutions. On the other hand, the differences can
be obviously noted in the other directions. Also, the 1D solution
highlights the asymmetric nature of the unsaturated flow.
Specifically, the results in Fig. 12 illustrate that the gradient of
moisture content in the vertical direction, at a given time, is compa-
ratively higher above the region of maximum volumetric water con-
tent than below this region. This is consistent with the nature of un-
saturated flow, as described by the Richards equation. In other
words, the gravity-driven advective flow component plays a rele-
vant whole moving the water in the downward direction.

Fig. 9. Unsaturated hydraulic function in x for the 2D problem (Case III).

Table 4. Constitutive model parameters of the 2D simulation

Constitutive parameters used in the 2D simulation Corresponding value

d 0.01
ksx (m/s) 10–6

ksz (m/s) 10–7

Fig. 10. Unsaturated hydraulic function in z for the 2D problem (Case III).
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Conclusions

In this study, the analytical solutions were obtained for 3D transient
problems involving unsaturated flow into or out of a region with
comparatively higher or lower initial volumetric moisture content
than the rest of the domain. Determination of the analytical solution
was possible after adopting the models proposed by Cavalcante and
Zornberg (2017a) for the SWRC and the hydraulic conductivity
function. Specifically, selection of these hydraulic functions along

with inverse Fourier transforms allowed the determination of the
exact solution to the problem.

The obtained analytical formulation represents an exact and
explicit solution, which eliminates the propagation of errors caused
by discretization as well as problems associated with stability
and convergence of numerical solutions. The analytical solution is
expected to be particularly helpful in parametric evaluation studies
as well as in validation of numerical simulations conducted for
more complex boundary conditions and hydraulic functions.

The 3D solution could be simplified into 2D and 1D solutions.
A number of cases were provided to illustrate the type of prob-
lems that could be addressed using the new analytical solution.
They highlight the impact of the advective and diffusive compo-
nents of the Richards equation in transient unsaturated flow
problems.

Ultimately, the analytical expression developed in this study
provides an efficient solution with a required computational effort
significantly smaller than that required by numerical solutions. This
is expected to facilitate the use of unsaturated flow concepts in both
geotechnical research and engineering practice.

(a) (b)

(c) (d)

Fig. 11. Volumetric water content for the anisotropic 2D case for (a) t = 0; (b) t = 5.103 s; (c) t = 105 s; and (d) t = 2.5 106 s.

Table 5. Soil hydraulic parameters of the 2D simulation

Soil hydraulic parameters of the 2D simulation Corresponding value

u 0 0.10
u i 0.50
bx (m) 0.5
bz (m) 2
lz (m) 5

© ASCE 04019077-11 Int. J. Geomech.
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Appendix. PROBLEM Solution

Separation of the Problem Separation

The problem must be separated into two distinct ones to find its so-
lution. The first solution to be obtained is for the steady-state condi-
tion which, by definition, does not vary with time. The second prob-
lem involves obtaining the homogeneous solution, the boundaries
of which have null values. The problem can be algebraically
expressed as

u x; y; z; tð Þ ¼ u s x; y; z; tð Þ þ u h x; y; z; tð Þ (25)

where u s x; y; z; tð Þ = steady-state solution and u h x; y; z; tð Þ is the
homogeneous solution.

Steady-State Problem

The solution to steady-state problems, such as the one investigated
in this study, can be a trivial one because the requirement is to find a
solution that satisfies the boundary conditions and does not vary

with time. Inspection of the boundary conditions reveals that the
steady-state solution can be represented as

u s x; y; z; tð Þ ¼ u 0 (26)

where u 0 = moisture content at the boundary.

Homogeneous Problem

Once the steady-state solution has been identified, the homogeneous
problem can be complementarily defined. The PDE that governs the
main problem can be stated as the summation of each separate
solution

∂ u s þ u hð Þ
∂t

¼ �Dx
∂2 u s þ u hð Þ

∂x2
þ �Dy

∂2 u s þ u hð Þ
∂y2

þ �Dz
∂2 u s þ u hð Þ

∂z2
� �as

∂ u s þ u hð Þ
∂z

(27)

However, because the solution to the steady-state problem is a
constant, the PDE that governs the homogeneous problem can be
defined as

(a) (b)

(c) (d)

Fig. 12. Volumetric water content for (a) t = 0; (b) t = 103 s; (c) t = 25.103 s; and (d) t = 105 s.
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∂u h

∂t
¼ �Dx

∂2u h

∂x2
þ �Dy

∂2u h

∂y2
þ �Dz

∂2u h

∂z2
� �as

∂u h

∂z
(28)

Also, considering the boundary conditions in the z-direction of
the main problem, it is possible to verify that the boundary condi-
tions for the homogeneous problem are null, that is

u s x; y; 0; tð Þ þ u h x; y; 0; tð Þ ¼ u 0 (29)

u h x; y; 0; tð Þ ¼ 0 (30)

u h x; y; 0; tð Þ ¼ 0 (31)

u s x; y; lz; tð Þ þ u h x; y; lz; tð Þ ¼ u 0 (32)

u h x; y; lz; tð Þ ¼ 0 (33)

Along the x-direction, it should also be satisfied that at its limit,
the derivative tends to a null value, as follows:

lim
x!1

∂ u s x; y; z; tð Þ þ u h x; y; z; tð Þ½ �
∂x

¼ 0 (34)

lim
x!1

∂u h x; y; z; tð Þ
∂x

¼ 0 (35)

lim
x!�1

∂ u s x; y; z; tð Þ þ u h x; y; z; tð Þ½ �
∂x

¼ 0 (36)

lim
x!�1

∂u h x; y; z; tð Þ
∂x

¼ 0 (37)

As with the x-axis, the boundary conditions for the y-axis are
also null

lim
y!1

∂u h x; y; z; tð Þ
∂y

¼ 0 (38)

lim
y!�1

∂u h x; y; z; tð Þ
∂y

¼ 0 (39)

Consequently, the initial condition of the homogeneous problem
can be determined using the initial condition of the main problem
minus the steady-state solution, as follows:

u h x; y; z; 0ð Þ ¼ u i � u 0ð Þ H zð Þ � H z� bzð Þ� �
H yþ byð Þ½

�H y� byð Þ� H xþ bxð Þ � H x� bxð Þ½ � (40)

Subdivisions on the Homogeneous Problem

The homogeneous solution can be stated as the product of three
functions that have one spatial and temporal independent variable
each

u h x; y; z; tð Þ ¼ f x; tð Þk y; tð Þg z; tð Þ (41)

Therefore, substituting Eq. (41) into Eq. (4), the following for-
mulation of the PDE is possible:

1
f
∂f
∂t

þ 1
k
∂k
∂t

þ 1
g
∂g
∂t

¼ �Dx
∂2f
∂x2

1
f
þ �Dy

∂2k
∂x2

1
k
þ �Dz

∂2g
∂z2

1
g
� �as

∂g
∂z

1
g

(42)

Solution for f (x,t)

Because all spatial variables (x, y, and z) have no mutual depend-
ence, it is possible to split Eq. (42) into three PDEs. The first PDE
depends on x and t alone, and it can be expressed as

∂f x; tð Þ
∂t

¼ �Dx
∂2f x; tð Þ
∂x2

(43)

The boundary conditions of f(x,t) can also be specified by com-
bining Eqs. (11) and (12) with Eq. (41), as follows:

lim
x!1 k y; tð Þg z; tð Þ ∂f x; tð Þ

∂x
¼ 0 (44)

Considering that k(y,t) and g(z,t) are not trivial solutions yields
the following:

lim
x!1

∂f x; tð Þ
∂x

¼ 0 (45)

The initial condition of f(x,t) can also be obtained by combining
Eqs. (40) and (41), as follows:

f x;0ð Þk y;0ð Þg z;0ð Þ ¼ u i�u 0ð Þ½HðzÞ�Hðz�bzÞ� H yþbyð Þ½
�H y�byð Þ� H xþbxð Þ�H x�bxð Þ½ � (46)

It should be noted that the last factor of Eq. (46) is a function of x
alone. All other factors, except for the first one, depend on other var-
iables. Thus, the initial condition of f(x,t) can be defined as

f x; 0ð Þ ¼ H xþ bxð Þ � H x� bxð Þ (47)

The Fourier transform (F) should be used to find a solution for
f (x,t). The Fourier transform is an integral transformation capable
of mapping a region with boundaries in the infinitum. In this case,
the variable x is mapped to the variablew, as follows:

∂bf w; tð Þ
∂t

¼ �w2 �Dx
bf w; tð Þ (48)

Considering the following:

bf w; tð Þ ¼ C wð Þ eλt (49)

Eq. (48) can be rewritten as

λC wð Þ eλt ¼ �w2 �Dx C wð Þ eλt (50)

This implies that l can be expressed as

λ ¼ �w2 �Dx (51)

Therefore, bf w; tð Þ can be written as a combination of Eqs. (49)
and (51)

bf w; tð Þ ¼ C wð Þ e�w2 �Dxt (52)
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It is known that bf w; 0ð Þ is the Fourier transform of f x; 0ð Þ

bf w; 0ð Þ ¼
ffiffiffiffi
2
p

r ð1
�1

f s; 0ð Þeiws ds (53)

Consequently, by combining Eqs. (49) and (53), the following
expression forC wð Þ can be obtained:

C wð Þ ¼
ffiffiffiffi
2
p

r ð1
�1

f s; 0ð Þeiws ds (54)

Therefore, bf w; tð Þ can be expressed as a combination of Eqs.
(49) and (54)

bf w; tð Þ ¼
ffiffiffiffi
2
p

r ð1
�1

f s; 0ð Þeiws dsekt (55)

The following expressions can be reached by applying the
inverse Fourier transform to Eq. (55):

F�1 bf w; tð Þ
h i

¼ F�1

ffiffiffiffi
2
p

r ð1
�1

f s; 0ð Þeiws dse�w2Dxt

" #
(56)

Regarding integrals

f x; tð Þ ¼
ffiffiffiffi
2
p

r ð1
�1

ffiffiffiffi
2
p

r ð1
�1

f s; 0ð Þeiws dse�w2Dxt e�iwx dw (57)

Separating the integrals from Eq. (57) yields the following:

f x; tð Þ ¼ 2
p

ð1
�1

f s; 0ð Þ
ð1
�1

e�w2Dxt eiw s�xð Þ dw
� �

ds (58)

Solving the last integral of Eq. (58) yields the following:

f x; tð Þ ¼
ffiffiffiffi
p

pffiffiffiffiffiffiffi
4p

p ffiffiffiffiffiffiffiffi
�Dx t

p ð1
�1

f s; 0ð Þe� s�xð Þ2
4�Dxt ds (59)

By substituting the initial condition of Eq. (47) into Eq. (59),
f(x,t) can be modified to

f x; tð Þ ¼
ffiffiffiffi
p

pffiffiffiffiffiffiffi
4p

p ffiffiffiffiffiffiffiffi
�Dx t

p ð1
�1

H sþ bxð Þ � H s� bxð Þ½ �e� s�xð Þ2
4�Dxt ds

(60)

Therefore, by solving the integral of Eq. (60), the solution of
f(x,t) can be found, which is expressed as

f x; tð Þ ¼ 1
2

erf
bx � xffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dxt

p !
þ erf

bx þ xffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dxt

p !" #
(61)

where erf is the error function, defined as

erf xð Þ ¼ 2ffiffiffiffi
p

p
ðx
0
e�t2 dt (62)

Solution for k(y,t)

As previously stated, and because all spatial variables (x, y, and z)
are not mutually dependent, Eq. (42) can be split into three PDEs.

The second PDE depends on y and t alone, and it can be expressed
as

∂k y; tð Þ
∂t

¼ �Dy
∂2k y; tð Þ
∂y2

(63)

The boundary conditions of k(y,t) can also be specified by com-
bining Eqs. (13), (14), and (63) as

lim
y!1 f x; tð Þg z; tð Þ ∂k y; tð Þ

∂y
¼ 0 (64)

Considering that f(x,t) and g(z,t) are not trivial solutions, it can
be stated that

lim
y!1

∂k y; tð Þ
∂y

¼ 0 (65)

Note that the third factor of Eq. (46) is a function of y alone. All
other terms, except for the first, depend on other variables. Thus, the
initial condition for k(y,t) can be defined as

k y; 0ð Þ ¼ H yþ byð Þ � H y� byð Þ (66)

It should be noted that all equations that define f(x,t) are the same
as those defining k(y,t), but with f in place of k and x in place of y.
Therefore, the same steps of the Fourier transform used to find f(x,t)
can be followed to find k(y,t). Consequently, k(y,t) can be expressed
as

k y; tð Þ ¼ 1
2

erf
by � yffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dyt

p !
þ erf

by þ yffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dyt

p !" #
(67)

The third and last PDE that can be obtained from Eq. (42)
depends only on z and t, and it is expressed as

∂g z; tð Þ
∂t

¼ �Dz
∂2g z; tð Þ

∂z2
� �as

∂g z; tð Þ
∂z

(68)

Additionally, the boundary condition initially determined by
Eq. (9) can be written as

f x; tð Þk y; tð Þg 0; tð Þ ¼ 0 (69)

Knowing that f and k are nonnull functions, it is possible to
express the initial condition as

g 0; tð Þ ¼ 0 (70)

By combining Eqs. (10) and (41), it is also possible to define the
other boundary condition, as

f x; tð Þk y; tð Þg lz; tð Þ ¼ 0 (71)

As with the previously discussed boundary conditions, it is pos-
sible to state that the value of lz is equal to

g lz; tð Þ ¼ 0 (72)

All terms of Eq. (46) that do not depend on variables other than z
determine the initial condition, as

g z; 0ð Þ ¼ u i � u 0ð Þ H zð Þ � H z� bzð Þ� �
(73)
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Eq. (80) must be factorized into two independent functions to
find the mathematical expression of g(z,t), such as

g z; tð Þ ¼ u zð Þ v tð Þ (74)

Therefore, it is possible to describe the PDE represented by
Eq. (68) using Eq. (74), and dividing by u zð Þ v tð Þ yields the
following:

v0 tð Þ
v tð Þ ¼ �Dz

u00 zð Þ
u zð Þ � �as

u0 zð Þ
u zð Þ (75)

Solution for u(z)

Once u depends only on z, it is possible to restate Eq. (75) as

�Dz
u00 zð Þ
u zð Þ � �as

u0 zð Þ
u zð Þ ¼ λ (76)

Therefore, u zð Þ can be generically described as
u zð Þ ¼ c1e

c2z; c1; c2 2 < (77)

Solving Eq. (77) yields the following:

�Dzc
2
2 � �as c2 � λ ¼ 0 (78)

By isolating c2 and considering that �a2s þ 4 �Dz λ < 0, the follow-
ing expression can be reached:

c2 ¼ k1 6 i k2 (79)

where

k1 ¼ �as
2 �Dz

(80)

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�a2s þ 4�Dz λj

p
2�Dz

(81)

Considering Eqs. (77) and (79), u zð Þ can be described as

u zð Þ ¼ a1e
k1z sin k2 zð Þ þ a2e

k1z cos k2 zð Þ (82)

Substituting z ¼ 0 into Eq. (82) yields the following:

u 0ð Þ ¼ a1 � 0þ a2 � 1 (83)

Considering Eqs. (73) and (74), as well as that h tð Þ is nonnull, it
can be concluded that g 0; tð Þ ¼ u 0ð Þ. Consequently, it can be stated
that

a2 ¼ 0 (84)

Considering z ¼ lz in Eq. (82) yields the following:

u lzð Þ ¼ a1e
k1lz sin k2 lzð Þ (85)

However, by combining Eqs. (72) and (85) it is possible to reach
the following expression:

sin k2 lzð Þ ¼ 0 (86)

This is true for the following values of k2:

k2 ¼ np
lz

(87)

Thus, considering Eqs. (79) and (87), λ can be determined as

λ ¼ � a2s
4Dz

� Dzn2p 2

l2z
(88)

Last, u zð Þ can be described using Eqs. (85) and (87), as

u zð Þ ¼ a1e
k1z sin

np
lz

z
� �

(89)

Solution for v(t)

To find a solution for v tð Þ it is necessary to consider it as a function
of the form

v tð Þ ¼ b1e
b2t; b1; b2 2 < (90)

Therefore, by combining Eqs. (85) and (75), it can be concluded
that the value of b2 is necessarily equal to

b2 ¼ λ (91)

Thus, v tð Þ can be expressed as
v tð Þ ¼ b1e

λt (92)

To find g z; tð Þ it is necessary to multiply u zð Þ and v tð Þ, such as

g z; tð Þ ¼ Cn e
λt ek1z sin

np
lz

z
� �

; Cn 2 < (93)

However, Cn is not yet determined, and the initial condition of
Eq. (73) must be used to find this value, as

g z; 0ð Þ ¼ Cn e
k1z sin

np
lz

z
� �

(94)

By combining Eqs. (73) and (94), the following expression can
be found:

Cn sin
np
lz

z
� �

¼ e�k1z u i � u 0ð Þ H zð Þ � H z� bzð Þ� �
(95)

Consequently, the Fourier series that describes the required
value forCn can be defined as

Cn ¼ 2
lz

ðlz
0
e�k1z u i � u 0ð Þ H zð Þ � H z� bzð Þ� �

sin
np
lz

z
� �

dz

(96)

By solving the integral of Eq. (96), Cn, the following can be
determined:

Cn ¼
4�Dze

��asbz
2�Dz �2p �Dzne

�asbz
2�Dz þ �aslz sin

pbzn
lz

	 

þ 2p �Dzn cos

pbzn
lz

	 
� �
�a2s l

2
z þ 4p 2 �D2

z n
2

(97)

Having obtained all functions that compose u h, the homogene-
ous solution can be described as
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u h x; y; z; tð Þ

¼ u i � u 0ð Þ
4

erf
bx � xffiffiffiffiffiffiffiffiffiffi
4p t

p
� �

þ erf
bx þ xffiffiffiffiffiffiffiffiffiffi
4p t

p
� �� �

� erf
by � yffiffiffiffiffiffiffiffiffiffi
4p t

p
� �

þ erf
by þ yffiffiffiffiffiffiffiffiffiffi
4p t

p
� �� �X1

n¼1

Cn e
λt ek1z sin

np
lz

z
� �

(98)

Finally, to obtain the solution of u , the homogeneous and
steady-state solutions must be added together [Eqs. (98) and (26)],
as follows:

u x; y; z; tð Þ

¼ u 0 þ u i � u 0ð Þ
4

erf
bx � xffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dxt

p !
þ erf

bx þ xffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dxt

p !" #

� erf
by � yffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dyt

p !
þ erf

by þ yffiffiffiffiffiffiffiffiffiffiffiffiffi
4p �Dyt

p !" #

�
X1
n¼1

Cn e
λt ek1z sin

np
lz

z
� �� �

(99)
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