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Abstract: Richard’s equation governs the migration of moisture in the soil under unsaturated conditions. Although this differential equation
provides a rigorous approach to simulating important infiltration problems, obtaining analytical and numerical solutions to this equation has
been a particularly challenging task. This is largely due to the highly nonlinear nature of the soil hydraulic properties, including the moisture
retention curve and the hydraulic conductivity function. Whereas analytical solutions of Richard’s equation have been reported for problems
involving steady-state conditions and simple hydraulic models, solutions for transient conditions have rarely been obtained. However, such an-
alytical solutions would be particularly valuable, for example, to validate the accuracy of numerical schemes, as well as to facilitate parametric
evaluations. A series of analytical solutions of Richard’s equation for unsaturated flow under transient conditions have been developed as part
of this study. The solutions involve a variety of initial and boundary conditions. The analytical solutions in this study could be obtained after
expressing the governing equation as the addition of advective and diffusive flow components. The solutions consider logarithmic and linear
models to represent the soil moisture retention and the hydraulic conductivity functions, respectively. Solutions are also provided for special
cases in which either the advective or the diffusive components dominate the flow process, as well as for the steady-state cases. A parametric
evaluation was found to provide insight into important characteristics of infiltration problems. In particular, relevant features of an unsaturated
flow problem can be explained by evaluating the trends in its advective and diffusive flow components. DOI: 10.1061/(ASCE)GM.1943-
5622.0000875.© 2017 American Society of Civil Engineers.
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Introduction

Richard’s equation, which governs the migration of moisture in the
soil under unsaturated conditions, results after assuming the validity
of Darcy’s law and continuity of flow. Although this partial differ-
ential equation represents a rigorous approach to simulate important
infiltration problems, analytical solutions to Richard’s equation
have been particularly challenging to obtain. This is largely due to
the highly nonlinear nature of the hydraulic properties of unsatu-
rated soils, including the moisture retention curve and the hydraulic
conductivity function.

Although analytical solutions of Richard’s equation have been
reported for problems involving steady-state conditions and simple
hydraulic models, analytical solutions for transient conditions have
usually required the use of approximate approaches that incorpo-
rated simplified assumptions (Philip 1960; Sander et al. 1988;
Hogarth et al. 1989, 1992; Parlance et al. 1992; Parlange et al. 1997;
Ross and Parlange 1994; Hogarth and Parlange 2000; Dell’Avanzi
et al. 2004; Rathie et al. 2012; Cavalcante et al. 2013; Swamee et al.
2014). In the few reported studies in which exact solutions for tran-
sient conditions have been provided, the equations were presented

using integral forms, which generally require the use of numerical
approaches for their use (Wang and Dooge 1994; Basha 1999; Chen
et al. 2001, 2003). Obtaining closed-form solutions to Richard’s
equation would be particularly valuable to (1) facilitate parametric
evaluations, and (2) validate the accuracy of numerical schemes by
allowing comparisons between analytical solutions and numerical
predictions.

This paper presents the development of a series of analytical sol-
utions to Richard’s equation for unsaturated flow problems under
transient conditions. The solutions involve a variety of boundary
conditions, including imposing a constant moisture content to the
upper boundary of a soil column (semi-infinite and finite-length
cases) as well as imposing a constant discharge velocity to the upper
boundary of a soil column (semi-infinite and finite-length cases).

As is presented in the paper, the analytical solutions obtained in
this study could be derived after expressing the governing equation
as the addition of advective and diffusive flow components. In fact,
the proposed formulation allows the study of problems where the
advective and diffusive flow components are coupled, as well as
problems that can be simplified if the flow process is dominated by
only one of the two flow components. Solutions are also provided
for the steady-state cases.

General Framework for Solving Richard’s Equation

The three-dimensional (3D) partial differential equation describing
unsaturated, transient flow under a natural gravitational field can be
derived by considering the validity of Darcy-Buckingham’s law
and the conservation of mass.

The mass inflow rate of fluids (e.g., water) [ _min (MT−1)] into a
representative elementary volume (REV) with dimensions dx, dy,
and dz can be represented as
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_min ¼ vxrwðdzdyÞ þ vyrwðdxdzÞ þ vzrwðdxdyÞ (1)

where rw = fluid density (ML−3); and vx, vy, and vz = discharge
velocities in the x-, y-, and z-directions (LT−1), respectively. Also,
the total mass outflow rate leaving the REV [ _mout (MT−1)], can be
represented as

_mout ¼ rwvx þ
∂ rwvxð Þ

∂x
dx

� �
dzdyþ rwvy þ

∂ rwvyð Þ
∂y

dy

� �
dxdz

þ rwvz þ
∂ rwvzð Þ

∂z
dz

� �
dxdy (2)

The rate of change in water storage within the REV [ _mstorage

(MT−1)], is given by

_mstorage ¼ ∂ rwuð Þ
∂t

dxdydz (3)

where u = volumetric water content (L3L−3); and t = time (T).
For fluids that are incompressible (i.e., rw constant in time) and

homogeneous (i.e., rw constant in space), the continuity principle
implies that the difference between the mass inflow and outflow
rates should equal the rate of change in water volume storage.
Using Eqs. (1)–(3), this principle results in

∂u
∂t

¼ � ∂vx
∂x

� ∂vy
∂y

� ∂vz
∂z

(4)

The flow rate per unit of area (discharge velocity) in each direc-
tion can be defined using Darcy-Buckingham’s law (Buckingham
1907; Narasimhan 2004), which is the unsaturated version of
Darcy’s law, as follows:

vx ¼ � kx cð Þ
g

∂U
∂x

(5)

vy ¼ � ky cð Þ
g

∂U
∂y

(6)

vz ¼ � kz cð Þ
g

∂U
∂z

(7)

where c = soil suction (using atmospheric pressure as reference)
(ML−1T−2); and kx(c ), ky(c ), and kz(c ) = hydraulic conductivity
functions (k-functions) expressed in terms of c in the x-, y-, and z-
directions (LT−1), respectively. The variable U corresponds to the
fluid potential (i.e., energy per unit mass of fluid) in the REV, which
is defined as

U ¼ �gzþ c

rw
(8)

where g = acceleration of gravity (LT−2); and z = elevation above a
datum (L).

Considering Eq. (8) in Eqs. (5)–(7), the discharge velocity in
each direction can be rewritten as

vx ¼ kx cð Þ
rwg

∂c
∂x

(9)

vy ¼ ky cð Þ
rwg

∂c
∂y

(10)

vz ¼ kz cð Þ
rwg

∂c
∂z

� kz cð Þ (11)

It should be noted that, as reported by Biot (1941), the continuity
equation for water is expressed in terms of absolute velocities [Eq.
(4)]. However, Darcy-Buckingham’s law [Eqs. (9)–(11)] uses rela-
tive velocities of water (in relation to the solid particles).
Consequently, an implicit assumption made in the formulation pre-
sented herein is that the solid particles do not move (i.e., relative
water velocities equal the absolute velocities). This assumption,
also adopted by Terzaghi (1943) along with multiple other formula-
tions, has been found to be satisfactory for most geotechnical
applications.

It should be noted that the formulation solved analytically in
the paper does not address volumetric changes, which are particu-
larly relevant in unsaturated soil mechanics. Important problems
that are beyond the scope of this paper include, for example, met-
astable soil structures that collapse as a result of a gradual reduc-
tion in matric suction, soils with a stable structure that swell when
the matric suction decreases, and the hysteretic response of water
retention.

The formulation presented in this paper assumes that the flow of
water occurs in an unsaturated porous medium where the volumet-
ric changes are negligible. Consequently, the soil porosity can be
considered constant. This behavior is common in cemented soils
developed in arid to subhumid climates.

Considering Eqs. (9)–(11) into Eq. (4) leads to the 3D version of
Richard’s equation unsaturated transient flow, as follows:

∂u
∂t

¼ ∂
∂x

kx cð Þ
rwg

∂c
∂x

� �
þ ∂
∂y

ky cð Þ
rwg

∂c
∂y

� �

þ ∂
∂z

kz cð Þ 1
rwg

∂c
∂z

� 1
� �� �

(12)

Accordingly, the model presented in Eq. (12) assumes that all
changes in u occur in the water retention due to changes in the
degree of saturation (i.e., the porosity of the soil remains essentially
constant during any wetting/drying paths). Because the model pre-
sented in this study is one-dimensional, it applies, for example, to
experimental column tests, where the porosity of the soil remains
constant during the test.

Because u and c in Eq. (12) are dependent variables, it is
more convenient to express this equation in terms of either c ¼
f ðu Þ or u ¼ f�1ðc Þ. In this paper, the differential equation is
solved using u as an independent variable. As is subsequently
discussed, the unsaturated flow differential equation that results
after adopting u as an independent variable can be ultimately pre-
sented using terms that are analogous to those of the advection-
dispersion contaminant transport differential equation. This anal-
ogy is convenient, as analytical solutions (for simple initial and
boundary conditions) as well as well-established numerical
schemes (for more complex conditions) have been studied for the
advection-dispersion equation.

The use of u as an independent variable can be achieved by
replacing @c /@x, @c /@y, and @c /@z with (@c /@u )(@u /@x),
(@c /@u )(@u /@y), and (@c /@u )(@u /@z), respectively, in Eq. (12).
The resulting equation can be expressed using the unsaturated water
diffusivity [Dx,Dy, andDz (L

2T−1)], which can be defined as

© ASCE 04017013-2 Int. J. Geomech.



Dx uð Þ ¼ kx uð Þ
rwg

∂c
∂u

(13)

Dy uð Þ ¼ ky uð Þ
rwg

∂c
∂u

(14)

Dz uð Þ ¼ kz uð Þ
rwg

∂c
∂u

(15)

where kx(u ), ky(u ), and kz(u ) = hydraulic conductivity functions
(k-functions) expressed in terms of u in the x-, y-, and z-directions
(LT−1); and the term @c /@u , which has often been defined as the
specific water capacity, is the reciprocal of the slope of the soil
water retention curve (SWRC). The specific water capacity is
highly sensitive to the soil type, soil placement conditions, and wet-
ting path. The specific water capacity ranges from –1 (i.e., a verti-
cal trend in the SWRC) to 0 (i.e., a horizontal trend).

Using Eqs. (13)–(15) in Eq. (12), the following u -based version
of Richard’s equation can then be obtained

∂u
∂t

¼ ∂
∂x

Dx uð Þ ∂u
∂x

� �
þ ∂
∂y

Dy uð Þ ∂u
∂y

� �

þ ∂
∂z

Dz uð Þ ∂u
∂z

� �
� ∂kz uð Þ

∂z
(16)

Eq. (16) can referred to as the Fokker-Planck equation (Philip
1969; Bear 1979). For the case of a one-dimensional unsaturated
flow in the z-direction, Eq. (16) results in

∂u
∂t

¼ ∂
∂z

Dz uð Þ ∂u
∂z

� �
� ∂kz uð Þ

∂z
(17)

Eq. (17) is the one-dimensional, u -based Richard’s equation. In
this paper, a more convenient form of this equation is used, which is
obtained by replacing @kz/@z with (@kz/@u )(@u /@z) in Eq. (17) as
follows:

∂u
∂t

¼ ∂
∂z

Dz uð Þ ∂u
∂z

� �
� as uð Þ ∂u

∂z
(18)

where

as uð Þ ¼ ∂kz uð Þ
∂u

(19)

where as(u ) = unsaturated advective seepage. Physically, as(u ) cor-
responds to the slope of the k-function when expressed in terms of
u (Fig. 1), and consequently, it has units of velocity (LT−1).

A benefit of solving Richard’s equation using u as the independ-
ent variable is that the unsaturated water diffusivity (Dz) does not
vary with u nearly as much as the unsaturated hydraulic conductiv-
ity (kz) varies with c . In addition, the function expressing the hy-
draulic conductivity in terms of volumetric water content (kz(u ))
has been reported to show less hysteresis, if any, than the kz(c )
function (Hillel 2004). A potential disadvantage of this approach is
that its implementation may be more problematic to simulating flow
in soils with a high degree of saturation because Dz tends to infinity
under saturated conditions (i.e., @u /@c tends to 0). However, an
additional important advantage of adopting u as the independent
variable and using the unsaturated advective seepage [as(u )] is that

the resulting Eq. (18) is analogous to the advection-dispersion con-
taminant transport differential equation. Accordingly, the terms in
Eq. (18) can be thought of as corresponding to advective and diffu-
sive components of an unsaturated flow process. The advective
component corresponds to the flow of water advancing via gravita-
tional, advective-like (bulk) motion within the porous medium. In
contrast, the diffusive component corresponds to flow of water
spreading in a (diffusive-like) motion. Because Eq. (18) involves
three unknowns (u , kz, and c ), its solution requires two additional
relationships. These relationships have often been established
experimentally to define, for example, the unsaturated hydraulic
conductivity (kz) and the volumetric water content (u ) in terms of
suction (c ).

Considering the analogy that can be established between Eq.
(18) and the advection-dispersion contaminant transport equation,
the overall unsaturated flow can be grouped into advective and dif-
fusive flow components (Appendix I). Advective flow corresponds
to the unsaturated flow component that is driven by gravitational (or
potential) energy, as follows:

fadvðz; tÞ ¼ asðu Þ � u (20)

where fadv = advective flow component of the overall unsaturated
flow process (LT−1). In contrast, the diffusive flow corresponds to
the spreading of moisture that is driven by gradients in volumetric
water content (and, consequently, by gradients in suction). This can
be represented as follows:

fdif z; tð Þ ¼ �Dz uð Þ ∂u
∂z

(21)

where fdif = diffusive flow component of the overall unsaturated
flow process (LT−1).

Analytical Solutions of Transient Unsaturated
Flow Problems

A limited number of closed-form analytical solutions to the highly
nonlinear Richard’s equation have been reported in the literature.
Solutions for transient condition problems have used integral forms,
which generally require numerical approaches for their implemen-
tation [e.g., Fityus and Smith (2001); Ghotbi et al. (2011); Huang
and Wu (2012)]. The majority of the reported solutions have been
for cases involving the much simpler steady-state conditions [e.g.,
Gardner (1958); Yeh (1989); Tartakovsky et al. (1999); Zhu and
Mohanty (2002); Chen and Gallipoli (2004); Dell’Avanzi et al.
(2004)].

In this paper, analytical closed-form solutions were developed
for Richard’s equation for the case of transient flow conditions.
This was achieved by adopting particular relationships to represent

kz θθ

θ

as

Fig. 1. Physical interpretation of unsaturated advective seepage
[as(u )]
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the SWRC and k-function in the general unsaturated flow frame-
work expressed by Eq. (18). Specifically, the adopted hydraulic
functions involve a logarithmic relationship between suction and
volumetric water content [c (u )] and a linear relationship between
unsaturated hydraulic conductivity and volumetric water content
[kz(u )]. Accordingly, c (u ) is represented by

c uð Þ ¼ 1
d
ln

u � u r

u s � u r

� �
(22)

where u s = volumetric water content at saturation (L3/L3); u r = re-
sidual volumetric water content (L3/L3); and d = fitting hydraulic
parameter (M−1LT2). The difference between u s and u r has often
been referred to as the soil moisture capacity. In contrast, the unsat-
urated hydraulic conductivity [kz(u )] is represented by

kz uð Þ ¼ ks
u � u r

u s � u r

� �
(23)

where ks = saturated hydraulic conductivity of the soil (L/T).
Fig. 2(a) illustrates the effect of varying the hydraulic parameter

d on the SWRC represented by Eq. (22), whereas Fig. 2(b) shows
the effect of varying the parameter d on the k-function represented
by Eq. (23). The curves in Fig. 2 were generated using values of 0.3,
0.03, and 0.003 kPa−1 for the hydraulic parameter d . The parame-
ters u r, u s, and ks adopted for the curves in this figure are 0.04, 0.41,
and 8.2� 10−7 m/s, respectively. The results in Fig. 2 illustrate that

the magnitude of parameter d significantly affects the air-entry
pressure of the soil.

It can be demonstrated (Appendix II) that the hydraulic parame-
ter d is proportional to the initial slope of the SWRC (i.e., the slope
at saturation). Fig. 3 illustrates the physical interpretation of param-
eters u r, u s, and d on the SWRC.

Aditionally, it can be demonstrated (Appendix II) that the hy-
draulic parameter d is also proportional to the initial slope of the k-
function (i.e., the slope at saturation). Fig. 4 illustrates the physical
interpretation of parameters ks and d on the k-function.

An important consequence of adopting the unsaturated hydraulic
relationships represented by Eqs. (22) and (23) is that the hydraulic
parameters Dz(u ) [Eq. (15)] and as(u ) [Eq. (19)] become constants.
Specifically, the resulting hydraulic parameters are

�Dz ¼ ks
d u s � u rð Þrwg

(24)

�as ¼ ks
u s � u rð Þ (25)

where �Dz = constant unsaturated water diffusivity in the z-direction;
and �as = constant unsaturated advective seepage, as obtained when
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Fig. 2. (Color) Sensitivity of hydraulic parameter (d ): (a) SWRC; (b)
k-function (u r = 0.04, u s = 0.41, and ks = 8.2� 10−7 m/s)

Fig. 3. (Color) Physical representation of parameters d , u s, and u r in a
SWRC (d = 0.3 kPa−1, u s = 0.41, u r = 0.04)

Fig. 4. (Color) Physical representation of parameters d and ks in a k-
function (d = 0.3 kPa−1, ks = 8.2� 10−7 m/s)
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c (u ) and kz(u ) are represented by logarithmic and linear relation-
ships, respectively.

For the adopted hydraulic relationships [Eqs. (22) and (23)],
Richard’s equation [Eq. (18)] can then be represented as

∂u
∂t

¼ �Dz
∂2u
∂z2

� �as
∂u
∂z

(26)

For steady-state conditions, Eq. (26) becomes

�Dz
d2u
dz2

� �as
du
dz

¼ 0 (27)

In summary, the general framework for unsaturated flow eval-
uated in this study is represented by Eq. (18) for the general case,
where Dz(u ) and as(u ) are (often highly nonlinear) functions of u .
In contrast, a general unsaturated flow problem results in a much
simpler one represented by Eq. (26), where �Dz and �as are constant
values. A notable characteristic of Eq. (26) is its analogy to the
advection-dispersion contaminant transport equation

∂c
∂t

¼ Dh
∂2c
∂z2

� vs
∂c
∂z

(28)

where c = concentration of a solute (ML−3) as a function of space
(z) and time (t). As in the case of Eq. (26), the relevant parameters in
Eq. (28) are constants. Specifically, the constant Dh is the coeffi-
cient of longitudinal hydrodynamic dispersion (L2/T), and the con-
stant vs is the average linear velocity (L/T).

Mathematical techniques previously used to solve the advection-
diffusion equation with constant parameters (e.g., Fourier series,
Laplace transformations) were used in this study to solve the unsatu-
rated flow differential equation represented by Eq. (26). These tech-
niques have been previously reported in the technical literature for
the case of problems involving contaminant transport processes
[e.g., Mason and Weaver (1924); Lapidus and Amundson (1952);
Ogata and Banks (1961); Lindstrom et al. (1967); Gershon and Nir
(1969); Cleary and Adrian (1973); Jaiswal et al. (2011); Cavalcante
and Farias (2013)].

Solutions of one-dimensional transient infiltration problems
require an initial and two boundary conditions. In this study, Eqs.
(26) and (27) were analytically solved using Laplace transforma-
tions in the time domain for four cases involving different initial
and boundary conditions. In each case, codes were developed using
Mathematica 10.0 to implement the analytical formulations.

Case 1: Imposed Constant Moisture to Upper Boundary
of a Semi-infinite Column

This case involves solving for u (z,t) considering an initial condition
described by a uniform initial moisture content, as follows:

u ðz; 0Þ ¼ u i (29)

where u i = constant. The Dirichlet boundary condition is adopted in
this case, which involves a constant volumetric water content
imposed at the upper boundary of the domain

u ð0; tÞ ¼ u 0 (30)

where u 0 = constant. For the semi-infinite domain, the lower bound-
ary condition is described by

∂u
∂z

1; tð Þ ¼ 0 (31)

This lower boundary condition implies that, at depth, the mois-
ture content (and consequently, the suction) reaches a constant
value. It also implies that, at depth, the hydraulic gradient in the z-
direction equals 1. Solutions to partial differential equations involv-
ing these types of initial and boundary conditions have been reported
for contaminant transport problems (Lapidus and Amundson 1952;
Ogata and Banks 1961).

The analytical solution of Eq. (26) for these initial and boundary
conditions was found to be

u ðz; tÞ ¼ u i þ ðu 0 � u iÞAðz; tÞ (32)

where

A z; tð Þ ¼ 1
2

erfc Z�1ð Þ þ exp
�asz
�Dz

� �
erfc Zþ1ð Þ

� �
(33)

Z61 ¼ z6�ast

2
ffiffiffiffiffiffiffi
�Dzt

p (34)

where erfc(Z) = complementary error function, defined as follows:

erfc Zð Þ ¼ 1� 2
p

ðZ
0

exp �t2ð Þdt (35)

In the particular case where �as ¼ 0, the analytical solution of
Eq. (26) for these initial and boundary conditions reduces to

u z; tð Þ ¼ u i þ u 0 � u ið Þerfc z

2
ffiffiffiffiffiffiffi
�Dzt

p� �
(36)

Also, in the particular case where �Dz ¼ 0, the analytical solution
of Eq. (26) for these initial and boundary conditions reduces to

u ðz; tÞ ¼ u i þ ðu 0 � u iÞHð�ast � zÞ (37)

whereH(x) = Heaviside function, given by

HðxÞ ¼ 0; if x � 0

1; if x > 0

(
(38)

For the steady-state condition, Richard’s equation is now repre-
sented by an ordinary differential equation [Eq. (27)]. Accordingly,
flow problems can be solved by adopting only two boundary condi-
tions (i.e., it is not necessary to establish an initial condition). The
Dirichlet boundary condition adopted in this case (a constant volu-
metric water content imposed to the upper boundary of the domain)
corresponds to

u ð0Þ ¼ u 0 (39)

where u 0 = constant. For the semi-infinite column, the lower bound-
ary condition is described by

du
dz

1ð Þ ¼ 0 (40)

The analytical solution for steady-state conditions using these
boundary conditions is
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u ðzÞ ¼ u 0 (41)

Case 2: Imposed Constant Moisture to Upper Boundary
of a Column of Finite Length

As in Case 1, the initial condition for Case 2 is also described by a
uniform initial moisture content, as expressed by Eq. (29). Also as
in Case 1, the Dirichlet boundary condition is adopted in Case 2,
which involves a constant volumetric water content imposed to the
upper boundary of the domain, as expressed by Eq. (30).

For a column of length L, the lower boundary condition was
adopted to correspond to a zero gradient of the volumetric water
content, which is expressed by

∂u
∂z

L; tð Þ ¼ 0 (42)

As previously discussed, this lower boundary condition implies
having a constant moisture content (and suction) at depth L, as well
as having a unity hydraulic gradient at this depth. Solutions to par-
tial differential equations with these types of initial and boundary
conditions have been reported for contaminant transport problems
(Cleary and Adrian 1973).

The analytical solution of Eq. (26) for these initial and boundary
conditions was obtained as follows:

u ðz; tÞ ¼ u i þ ðu 0 � u iÞBðz; tÞ (43)

where

B z; tð Þ ¼ 1�
X1
m¼1

2b m sin
b mz
L

� �
exp

�asz
2�Dz

� �a2s t
4�Dz

� b 2
m
�Dzt

L2

!

b 2
m þ �asL

2�Dz
þ �asL

2�Dz

� �2
" #

(44)

where b m = eigenvalues corresponding to the positive roots of the
equation

b mcot b mð Þ þ �asL

2�Dz
¼ 0 (45)

It is only necessary to consider approximately four terms of the
series described by Eq. (44) to reach accurate results. In this case,
Eq. (44) can be approximated by

B z; tð Þ ¼ 1
2
erfc Z�1ð Þ þ 1

2
exp

�asz
�Dz

� �
erfc Zþ1ð Þ

þ 1
2

2þ �as 2L� zð Þ
�Dz

þ �a2s t
�Dz

" #
exp

�asL
�Dz

� �

� erfc
2L� zþ �ast

2
ffiffiffiffiffiffiffi
�Dzt

p
!

�
ffiffiffiffiffiffiffiffiffi
�a2s t

p �Dz

s
exp

�asL
�Dz

� 2L� zþ �astð Þ2
4�Dzt

" #
(46)

In the particular case where �as ¼ 0, the analytical solution of
Eq. (26) for these initial and boundary conditions reduces to

u z; tð Þ ¼ u i þ u 0 � u ið Þ 1þ
X1
m¼1

4
p
sin

pz
2L

� �
exp �p 2 �Dzt

4L2

� �" #

(47)

In this case, Eq. (45) has two roots (b m =6p /2), but only the
positive root gives a feasible solution. Considering approximately
four terms of the series in Eq. (47), the following approximate
expression can be obtained:

u z; tð Þ ¼ u i þ u 0 � u ið Þ erfc
z

2
ffiffiffiffiffiffiffi
�Dzt

p� �
þ erfc

2L� z

2
ffiffiffiffiffiffiffi
�Dzt

p
!" #

(48)

In the particular case where �Dz ¼ 0, the analytical solution of
Eq. (26) for these initial and boundary conditions reduces to Eq.
(37), which is the same solution obtained for Case 1.

Also in this case, a steady-state solution can be obtained by solv-
ing Eq. (27). Specifically, the Dirichlet boundary condition is
adopted in this case, as expressed by Eq. (39). For a column of
length L, the adopted lower boundary condition corresponds to a
zero volumetric water content gradient, which is expressed by

du
dz

Lð Þ ¼ 0 (49)

The analytical solution for steady-state conditions using these
boundary conditions was found to be the same as that obtained for
Case 1 [Eq. (41)].

Case 3: Imposed Constant Discharge Velocity to Upper
Boundary of a Semi-infinite Column

As in Cases 1 and 2, the initial condition for this case is described
by a uniform initial moisture content, as expressed by Eq. (29). In
contrast, a Neumann flux boundary condition is adopted for the
upper boundary. This involves imposing a constant discharge veloc-
ity to the upper boundary of the domain as follows

�Dz
∂u
∂z

� kz

� �����
z¼0

¼ v0 (50)

where v0 = constant. The maximum discharge velocity that can be
physically imposed corresponds to the soil saturated hydraulic con-
ductivity (ks). Specifically, the maximum imposed discharge veloc-
ity is

v0;max ¼ u sks
u s � u rð Þ (51)

As in Case 1, the lower boundary condition for the semi-infinite
column in Case 3 is described by Eq. (31). Solutions to partial differ-
ential equations with these types of initial and boundary conditions
have been reported for contaminant transport problems (Mason and
Weaver 1924; Lindstrom et al. 1967; Gershon and Nir 1969).

The analytical solution of Eq. (26) for these initial and boundary
conditions was obtained as follows:

u z; tð Þ ¼ u i þ v0
ks

u s � u rð Þ � u i

� �
C z; tð Þ (52)

where
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C z; tð Þ ¼ 1
2
erfc Z�1ð Þ þ

ffiffiffiffiffiffiffiffiffi
�a2s t

p �Dz

s
exp � z� �astð Þ2

4�Dzt

" #

� 1
2

�1þ �asz
�Dz

þ �a2s t
�Dz

!
exp

�asz
�Dz

� �
erfc Zþ1ð Þ (53)

In the particular case where �as ¼ 0, the analytical solution of
Eq. (26) for these initial and boundary conditions reduces to

u z; tð Þ ¼ u i þ v0
ks

u s � u rð Þ � u i

� �
erfc

z

2
ffiffiffiffiffiffiffi
�Dzt

p� �
(54)

Also, in the particular case where �Dz ¼ 0, the analytical solution
of Eq. (26) for these initial and boundary conditions reduces to

u z; tð Þ ¼ u i þ v0
ks

u s � u rð Þ � u i

� �
H �ast � zð Þ (55)

whereH = Heaviside function given by Eq. (38).
The steady-state solution can also be obtained for this case by

solving Eq. (27). Specifically, the Neumann flux boundary condi-
tion is adopted in this case, which involves a constant discharge ve-
locity imposed to the upper boundary of the domain

�Dz
du
dz

� kz

� �����
z¼0

¼ v0 (56)

where v0 = constant. The lower boundary condition for the semi-
infinite column is described by Eq. (40), as in Case 1.

The analytical solution for steady-state conditions using these
boundary conditions reduces to

u zð Þ ¼ v0
ks

u s � u rð Þ (57)

Case 4: Imposed Constant Discharge Velocity to Upper
Boundary of a Column of Finite Length

As in Cases 1–3, the initial condition for this case is described by a
uniform initial moisture content, as expressed by Eq. (29). As in
Case 3, the Neumann flux boundary condition is adopted for the
upper boundary, which involves imposing a constant discharge ve-
locity [Eq. (50)].

Also as in Case 3, the maximum discharge velocity that can be
imposed is defined by Eq. (51). For a column of length L, the
adopted lower boundary condition corresponds to a zero gradient of
the volumetric water content, which is expressed by Eq. (42).
Solutions to partial differential equations with these types of initial
and boundary conditions have been reported for contaminant trans-
port problems (Bastian and Lapidus 1956; Brenner 1962).

The analytical solution of Eq. (26) for these initial and boundary
conditions was deduced as follows:

u z; tð Þ ¼ u i þ v0
ks

u s � u rð Þ � u i

� �
D z; tð Þ (58)

where

D z; tð Þ ¼ 1�
X1
m¼1

2�asL
�Dz

b m b m cos
b mz
L

� �
þ �asL

2�Dz
sin

b mz
L

� �" #
exp

�asz

2�Dz
� �a2s t

4�Dz
� b 2

m
�Dzt

L2

!

b 2
m þ �asL

�Dz
þ �asL

2�Dz

� �2
" #

b 2
m þ �asL

2�Dz

� �2
" # (59)

where b m = eigenvalues corresponding to the positive roots of the
equation

b mcot b mð Þ � b 2
m
�Dz

�asL
þ �asL
4�Dz

¼ 0 (60)

It is only necessary to consider approximately four terms of the
series in Eq. (59) to reach accurate results. In this case, Eq. (59) can
be approximated by

D z; tð Þ ¼ 1
2
erfc Z�1ð Þ þ

ffiffiffiffiffiffiffiffiffi
�a2s t

p �Dz

s
exp � z� �astð Þ2

4�Dzt

" #
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2

�1þ �asx
�Dz

þ �a2s t
�Dz

!
exp
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�Dz

� �
erfc Zþ1ð Þ
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4
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� �

� exp
�asL
�Dz

� 1
4�Dzt
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� �

� �as
�Dz

2L� zþ 3�ast
2

þ �as
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� �

� exp � �asL
�Dz

� �
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2L� zþ �ast

2
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�Dzt

p
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(61)

In the particular case where �as ¼ 0, the approximated solution
of Eq. (26) for these initial and boundary conditions reduces to Eq.
(54), which is the same solution obtained for Case 3. Also, in the
particular case where �Dz ¼ 0, the analytical solution of Eq. (26) for
these initial and boundary conditions reduces to Eq. (55).

A steady-state solution can also be obtained for this case.
Specifically, as in Case 3, the Neumann flux boundary condition is
adopted, which involves a constant discharge velocity imposed to
the upper boundary of the domain [Eq. (56)]. As in Case 2, for a col-
umn of length L, a lower boundary condition corresponding to zero
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gradient in the volumetric water content is imposed at the lower end
of the domain, as expressed by Eq. (49). The analytical solution for
steady-state conditions using these boundary conditions is the same
as that obtained for Case 3, and reduces to that defined by Eq. (57).

Parametric Evaluations

The availability of analytical solutions for complex transient prob-
lems, such as unsaturated flow in porousmedia, is particularly bene-
ficial to assess the sensitivity of the variables that govern the flow
process. Accordingly, this section provides an evaluation of the
sensitivity of key parameters using the analytical solutions of
Richard’s equation developed in this study. Parametric evaluations
were conducted considering both semi-infinity columns (Cases 1
and 3) and columns with a finite length (Cases 2 and 4). The values
adopted in these evaluations for parameters u r, u s, and ks are 0.04,
0.41, and 8.2� 10−7 m/s, respectively. Different values of the hy-
draulic parameter d were used (d = 0.003, 0.03, and 0.3 kPa−1) to
assess the effect of the shape of the hydraulic functions. The initial
and boundary conditions adopted in the parametric evaluations for
Cases 1 and 2 correspond to u i = 0.13 and u 0 = 0.26, respectively.
For Cases 3 and 4, the adopted initial and boundary conditions cor-
respond to u i = 0.13 and v0 = 5.7� 10−7 m/s, respectively.

Fig. 5 shows a set of results for the analytic solution, presented
as the time history of volumetric water content at a given depth (z)
for Case 1 (d = 0.03 kPa−1 for z = 0.06 m). Three distinct periods
can be observed in the time history. Specifically, Period 1 represents
the time (ending at approximately t = 200min in the figure) during
which the moisture remains at its initial volumetric water content
(u i = 0.13). Period 2 corresponds to a transition period during which
the volumetric water content rises gradually from u i to u 0. Finally,
Period 3 represents conditions approaching steady state (starting at
approximately t = 1,000min in the figure), after which the moisture
has reached the volumetric water content imposed on the upper
boundary of the domain (u 0 = 0.26). The maximum moisture
change rate [ð∂u =∂tÞmax ] is also shown in Fig. 5, and occurs at a
moisture content (u ave) that corresponds to the average value
between u 0 and u i.

Fig. 6 shows the time history of volumetric water content for
Case 1 when d = 0.03 kPa−1 for different locations (z). Fig. 6(a) cor-
responds to the solution for the case in which both advective and
diffusive flow components are relevant [Eq. (33)], whereas Fig.

6(b) corresponds to a problem dominated by advective flow [Eq.
(37)], and Fig. 6(c) corresponds to a problem dominated by diffu-
sive flow [Eq. (36)].

The results in Fig. 6(a) illustrate that the maximum rate of mois-
ture change [(@u /@t)max] decreases with increasing values of z. That
is, the moisture front spreads with increasing travel distance
because of the diffusive component of the unsaturated flow. In con-
trast, as can be seen in Fig. 6(b), there is no spreading of the

Fig. 5. (Color) Distinct periods in predicted time history of volumetric
water content for Case 1 (d = 0.03 kPa−1, z = 0.06 m) considering ad-
vective and diffusive flow components [Eq. (33)]
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Fig. 6. (Color) Predicted time history of volumetric water content for
Case 1 at different locations (d = 0.03 kPa−1) considering (a) both ad-
vective and diffusive flow components [Eq. (33)]; (b) only advective
flow [Eq. (37)]; and (c) only diffusive flow [Eq. (36)]
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moisture front when flow is dominated by the advective component.
In this case, as the moisture front advances, the moisture changes
suddenly from its initial value (u i = 0.13) to the volumetric water
content imposed on the upper boundary (u 0 = 0.26). Finally, Fig.
6(c) illustrates the results of a problem dominated by diffusive flow.
It corresponds, for example, to one-dimensional unsaturated flow
advancing in the horizontal, x-direction (i.e., in a direction where
there is no gravity-induced flow). As can be observed in this figure,
the time required for the moisture to start increasing beyond the ini-
tial volumetric water content (u i = 0.13) increases with increasing
x. Also, the steady-state condition is far from being reached for the
time scale shown in the figure.

Fig. 7 shows the the time history for a case in which both advec-
tive and diffusive flow components are relevant, superimposed with
the time history for a case in which only advective flow is relevant
(for Case 1, d = 0.03 kPa−1). The results in Fig. 7 indicate that the
time (tu ave) to reach u ave (at a given location z) in a problem with
both advective and diffusive flow components is somewhat shorter
than the time (ta) to reach u ave in a problem dominated by advective
flow.

The availability of the analytical solutions obtained in this study
allows defining parameters to better understand the flow process.
Specifically, vu ave and va are defined as the velocities corresponding
to u ave in problems where both advective and diffusive flow compo-
nents are relevant and where advective flow dominates, respec-
tively. They correspond to velocities computed as z/tu ave and z/ta,
respectively. Fig. 8(a) shows the values obtained for vu ave and va in
the problem being evaluated. As shown in the figure, va remains
constant and equals �as (the constant unsaturated advective seepage).
In contrast, vu ave is always higher than va and decreases with
increasing z. Fig. 8(b) presents the ratio vu ave/va, which shows a
decreasing trend with increasing z, and tends to 1 for high z values.

Fig. 9 shows a typical profile of moisture content at a given time
(t). Three distinct zones can be observed in this particular moisture
profile obtained for Case 1 (t = 300min, d = 0.03 kPa−1).
Specifically, Zone 1 corresponds to the region where the moisture
has already reached the volumetric water content imposed on the
upper boundary of the domain (u 0 = 0.26). Zone 2 is a transient
zone where the volumetric water content gradually decreases from
u 0 to u i. Finally, Zone 3 corresponds to the region where the mois-
ture still remains at its initial value (u i = 0.13).

Fig. 10 shows the predicted moisture profiles at different times
for Case 1 (considering d = 0.03 kPa−1). Fig. 10(a) corresponds to

the case in which both advective and diffusive flow components are
relevant, whereas Fig. 10(b) corresponds to a problem dominated
by advective flow, and Fig. 10(c) corresponds to a problem domi-
nated by diffusive flow.

Inspection of Fig. 10(a) reveals that (@u /@z)max decreases with
increasing time. That is, spreading of the moisture front increases
with time because of the diffusion component of the unsaturated
flow. In contrast, the results in Fig. 10(b) show that there is no
spreading of the moisture front when advection dominates the flow.
In this case, as the moisture front advances, the moisture changes

Fig. 7. (Color) Comparison between time histories of volumetric
water content in a problem involving multiple flow components and in
a problemwith only advective flow (Case 1, d = 0.03 kPa−1)

Fig. 8. (Color) Velocity at the column: (a) vu ave and va; (b) ratio
vu ave/va

Fig. 9. (Color) Distinct zones for predicted moisture profile for Case 1
(d = 0.03 kPa−1, t = 300min) considering advective and diffusive com-
ponents [Eq. (33)]
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suddenly from the volumetric water content imposed on the upper
boundary (u 0 = 0.26) to the initial moisture content (u i = 0.13). Fig.
10(c) illustrates the results of a problem dominated by diffusive
flow (e.g., one-dimensional unsaturated flow in the x-direction). As
can be observed in this figure, the moisture gradients decrease with
increasing time.

Fig. 11 shows the moisture profiles (for Case 1, d = 0.03 kPa−1)
for a case where both advective and diffusive flow components are

relevant, superimposed with the moisture profiles for a case in
which only advective flow is relevant. Inspection of Fig. 11 reveals
that the distance (zu ave) that reaches a moisture (u ave) [at a given
time (t)] in a problem with both advective and diffusive flow com-
ponents is somewhat larger than the distance (za) reached by the
moisture front in a case dominated by advective flow.

Fig. 12(a) shows the time history of the rates of moisture change
(@u /@t) for Case 1 (d = 0.03 kPa−1) for a problem with both advec-
tive and diffusive flow components [Eq. (33)]. In addition, Fig.
12(b) shows these rates for a problem dominated by advection [Eq.
(37)], whereas Fig. 12(c) shows these rates for a problem domi-
nated by diffusion [Eq. (36)].

The results in Fig. 12(a) illustrate that, for a given location
(z), the rate of moisture change is zero for an initial period during
which the moisture remains at its initial value (Period 1 in Fig. 5).
The rate of moisture change then increases, reaching a peak value
[(@u /@t)max] at time tu ave. This peak value corresponds to the maxi-
mum slope observed in Fig. 5. Beyond the time corresponding to
the peak rate, the rate of moisture change decreases to zero. Beyond
this time (Period 3 in Fig. 5), the moisture has reached the volumet-
ric water content imposed on the upper boundary of the domain
(u 0 = 0.26). The results in Fig. 12(a) also show that the peak rate
of moisture change decreases with increasing time. In addition,
the width between the initial and final tails of each curve can be
observed to increase with increasing distance (z) from the upper
boundary. It can be demonstrated that the total area (integral of
@u /@t from 0 toþ1) under each of the moisture rate curves is the
same for the different values of z. The decreasing peak and
increasing width of the moisture rate curves, for increasing z val-
ues, are trends that depend on the diffusive component of the un-
saturated flow.

As can be seen in Fig. 12(b), when flow is dominated by an ad-
vective component, the moisture rate function shows an infinity
peak value (@u /@tmax =þ1), which occurs at the time (ta) that cor-
responds to the arrival of the moisture front. At this time, the volu-
metric moisture content increases suddenly from its initial value to
the value imposed at the upper boundary of the domain (u 0 = 0.26).

Fig. 12(c) shows the moisture rate curves of a problem domi-
nated by diffusive flow. The trends observed with increasing x val-
ues are similar to those observed in Fig. 12(a) for a case involving
both advective and diffusive flow components. However, it should
be noted that the magnitudes of the rates (e.g., the peak values) are
significantly smaller than those obtained when advective flow is
also present.
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Fig. 10. (Color) Predicted moisture profiles for Case 1 at increasing
time (d = 0.03 kPa−1) considering (a) both advective and diffusive flow
components [Eq. (33)]; (b) only advective flow [Eq. (37)]; and (c) only
diffusive flow [Eq. (36)]

Fig. 11. (Color) Comparison between moisture profiles in a problem
involving multiple flow components and in a problem with only advec-
tive flow (Case 1, d = 0.03 kPa−1)
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Fig. 13(a) shows the profiles of moisture content gradients
(@u /@z) for Case 1 (d = 0.03 kPa−1) for a problem where both ad-
vective and diffusive flow components are relevant [Eq. (33)]. Also,
Fig 13(b) shows these gradients for a problem with only advective
flow [Eq. (37)], whereas Fig. 13(c) shows such gradients for a prob-
lemwith only diffusive flow [Eq. (36)].

The results in Fig. 13(a) illustrate that, for a given time (t), the
moisture gradients remain at zero for an initial period (Zone 1 in
Fig. 9). They subsequently increase (in absolute value), reaching a
peak value [(@u /@z)max] at time tu ave. This peak value corresponds

to the maximum slope observed in Fig. 9. Beyond this location, the
moisture gradients decrease until reaching zero, which corresponds
to the beginning of Zone 3. The results in Fig. 13(a) also show that
the value of the peak moisture gradients decreases (in absolute
value) with increasing time. It can also be observed that the width
between the initial and final tails of each moisture gradient curve
increases with increasing time. It can be demonstrated that the total
area (integral of @u /@z from 0 to þ1) under each of the moisture
gradient curves is the same for different values of t. The decreasing

Fig. 12. (Color) Predicted time history of rates in moisture change for
Case 1 at different locations (d = 0.03 kPa−1) considering (a) both ad-
vective and diffusive components [Eq. (33)]; (b) only advective flow
[Eq. (37)]; and (c) only diffusive flow [Eq. (36)]

Fig. 13. (Color) Predicted profiles of moisture gradients for Case 1 at
increasing time (d = 0.03 kPa−1) considering (a) both advective and dif-
fusive flow components [Eq. (33)]; (b) only advective flow [Eq. (37)];
and (c) only diffusive flow [Eq. (36)]
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peak (in absolute value) and increasing width of the moisture gradi-
ent curves, for increasing time, are trends that depend on the diffu-
sive component of the unsaturated flow.

As can be seen in Fig. 13(b), the moisture gradient shows an in-
finity peak value (@u /@zmax = –1) when flow is dominated by an
advective component, with the peak occurring at distance za corre-
sponding to the arrival of the moisture front. At this location, the
moisture content increases suddenly from its initial value to the
value imposed at the upper boundary of the domain (u 0 = 0.26).

Fig. 13(c) shows the moisture gradient curves of a problem
dominated by diffusive flow. The trends observed with increasing
time are consistent with those observed in Fig. 13(a) for a case
involving both advective and diffusive flow components. However,
the magnitude of the gradients (e.g., the peak values) are signifi-
cantly higher (in absolute values) than those obtained when advec-
tive flow is also present.

Fig. 14 illustrates the time histories of the advective flow [Eq.
(20)] and the dispersive flow [Eq. (21)], respectively, for Case 1
(d = 0.03 kPa−1). Fig. 14(a) illustrates that the advective flow
increases with increasing time until reaching a peak value. Comparison
of Figs. 14(a) and 6(a) reveals that the maximum advective flow is
reached at the time when the steady-state condition has been
reached. Beyond this time, the volumetric water content will
remain at the value imposed on the upper boundary of the domain
(u 0 = 0.26), with the advective flow component remaining con-
stant. Fig. 14(b) also shows that the diffusive flow increases with
increasing time until reaching a peak value, beyond which the dif-
fusive flow component decreases. The maximum diffusive flow is
reached at the same time as the peak rate in moisture changes [Fig.
12(a)]. As can be seen in Fig. 14(b), the diffusive flow ultimately

decreases to zero. Accordingly, the unsaturated flow is ultimately
controlled by the advective flow component [Fig. 14(a)].

It should be noted that the magnitude of the peak value of the ad-
vective flow component [Fig. 14(a)] is over an order of magnitude
higher than the peak value of the diffusive flow component [Fig.
14(b)] for the parameters adopted in this example. Accordingly,
whereas the diffusive flow is not negligible, the advective flow was
found to be the most relevant component for the unsaturated flow
problem illustrated in this example.

Fig. 15 shows the advective and the difussive flow profiles with
increasing time for Case 1 (d = 0.03 kPa−1). Fig. 15(a) shows that
the advective flow decreases with increasing distance until reaching
zero. Fig. 15(b) shows that the diffusive flow initially increases with
increasing distance until reaching a peak value, beyond which the
diffusive flow decreases. The location of the peak diffusive flow
corresponds to the location of the peak moisture gradients [Fig.
13(a)]. As shown in Fig. 15(b), the diffusive flow ultimately tends
to zero at high values of z.

To assess the effect of the hydraulic parameter (d ), Fig. 16
shows the results obtained for Case 1, but considering d =
0.3 kPa−1 instead of 0.03 kPa−1. Consistent with previous discus-
sions, increasing values of d led to a decreasing air-entry pressure
(Fig. 2), an increasing (@u /@c )initial (Fig. 3), and an increasing
(@k/@c )initial (Fig. 4).

Comparison of the results shown in Figs. 16(a and b) with the
results shown in Figs. 6(a) and 13(a) reveals that increasing values
of the parameter d leads to increasing rates of moisture change and,
in particular, to increasing values of (@u /@t)max. Accordingly, the
volumetric water content (u 0) imposed on the upper boundary of
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Fig. 14. (Color) Predicted profiles of (a) advective flow and (b) diffu-
sive flow at increasing times for Case 1 (when d = 0.03 kPa−1)
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Fig. 15. (Color) Predicted profiles of (a) advective flow and (b) diffu-
sive flow at different locations for Case 1 (when d = 0.03 kPa−1)
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the domain is reached earlier, at a given location (z), for increasing
values of d .

Comparison of the results shown in Figs. 16(c and d) with the
results shown in Figs. 10(a) and 13(a) reveals that increasing values
of the parameter d lead to increasing (in absolute value) gradients
of moisture change and, in particular, to increasing values of
(@u /@z)max. Accordingly, the imposed volumetric moisture (u 0) is
reached earlier for higher values of d .

In addition to evaluating the results for Case 1 (semi-infinite col-
umn), the type of results presented in Figs. 5–16 were also obtained
after conducting analyses using the boundary conditions corre-
sponding to Case 2 (column of finite length). It was observed that
differences in the results obtained between these two cases, as
shown by their time histories and moisture profiles, were negligible.
Accordingly, the analytical solution for Case 1, which is compara-
tively simpler than that for Case 2, could be used to preliminarily
solve problems involving columns of finite length.

Fig. 17 shows the results obtained when using the boundary con-
ditions corresponding to Case 3. Specifically, a constant discharge
velocity (v0 = 5.7� 10−7 m/s) was imposed to the upper boundary
of a semi-infinite column.

Consistent with the results obtained for Cases 1 and 2, the results
in Fig. 17(a) show that the rate (@u /@t)max decreases with increasing
values of z. Also consistent with the results obtained for Cases 1 and
2, the results in Fig. 17(b) show that the gradient (@u /@z)max

decreases with increasing time. Both responses can be attributed to

the spreading effect of the moisture front related to the diffusive
component of the unsaturated flow.

Fig. 18 shows the effect of varying the constant discharge velocity
imposed on the upper boundary of a semi-infinity column. The curves
correspond to the predicted time history of volumetric water content
for Case 3 (d = 0.03 kPa−1) at a given location (z = 0.06 m) for three
different values of the imposed constant discharge velocity (v0 =
4.5� 10−7, 5.0� 10−7, and 5.7� 10−7 m/s). As shown in the figure,
increasing values of the imposed discharge velocity lead to increasing
values of volumetric water content. In particular, the moisture content
reached after a comparatively long time will tend to a constant value
(u1), which is directly proportional to v0, as follows:

u1 ¼ v0
ks

u s � u rð Þ (62)

It should be noted that the value of u1 in Eq. (62) is the same as
the value obtained for the steady-state solution previously obtained
for Case 3 [Eq. (57)]. Indeed, the value of v0 = 5.7� 10−7 m/s
adopted for the analyses presented in Fig. 17 corresponds to an
imposed flow that would lead to u1 = 0.26 (i.e., the value of
imposed moisture adopted previously for Cases 1 and 2).

In addition to evaluating the results for Case 3 (semi-infinite col-
umn), the analyses presented in Figs. 17 and 18 were also conducted
using the boundary conditions corresponding to Case 4 (column of
finite length). It was observed that differences in the results obtained
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Fig. 16. (Color) Predicted results for Case 1 using d = 0.3 kPa−1: (a) time history of moisture content; (b) time history of moisture rates; (c) moisture
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in these two cases, as shown by their time histories and moisture
profiles, were negligible. Accordingly, the analytical solution for
Case 3, which is comparatively simpler than that for Case 4, could
be used to preliminarily solve problems involving columns of finite
length.

Conclusions

This paper presents a series of analytical solutions of Richard’s
equation for unsaturated flow under transient conditions. The solu-
tions were developed for a variety of initial and boundary condi-
tions, including an imposed moisture content and an imposed dis-
charge velocity value on the boundary, as well as considering an
infinitely long column or a column of finite length. The obtained
closed-form solutions to Richard’s equation are particularly valua-
ble to (1) facilitate parametric evaluations, and (2) validate the accu-
racy of numerical predictions. This paper presents the development
of the analytical solutions and associated parametric evaluations.
The development of efficient numerical schemes as well as compar-
isons between analytical results and numerical predictions are pre-
sented in a companion paper (Cavalcante and Zornberg 2017). The
solution of Richard’s equation is illustrated in the paper using repre-
sentative examples that consider a variety of boundary conditions.
The analytical solutions allowed representation of (1) the time his-
tory of volumetric water content at different locations, and (2) the
moisture profiles at different times.

Based on the results obtained from this study, the following gen-
eral conclusions can be drawn:
• The use of the volumetric water content as a dependent vari-

able in Richard’s equation allowed rewriting this equation in a
form that is analogous to the advection-dispersion contaminant
transport equation.

• The use of a logarithmic model to represent the SWRC and of
a linear model to represent the k-function, using a single hy-
draulic parameter (d ), was found to lead to a representation of
Richard’s equation in which the unsaturated water diffusivity
and the unsaturated advection seepage, in the z-direction, are
constants.

• Representation of Richard’s equation in terms of advective
and dispersive components, as well as the selection of hydrau-
lic functions represented using the hydraulic parameter (d )
were found to lead to analytical solutions of the transient, un-
saturated flow problem. The solutions were obtained using
Laplace transformations in the time domain.

• The advective-diffusive representation of Richard’s equation
also allowed determination of analytical solutions for the par-
ticular cases in which the unsaturated flow is dominated by ei-
ther the advective or the diffusive flow components. These
solutions were found to provide good insight into unsaturated
flow mechanisms.
In addition, the following conclusions can be drawn from a para-

metric evaluation as obtained considering hydraulic functions that
are represented using the hydraulic parameter (d ):
• The time history of volumetric water content at a given loca-

tion was found to involve three distinctive regions: (1) Period
1 when the moisture remains at its initial value; (2) Period 2
when the volumetric water content rises gradually from u i to
u 0; and (3) Period 3, corresponding to the steady-state condi-
tion, when the moisture has reached its ultimate value (e.g.,
the volumetric water content imposed at the top boundary
of the domain).

• Themaximum rate of moisture changes [ (@u /@t)max] was found
to decrease with increasing values of z. This trend can be attrib-
uted to the diffusive component of the unsaturated flow.

• The time [tu ave] to reach u ave (average moisture content
between the initial and steady-state final values) at a given
location (z) in a problem with both advective and diffusive
flow components is somewhat shorter than the time (ta) to
reach u ave in a problem dominated by advective flow.
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Fig. 17. (Color) Predicted volumetric water content for Case 3 (d =
0.03 kPa−1): (a) time history at different locations; (b) profiles at
increasing times
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• The velocity (va) corresponding to u ave in a problem with only
advective flow remains constant and equals �as (the constant
unsaturated advective seepage). The velocity (vu ave) corre-
sponding to u ave in a problem with both advective and diffu-
sive flow components was found to be higher than va, and to
decrease with increasing z. The ratio between vu ave and va was
found to tend to 1 for comparatively high z values.

• The moisture content profile at a given time was found to
involve the following three distinctive regions: (1) Zone 1,
where the moisture has already reached its steady-state value;
(2) Zone 2, where the volumetric water content decreases grad-
ually from u 0 to u i; and (3) Zone 3, where the moisture stilll
remains at its initial value.

• The absolute value of the maximum moisture gradient
[(@u /@z)max] was found to decrease with increasing time. This
trend can be attributed to the impact of the diffusive compo-
nent of the unsaturated flow.

• Increasing values of the hydraulic parameter (d ) were found to
correspond to increasing rates of moisture change and, in par-
ticular, to increasing (@u /@t)max. Accordingly, the steady-state
volumetric water content value was reached faster for higher
values of d .

• Increasing values of the hydraulic parameter (d ) were found to
correspond to a decrease in the gradients (in absolute value) of
moisture change and, in particular, to decreasing (@u /@z)max.

• The differences between the predicted time histories and mois-
ture profiles for Case 1 and those obtained for Case 2 were
found to be minor. Accordingly, the analytical solution for
Case 1, which is comparatively simpler than that for Case 2,
could be used to preliminarily solve problems involving col-
umns of finite length.

• The differences between the predicted time histories and mois-
ture profiles for Case 3 and those obtained for Case 4 were
found to be minor. Accordingly, the analytical solution for
Case 3, which is comparatively simpler than that for Case 4,
could be used to preliminarily solve problems involving col-
umns of finite length.

Appendix I. Definition of Advective and Diffusive Flow
Components

This appendix demonstrates that the use of advective and diffusive
flow components, as defined by Eqs. (20) and (21) in the paper,
leads to the conventional Richard’s equation.

The continuity principle implies that the difference between the
mass outflow and inflow rates should equal the rate of change in
water storage (Fig. 19). That is

∂u
∂t

dx dy dz ¼ f dx dy� f þ ∂f
∂z

dz

� �
dx dy (63)

where f = total flow (L/T).

As discussed in the paper, the total flow can be grouped into
two components as follows:

f ðz; tÞ ¼ fadvðz; tÞ þ fdifðz; tÞ (64)

where fadv = advective flow component (L/T); and fdif = diffusive
flow component of the total flow (L/T).

The advective and the diffusive flow components, respectively,
are given by

fadvðz; tÞ ¼ asðu Þu (65)

fdif z; tð Þ ¼ �Dz uð Þ ∂u
∂z

(66)

Considering Eqs. (65) and (66) into Eqs. (63) and (64) leads to

∂u
∂t

¼ � ∂
∂z

as uð Þu � Dz uð Þ ∂u
∂z

� �
(67)

or

∂u
∂t

¼ ∂
∂z

Dz uð Þ ∂u
∂z

� �
� ∂
∂z

as uð Þu½ � (68)

Using Eq. (19) in the paper, the second term on the right side of
Eq. (68) can be rewritten as

∂
∂z

as uð Þu½ � ¼ ∂
∂z

∂kz
∂u

u

� �
¼ ∂kz

∂u
∂u
∂z

¼ ∂kz
∂z

(69)

Considering Eq. (69) into Eq. (68) results in Richard’s equa-
tion. That is

∂u
∂t

¼ ∂
∂z

Dz uð Þ ∂u
∂z

� �
� ∂kz uð Þ

∂z
(70)

Eq. (70), obtained as the addition of advective and diffusive
flow components, is the same as Eq. (17), obtained using the con-
ventional discharge velocity definitions. In summary, the flow
components fadv and fdif, as defined by Eqs. (20) and (21), com-
bined with the continuity principle lead to Richard’s equation.

Appendix II. Characteristics of Hydraulic Functions
Represented Using the Hydraulic Parameter (d)

The impact of the hydraulic parameter (d ) on relevant characteristics
of the SWRC and the k-function is demonstrated in this appendix.

Characteristic 1: The initial slope of the SWRC (i.e., the slope
corresponding to saturation) is directly proportional to the hydrau-
lic parameter (d ).

Demonstration: The SWRC defined by a log-linear model [Eq.
(22)] can be rewritten as

u ðjc jÞ ¼ u r þ ðu s � u rÞexp ð�d jc jÞ (71)

The derivative of Eq. (71) in relation to c is

∂u
∂jc j ¼ �d u s � u rð Þexp �d jc jð Þ (72)

The initial slope of the SWRC can be obtained considering Eq.
(72), when c tends to 0. That is

dx
dy

dz

adv diff f f

ff dz
z

Fig. 19. Representative elementary volume
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∂u
∂jc j
� �

initial

¼ ∂u
∂jc j
� �

c!0

¼ �d u s � u rð Þ (73)

Characteristic 2: The initial slope of the k-function curve (i.e.,
the slope corresponding to saturation) is directly proportional to
the hydraulic parameter (d ).

Demonstration: The k-function defined by a log-linear model
[Eq. (23)], can be rewritten as

kðjc jÞ ¼ ks exp ð�d jc jÞ (74)

The derivative of Eq. (74) in relation to c is

∂k
∂jc j ¼ �d ks exp �d jc jð Þ (75)

The initial slope of the k-function can be obtained considering
Eq. (75), when c tends to 0. That is

∂k
∂jc j
� �

initial

¼ ∂k
∂jc j
� �

c!0

¼ d ks (76)
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