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Abstract: A narrow mechanically stabilized earth (MSE) wall is defined as a MSE wall placed adjacent to an existing stable wall, with a
width less than that established in current guidelines. Because of space constraints and interactions with the existing stable wall, various
studies have suggested that the mechanics of narrow walls differ from those of conventional walls. This paper presents the reliability-based
design (RBD) for external stability (i.e., sliding and overturning) of narrow MSE walls with wall aspects L=H ranging from 0.2 to 0.7. The
reduction in earth pressure pertaining to narrow walls is considered by multiplying a reduction factor by the conventional earth pressure.
The probability distribution of the reduction factor is calibrated based on Bayesian analysis by using the results of a series of centrifuge tests
on narrow walls. The stability against bearing capacity failure and the effect of water pressure within MSE walls are not calibrated in this
study because they are not modeled in the centrifuge tests. An RBD method considering variability in soil parameters, wall dimensions, and
traffic loads is applied to establish the relationship between target failure probability and the required safety factor. A design example is
provided to illustrate the design procedure. DOI: 10.1061/(ASCE)GT.1943-5606.0000423. © 2011 American Society of Civil Engineers.
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Introduction

The increase of traffic demands in urban areas has led to the
widening of existing highways. A possible solution to increase
right of way is to build mechanically stabilized earth (MSE) walls
adjacent to existing stabilized walls. Owing to the high cost of addi-
tional rights-of-way and limited space available at jobsites, con-
struction of those walls is often done under a constrained space.
This leads to MSE walls narrower than those in current design
guidelines. Narrow MSE walls are referred to as MSE walls having
an aspect ratio L=H (ratio of wall width L to wall height H) of less
than 0.7, the minimum value suggested in Federal Highway
Administration (FHwA) MSE-wall design guidelines (Elias
et al. 2001).

An illustration of narrow MSE walls is shown in Fig. 1, whereas
Fig. 2 shows a picture of a narrow MSE wall under construction to
increase the traffic capacity in Highway Loop 1 (dubbed “Mopac”)
in Austin, Texas. In this case, the construction space is limited by a
recreational park in close proximity to Highway Loop 1. Narrow
MSE walls may also be required when roadways are repaired and
extended because of natural and environmental constraints in
mountain terrain. The behavior of narrow walls differs from that

of conventional walls because of constrained space and interactions
with the existing stable wall. Possible differences include the mag-
nitude of earth pressures, location of failure planes, and external
failure mechanisms.

Elias et al. (2001) presented design methods for internal and
external stabilities of conventional MSE walls in FHwA design
guidelines. A factor of safety, FS, is assigned for each mode of
failure. The factor of safety must be larger than 1.0 (e.g., FSs ¼ 1:5
against sliding and FSo ¼ 2:0 against overturning) to account for
uncertainties in design methods, as well as in soil and material
properties. Chalermyanont and Benson (2004, 2005) developed
reliability-based design (RBD) methods for internal and external
stabilities of conventional MSE walls using Monte Carlo simula-
tions (MCS). In the FHwA design guidelines for shored mechan-
ically stabilized earth (SMSE) wall systems (Morrison et al. 2006),
design methods were proposed specifically for wall aspect ratios
ranging from 0.3 to 0.7. A minimum value of L=H ¼ 0:3 was
recommended for constructing narrow walls. The FHwA SMSE
design guidelines dealt with uncertainties of narrow walls by in-
creasing the factor of safety rather than considering the actual
characteristics of narrow walls.

This study intends to improve previous works by proposing a
reliability-based external stability model that realistically considers
the effect of reduced earth pressure in narrow walls. The earth pres-
sure of a narrow MSE wall can sometimes be significantly less than
that of a conventional wall; therefore, a reduction factor for the
earth pressure depending on the design dimension should be taken
for narrow walls for more accurate and cost effective design. How-
ever, this reduction factor is quite uncertain. A highlight of this
paper is therefore to identify the possible value of the reduction
factor using a series of centrifuge tests conducted by Woodruff
(2003): the probability distribution of the reduction factor is ob-
tained through a Bayesian analysis on the centrifuge test data. This
distribution characterizes the possible value of the reduction factor
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conditioning on the centrifuge tests and is later used to develop
RBD charts for narrow MSE walls. The proposed RBD charts will
allow designers to evaluate the external stability by considering
various design variables of the wall system (e.g., soil parameters,
wall dimensions, and traffic loads). Readers should notice that
MSE walls in this study are assumed to be built under good design
practice (i.e., no accumulation of water pressure within MSE walls
because cohesionless materials were used as backfill and drainage
devices were properly installed). When a wall is not constructed
carefully, water pressure may not dissipate easily; therefore, the
design charts proposed in this study may not be proper. However,
this study does not intend to address this scenario. In addition, the

focus of this study is on the sliding and overturning failure model of
external stability. The bearing capacity failure mode of external
stability is not calibrated in this study because it is not modeled
in the centrifuge tests.

This paper is organized into two parts. In the first part, external
stability of narrow MSE walls is investigated in a deterministic
manner. Definition of the external stability model considering
the reduction factor is introduced. In the second part, external sta-
bility is reevaluated using a probabilistic approach. The probability
distribution of the reduction factor for earth pressure is obtained,
based on Bayesian analysis, from centrifuge test data on narrow
walls. A simplified RBD method is applied to establish the relation
between target failure probabilities and required nominal safety
ratios. This relation allows designers to achieve a RBD by using
a safety-factor approach. A design example to illustrate the design
procedure will also be demonstrated.

Background and Characteristics of Narrow MSE
Wall System

The behaviors of narrow walls are different from those of conven-
tional walls because of constrained space and interaction with
stable walls. Such differences include the magnitude of earth
pressures, the location of failure planes and the external failure
mechanisms. A brief discussion of those differences and back-
ground information are given as follows.

Magnitude of Earth Pressure

Earth pressure of narrow walls has been studied by several re-
searchers by centrifuge tests (Frydman and Keissar 1987; Take
and Valsangkar 2001), by limit equilibrium analyses (Leshchinsky
et al. 2004; Lawson and Yee 2005) and by finite-element analyses
(Kniss et al. 2007; Yang and Liu 2007). Frydman and Keissar
(1987) conducted centrifuge tests to investigate the earth pressure
on retaining walls near rock faces in both at-rest and active con-
ditions. They found that the measured earth pressure decreases with
increasing depth. Take and Valsangkar (2001) performed a series of
centrifuge tests on narrow walls and observed similar phenomenon
of reduced earth pressure.

Leshchinsky et al. (2004) performed a series of limit equilibrium
analyses on MSE walls with limited space between the wall and
stable face. They showed that as the aspect ratio decreases, the earth
pressure also decreases, most likely because potential failure sur-
faces could form in the restricted space. Lawson and Yee (2005)
used an approach similar to Leshchinsky et al. (2004) to develop
design charts for the earth pressure coefficients. They showed that
the forces are less than those for active earth pressures and decrease
as the aspect ratio decreases.

Kniss et al. (2007) and Yang and Liu (2007) conducted a series
of finite-element analyses to evaluate the effect of wall aspect ratios
on reduced earth pressures. Finite-element analyses reported the
earth pressures along two vertical profiles: along the vertical edge
(external earth pressure) and the along the vertical center profile
(internal earth pressure). Fig. 3 shows the results from finite-
element and limit equilibrium analyses under active conditions.
The earth pressure calculated by limit equilibrium analyses is in
between the internal and external earth pressures (i.e., average earth
pressure) because the critical failure surface passes through the en-
tire reinforced soil wall. The presented “normalized” earth pressure
coefficients Rd (normalized by the Rankine one) show a clear evi-
dence of reduction with decreasing L=H.

In summary, all aforementioned research concluded that earth
pressure for narrow walls is less than that calculated using the

Narrow MSE wall 

Limit space 

Stable face 

Existing wall or stable cut 

(stabilized by soil nail in this case) 

Fig. 1. Illustration of a narrow MSE wall

Fig. 2. Construction of a narrow MSE wall at Highway Loop 1 in
Austin, Texas: (a) front view; (b) overview
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conventional (Rankine) earth pressure equation. Furthermore, the
reduction will become pronounced with (1) increasing depth and
(2) decreasing wall aspect ratio. This observation implies that de-
signs with the conventional earth pressure may be conservative for
narrow walls.

The reduction of earth pressure observed in past studies as well
as in Fig. 3 is mainly attributable to the combination of two mech-
anisms: arching effect and boundary constraint. Arching effect is a
result of soil-wall interaction. Soil layers settle because of their self
weights, and simultaneously, the wall provides a vertical shear fric-

tional force to resist the settlement. This vertical shear force reduces
the overburden pressure and, consequently, reduces the lateral earth
pressure (e.g., Handy 1985; Filz and Duncan 1997a, b). Further,
Yang and Liu (2007) found the effect of arching effect on reduced
earth pressure is less prominent under active conditions. This is
because the movement of the wall face attenuates the effect of
soil-structure interaction under active conditions. Compared with
the arching effect that influences the earth pressure along the
soil-wall interface, the boundary constraint is a kinematics con-
straint on the overall failure mechanism. Its effect is likely to place
a limit to prevent the full development of potential failure surfaces.
As a result, the size and weight of the failure wedge within narrow
walls is less than that within conventional walls, and so are the earth
pressures within narrow walls.

Location of Failure Plane

Woodruff (2003) performed a series of centrifuge tests on rein-
forced soil walls adjacent to a stable face. The test scope is sum-
marized in Table 1. The tests were undertaken on 24 different walls
with L=H ranging from 0.17 to 0.9. All the reduced-scale walls
were 230 mm tall and the wall facing batter was 11 vertical to
1 horizontal. Monterey No. 30 sand was used as the backfill
material. The unit weight is around 16:05 kN=m3 and the friction
angle is 36.7º interpolated from a series of triaxial compression
tests (Zornberg 2002) at the targeted backfill relative density of
70%. The reinforcements used in the centrifuge study are nonwo-
ven geotextiles with the following two types: Pellon True-grid and
Pellon Sew-in. Pellon True-grid is composed of 60% polyester and
40% rayon fabric. The fabric, tested by wide-width-strip tensile
tests (ASTM 2009), has a strength of 0:09 kN=m in the machine
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Fig. 3. Reduced earth pressure coefficients at different vertical profiles

Table 1. Summary of Woodruff’s Centrifuge Test Parameters

Test Aspect ratio (L=H) Reinforcement type Reinforcement vertical spacing (mm) Failure mode g-level at failure

1 a 0.9 R1 20 Internal 18

b 0.6 R1 20 Compound 17

2 a 0.6 R2 20 Compound 39

b 0.4 R2 20 Compound 41

3 a 0.7 R2 20 Internal 38

b 0.7 R2 20 Internal 49

c 0.7 R2 20 Internal 47

d 0.7 R2 20 Internal 44

4 a 0.7 R4 20 None None

b 0.5 R4 20 None None

c 0.3 R4 20 None None

d 0.3 R4 20 None None

5 a 0.17 R4 20 Overturning 7

ba 0.2 R4 20 None None

c 0.25 R4 20 Overturning 32

da 0.2 R4 20 None None

6 ab 0.3 R4 20 None None

bc 0.3 R4 20 None None

cd 0.2-0.3 R4 20 Overturning 78

d 0.3 R4 20 None None

7 a 0.25 R4 10 Overturning 38

b 0.25 R4 30 Overturning 2.5

c 0.25 R4 40 Overlap Pullout 1

d 0.25 R4 50 Overlap Pullout 1
aTest 5b and Test 5d have reinforcement configurations wrapped around at the interface between the reinforced soil wall and stable face.
bTest 6a has a top reinforcement configuration attached to a stable face.
cTest 6b has a top reinforcement configuration wrapped around at the interface between the reinforced soil wall and stable face.
dTest 6c has an inclined wall face.

JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / MARCH 2011 / 241



direction and 1:0 kN=m in the transverse direction (referred to as
R2 and R4, respectively, in Table 1). Pellon Sew-in is made of
100% polyester fabric. The fabric has a strength of 0:03 kN=m
in the machine direction and 0:1 kN=m in the transverse direction
(referred to as R1 and R3, respectively, in Table 1). The model
walls were placed in front of an aluminum strong box that simulates
the stable face. Woodruff (2003) loaded each wall to failure
and recorded the load (acceleration g force) required to fail the
wall. Fig. 4 shows a series of responses observed from Test
5c (L=H ¼ 0:25).

Woodruff (2003) observed that when L=H > 0:6, the wall fails
in an internal mode with weaker reinforcement (Pellon Sew-in) or
no failure with stronger reinforcement (Pellon True-grid). If a wall
fails, the critical failure plane is linear and passes through the entire
reinforced area. When L=H is between 0.25 and 0.6, the wall fails
internally in a compound mode with bilinear failure surfaces that
pass through the reinforced soil and the edge between the rein-
forced backfill and stable wall. The inclination angle of the failure
plane in a compound mode is less than that predicted by the Ran-
kine theory. However, these are more relevant to internal stability
and are not relevant to this study.

External Failure Mechanism

Woodruff (2003) also observed that when L=H decreases below
0.25, the failure mode changes from internal to external: such walls
all fail externally in an overturning mode independent of the
strength of reinforcement. The external failure is initiated from a
“gap” (or separation) at the edge between the reinforced backfill
and stable wall [see Fig. 4(c)]. This gap tends to pull the MSE wall
away from the stable wall, resulting in overturning failure. Yang
et al. (2008) performed finite-element analyses to investigate the
mechanics of this gap and concluded that the gap is actually a zero
pressure zone, a zone without normal earth pressure acting to the
narrow wall, at the moment of wall failure. The length of the zero

pressure zone grows with decreasing L=H and reaches approxi-
mately 85% of the wall height at L=H ¼ 0:25. Yang et al.
(2008) recommended several means to prevent the development
of the zero pressure zone to improve the external stability of narrow
walls. The dominant failure modes and current design methods
with various aspect ratios are summarized in Table 2.

Deterministic Analyses–External Stability Model

Although both internal and external stabilities are important sub-
jects for the design of narrow walls, this paper focuses on the ex-
ternal stability of narrowMSE walls, specifically for the sliding and
overturning failure mode. The internal stability (e.g., the compound
failure mode in Table 2) is not considered in this paper owing to the
lack of mature models, which are typically required for calibrating
design factors. As for the bearing-capacity failure mode in external
stability, it is not seriously considered in this paper for the following
reason. One limitation of the series of tests performed by Woodruff
is that a rigid boundary was placed below the narrow wall. This
rigid boundary prohibits the bearing capacity failure. As a result,
even if the bearing capacity mode is considered, it is impossible to
be calibrated by using the centrifuge test results. Yet, based on non-
calibrated simulations, it is found that for MSE walls with L=H
greater than 0.35, the failure probability for this mode is usually
less than 0.01. For walls with L=H less than 0.35, it is advisable
that the bearing capacity mode should be carefully assessed. Read-
ers interested in RBD for the internal stability and bearing capacity
mode for conventional MSE walls are referred to Chalermyanont
and Benson (2004, 2005).

The forces acting on a narrow MSE wall are shown in Fig. 5.
The length of reinforcement often covers the entire width of the
wall, so L is typically equal to the length of reinforcement. The
total weight W of backfill can be computed using Eq. (1):

 

(a) (b) (c) (d) 

MSE Wall Stable Face 

Initial Working Stress Before Failure Overturning Failure 

Fig. 4. Photographic images from centrifuge: (a) initial condition (1 g); (b) working stress (10 g); (c) right before failure (32 g); (d) failure condition
(32 g)

Table 2. Summary of Wall Failure Modes and Corresponding Design Guidelines

Wall aspect ratio L=H < 0:25 0:25 < L=H < 0:3 0:3 < L=H < 0:6 0:6 < L=H < 0:7 L=H > 0:7

Failure mode External Compounda Internal

Design method Cement-stabilized wallb FHwA SMSE-wall design

guidelines (Morrison et al. 2006)

FHwA MSE-wall design

guidelines (Elias et al. 2001)
aThe compound failure has a failure surface formed partially through the reinforced soil and partially along the interface between the MSE and stabilized
wall faces.
bA cement-stabilized wall is suggested by the reinforced earth company.
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W ¼ γ · L · H ð1Þ
where γ = unit weight of backfill; L = wall width; and H = wall
height.

The traffic load is modeled as an uniform surcharge pressure q.
The magnitude of the minimum traffic loads suggested by
AASHTO (2002) is equivalent to 0.6 m (2 ft) height of soil over
the traffic lanes. Therefore, q is expressed as Eq. (2):

q ¼ 0:6 · γ ðSIUnitÞ or q ¼ 2 · γ ðEnglish UnitÞ ð2Þ
The resulting vertical component is expressed as R. As suggested in
FHwA (Elias et al. 2001) and AASHTO (2002) design guidelines,
designs should not rely on live loads as a part of resisting force/
moment; therefore, R is equal to W , regardless of q. V is the shear
resistance along the bottom of the wall and evaluated using Eq. (3):

V ¼ R · tan δ ¼ W · tan δ ð3Þ
where δ = interface friction angle between foundation and
reinforcement, taken to be 2=3 of the friction angle of the founda-
tion soil ϕf .

The lateral earth pressures attributable to the backfill weight and
traffic load are denoted by Ps and Pq, respectively. They can be
calculated using Eq. (4)

Ps ¼
1
2
γ · H2 · Ka · ð1� FÞ ð4Þ

and Eq. (5)

Pq ¼ q · H · Ka · ð1� FÞ ð5Þ

where Ka ¼ tan2ð45� ϕ=2Þ = conventional active earth-
pressure coefficient from the Rankine theory; and F = reduction
factor, addressing the reduction of earth pressure in narrow walls,
as discussed in previous sections. The value of F will be discussed
in details in the next section. It is clear that F is bounded between 0
and 1. F ¼ 0 means no reduction; it often happens at L=H ≥ 0:7,
and F ¼ 1 means full reduction or no lateral earth pressure acting
on MSE walls. It is also very important to note that these lateral
earth thrusts are reactive forces rather than direct forces acting from
the stable face to the MSE wall. These reactive forces may be af-
fected by numerous unmodeled effects, such as nonlinear distribu-
tion of earth pressure, arching effects, boundary constraints, and
spatial variability. It is highly unlikely that the Rankine theory
is able to fully capture these complexities. Because separate treat-
ment of all model uncertainties is not possible, the reduction factor

F is employed to accommodate these model uncertainties and will
be calibrated by using the Bayesian analysis described in the next
section.

Last, the cohesion of backfill is not considered because cohe-
sionless materials are advised for backfill (Elias et al. 2001;
AASHTO 2002). In addition, the water pressure is also not in-
cluded in the stability mode. This is because if a MSE wall is con-
structed carefully by following guidelines (Elias et al. 2001;
AASHTO 2002), water pressure can be minimized by taking the
following actions:
• Cohesionless materials are commonly recommended as back-

fills in current design guidelines. These materials are highly
permeable so that water pressure would not accumulate.

• Installation of drainage pipes, blankets and weep holes is typi-
cally required in design guidelines to facilitate drainage.
By treating the reinforced soil wall as a rigid mass, safety ratio

against sliding (SRs) and overturning (SRo) can be calculated as
Eq. (6)

SRs ¼
Σ horizontal resisting forces
Σ horizontal driving forces

¼ W tan δ
Ps þ Pq

¼ γ · L=H · tanð2ϕf =3Þ
½γ=2þ q=H� · tan2ð45� ϕ=2Þ ·

1
1� F

ð6Þ

and Eq. (7)

SRo ¼
Σ resisting moments
Σ driving moments

¼ W · L=2
Ps · H=3þ Pq · H=2

¼ γ · ðL=HÞ2
½γ=3þ q=H� · tan2ð45� ϕ=2Þ ·

1
1� F

ð7Þ

In Eqs. (4) and (5), a linear earth pressure distribution is assumed
for Ps and a uniform earth pressure distribution is assumed for Pq.
In fact, the reduced earth pressure is nonlinearly distributed with
wall height. This deviation in the magnitude of total earth pressure
induced by the more realistic nonlinear distribution is quantified as
part of the model uncertainty by the reduction factor F. Also, the
length of moment arm in Eq. (7) induced by the more realistic non-
linear distribution is not much different from that by assuming lin-
ear earth pressure distribution. Based on the results from this study,
the length of moment arm for Ps for nonlinear cases is approxi-
mately 0.338H (height) for walls with L=H ¼ 0:3 and decreases
to approximately 0.333H for walls with L=H ¼ 0:7, both fairly
close to H=3 for the linear distribution case.

The safety ratios calculated by Eqs. (6) and (7) are uncertain (or
random) because the soil properties (e.g., friction angle) and F are
uncertain. The nominal safety ratios for the two modes, denoted by
SRs and SRo, are taken to be Eq. (8)

SRs ¼
�γ · L=H · tanð2�ϕf =3Þ

½�γ =2þ �q=H� · tan2ð45� �ϕ=2Þ ·
1

1� �F
ð8Þ

and Eq. (9)

SRo ¼
�γ · ðL=HÞ2

½�γ =3þ �q=H� · tan2ð45� �ϕ=2Þ ·
1

1� �F
ð9Þ

where �γ = nominal value (e.g., mean value) of γ, and the same no-
tation applies to other variables. If the effect of F is neglected
(F ¼ 0), Eqs. (8) and (9) turn into the equations for evaluating
the external stability of conventional walls.

The rigidity of the wall face is not included in the stability
model, which is consistent with the current design guidelines (Elias
et al. 2001; AASHTO 2002). The effect of facing rigidity can be

Stable Wall MSE Wall 

Ps Pq V 

H

L Pivot 

W

R

q 

Fig. 5. Forces acting on a narrow MSE wall
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viewed as an additional resisting force/moment. Thus, the method
described in this paper is more appropriate for MSE walls with flex-
ible facing. Safety ratios for walls with rigid facing will be larger
than (the failure probabilities will be less than) those predicted us-
ing the method described herein.

Probability Distribution of Reduction Factor F

Deterministic Estimation of Reduction Factor F

As mentioned earlier, previous research was conducted to investi-
gate the effect of reduction in the lateral earth pressure on narrow
walls. Among them, Yang and Liu (2007) performed a finite-
element study to quantify the effect of L=H on the reduction of
earth pressures. Their numerical models are calibrated using the
data from Frydman and Keissar (1987) and Take and Valsangkar
(2001) centrifuge tests. Fig. 6 shows the comparisons between the
calculated results from Yang and Liu’s finite-element analyses (red
dots) and the measured data from Frydman and Keissar’s centrifuge
tests (black squares and white triangles) under the at-rest condition
and under the active condition. The data presented in Fig. 6 is a
combination of test results of wall models with L=H from 0.1 to
1.1. In Fig. 6, both axes are presented in nondimensional quantities:
y-axis presents nondimensional depth z=L, where z is the depth and
L is the wall width. Similarly, x-axis presents the nondimensional
external earth pressure coefficient kw’, evaluated by lateral earth
pressure σx normalized by overburden pressure. Also indicated
in Fig. 6, Ko ¼ 1� sinϕ is Jaky’s at-rest earth pressure coefficient.

Fig. 7 presents the comparison between the calculated results
(dots) and the measured data from Take and Valsangkar’s
centrifuge tests (squares) for two different wall widths
(L=H ¼ 0:1 and 0.55). The comparisons in Figs. 6 and 7 demon-
strate consistency between Yang and Liu’s calibrated results and the
centrifuge tests.

Based on the calibrated finite-element model, Yang and Liu
(2007) further performed a series of parametric studies to quantify

the value of the reduced earth pressures for various aspect ratios,
locations [vertical edge (external earth pressure) or center of rein-
forced wall (internal earth pressure)], and stress states (at-rest or
active conditions). The results from at-rest condition could be ap-
plied to earth pressures for rigid retaining walls or MSE walls with
inextensible reinforcements (i.e., metal strip, bar, or mat), while
those from active conditions could be applied to earth pressures
for flexible retaining walls or MSE walls with extensible reinforce-
ments (i.e., geosynthetics). They concluded that the earth pressures
of narrow walls can be estimated by multiplying a factor Rdto the
conventional earth pressures, as shown in Eq. (10):

PL=H<0:7 ¼ PL=H>0:7 · RdðL=HÞ ð10Þ

where PL=H<0:7 is the earth pressure of a narrow MSE wall and
PL=H>0:7 is the earth pressure of a conventional MSE wall. The es-
timate for RdðL=HÞ, later referred to as the nominal value �RdðL=HÞ,
is shown in Fig. 3 under the active condition. In fact, the reduction
factor F ¼ FðL=HÞ defined previously is exactly 1� RdðL=HÞ, so
the nominal reduction factor becomes Eq. (11):

�FðL=HÞ ¼ 1� �RdðL=HÞ ð11Þ

In this study, the reduction factor of the average earth pressure
under the active condition is taken since it is commonly chosen
in practice for the evaluation of external stabilities, regardless of
the rigidity of walls (Elias et al. 2001; AASHTO 2002). The nomi-
nal reduction factor �FðL=HÞ is obtained by averaging �RdðL=HÞ for
external and internal earth pressure in Fig. 3 (i.e., average earth
pressure) and converting to �FðL=HÞ by Eq. (11). The so-obtained
�FðL=HÞ is shown in Fig. 8, which shows �FðL=HÞ approaches zero
when L=H increases toward 0.7 and becomes zero since
L=H > 0:7. This condition indicates no reduction of earth pressure
is necessary for L=H > 0:7; consequently, the calculation of earth
pressure can continuously transit from narrow walls (L=H < 0:7) to
conventional walls (L=H > 0:7). A polynomial regression equation
for the curve in Fig. 8 is given in Eq. (12):

�FðL=HÞ ¼
��3:6416 · ðL=HÞ3 þ 6:2285 · ðL=HÞ2 � 3:6173 · L=H þ 0:7292 for 0:1 ≤ L=H < 0:7
0 for L=H ≥ 0:7

ð12Þ

Variability in Reduction Factor: Bayesian Analysis of
Centrifuge Test Data

Eq. (12) is just an estimation of the reduction factor as a function of
L=H. However, for the purpose of RBD, the variability in FðL=HÞ
that characterizes the model uncertainties should be also taken into
account. Centrifuge tests by Frydman and Keissar (1987) and Take
and Valsangkar (2001) are insufficient to update the variability in
FðL=HÞ because these tests are mainly focused on the at-rest con-
dition and only a few on the active condition. Compared with these
tests, the 24 sets of centrifuge tests on narrow walls performed by

Woodruff (2003) (discussed in the section “Location of Failure
Plane”) seem to provide much more information. Unlike Frydman
and Keissar (1987) and Take and Valsangkar (2001), Woodruff
(2003) did not directly measure the earth pressures but only ob-
served the failure patterns. Because there are many tests performed
byWoodruff (2003), the amount of information may be sufficient to
update the variability of FðL=HÞ by using Bayesian analysis.

The variability in FðL=HÞ is quantified through an uncertain
scaling factor U: the actual value of FðL=HÞ is taken to be the best
estimate in Eq. (12) scaled by the factor U as shown in Eq. (13)

FðL=H;UÞ ¼
� ð�3:6416 · ðL=HÞ3 þ 6:2285 · ðL=HÞ2 � 3:6173 · L=H þ 0:7292Þ · U for 0:1 ≤ L=H < 0:7
0 for L=H ≥ 0:7

ð13Þ
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This scaling parameter U is adopted to accommodate model
uncertainties, including the possible bias and variability in the re-
duction factor described by Eq. (12). The prior probability density
function (PDF) of U is taken to be uniformly distributed over [0,
2.5] to prevent F > 1. Based on Woodruff’s test results, the pos-
terior PDF of U can be updated through the Bayesian analysis as
shown in Eq. (14):

f ðujDÞ ¼ f ðDjuÞf ðuÞ
f ðDÞ ¼

R
f ðDju;ϕCFÞf ðtanϕCFÞdϕCF · f ðuÞ

f ðDÞ ð14Þ

where D ¼ fD1;…;Dmg = all centrifuge test results (Dj = test re-
sult of the jth test); m = total number of tests; f ðuÞ and f ðtanϕCFÞ =
prior PDFs of U and the tangent of the backfill friction angle for the
centrifuge tests; f ðujDÞ = posterior PDF, characterizing the variabil-
ity of U conditioning on the centrifuge test data; f ðDju;ϕCFÞ =
likelihood function; and f ðDÞ = normalizing constant to ensure
the integration of f ðujDÞ is unity.

In Eq. (14), the friction angle ϕCF is the backfill friction angle in
Woodruff’s tests. This friction angle is estimated to be 36.7º

Fig. 6. Comparison of the finite-element analysis performed by Yang
and Liu (2007) and Frydman’s centrifuge test results: (a) at-rest con-
dition; (b) active condition

Fig. 7. Comparison between the finite-element analysis performed by
Yang and Liu (2007) with Take’s centrifuge test results
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interpolated from a series of triaxial compression tests (Zornberg
2002) at the targeted backfill relative density of 70%. Therefore,
the PDF f ðtanϕCFÞ of this friction angle is taken to be normally
distributed with mean value ¼ tanð36:7°Þ and coefficient of varia-
tion (COV) chosen to be 5, 10, 15, and 20%. The COV quantifies
the variability in the interpolation process, estimated to be within
the range of 5–20%.

To incorporate Woodruff’s test results into the Bayesian analy-
sis, the test results are quantified according to the following two
principles:
1. If the jth test indicates no failure, Dj contains two types of

information: SRo > 1:0 and SRs > 1:0. Therefore, the like-
lihood function for the jth test should be as calculated in
Eq. (15):

f ðDjju;ϕCFÞ ¼ PðSRj
o > 1& SRj

s > 1ju;ϕCFÞ

¼ I

�
2 · L=Hj · tanð2ϕCF=3Þ
tan2ð45� ϕCF=2Þ

> 1� FðL=Hj; uÞ
�

× I

�
3 · ðL=HjÞ2

tan2ð45� ϕCF=2Þ
> 1� FðL=Hj; uÞ

�

ð15Þ

where L=Hj = aspect ratio for the jth test; and Ið·Þ = indicator
function. The surcharge term q does not show up
here because the surcharge pressure is zero for all tests con-
ducted by Woodruff (2003). The unit weight term γ appears
in both nominator and denominator of stability model and
is canceled out in Eq. (15); ϕf ¼ ϕCF is also taken for the foun-
dation soil because Woodruff used the same backfill material
for the foundation.

2. If the jth test indicates overturning failure, Dj contains the in-
formation that SRo < 1:0. Strictly speaking, this result does not
imply SRs > 1:0. Therefore, the likelihood function for the jth
test should be as shown in Eq. (16):

f ðDjju;ϕCFÞ ¼ PðSRj
o < 1ju;ϕCFÞ

¼ I

�
3 · ðL=HjÞ2

tan2ð45� ϕCF=2Þ
< 1� FðL=Hj; uÞ

�

ð16Þ

Fig. 9 shows the resulting posterior PDF f ðujDÞ for various
choices of the COV level of tanðϕCFÞ. The posterior PDF is not
very sensitive to the assumed prior COV levels.

In Bayesian analysis, the updating of U may interact with the
updating of tanðϕCFÞ. It is therefore instructive to also illustrate the
posterior PDF of tanðϕCFÞ. Fig. 10 shows the posterior PDFs of
tanðϕCFÞ when the COV of the prior PDF of tanðϕCFÞ is 5, 10,
15, and 20%. The updated PDF of tanðϕCFÞ suggests tanðϕCFÞ
is more likely to be around tanð36:5°Þ, which is very close to
the prior mean value tanð36:7°Þ.

Reliability-Based Design Calibrated by Centrifuge
Test Data

The key contribution of this research is to convey the information
learned from the centrifuge tests into guidelines that can be directly
implemented to practical designs in the format of RBD. In this
section, RBD results calibrated by the centrifuge data will be pre-
sented in the form of η� versus P�

F relation (η� is the required nomi-
nal safety ratio and P�

F is the target failure probability), which is

determined by a simplified RBD method proposed by Ching
(2009). The review and validation of this simplified RBD method
is presented in the appendix. Once the η� versus P�

F relation is
obtained, the required nominal safety ratio η� corresponding to
a prescribed target failure probability P�

F can be readily identified.
A design with nominal safety ratio > η� will also satisfy failure
probability < P�

F. This method requires the ability to simulate Z
samples.

In a typical future design, the random variables Z contain the
tangent of backfill friction angle tanðϕÞ (Z1), tangent of foundation
friction angle tanðϕf Þ (Z2), unit weight γ (Z3), traffic load q (Z4),
and scaling parameter U (Z5). Only U depends on D; the rest are
independent of D. Therefore, ftanðϕÞ; tanðϕf Þ; γ; qg samples
should be drawn from their prior PDFs, whereasU should be drawn
from the posterior PDF f ðujDÞ. The friction angle ϕ here
is different from ϕCF in the previous section; the former is the back-
fill friction angle in a future design, while the latter is the backfill
friction angle used in Woodruff’s tests.

Fig. 9. Posterior PDFs of U with different assumed COVs of tanðϕÞCF
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Selection of Prior PDFs for Random Variables

Table 3 summarizes the assumed prior PDF types, mean values (μ)
and COV for the random variables in a typical design: tanðϕÞ is
taken to be normal with mean value μtanϕ and 10% COV, and
tanðϕf Þ is taken to be normal with mean value μtanϕf and 10%
COV The unit weight γ is taken to be normal with mean value
μγ and 10% COV The 10% COV is according to Phoon (1995)
for the inherent variability of friction angle and unit weight. Traffic
load q is taken to be lognormally distributed with mean value (μq)
of 0 if traffic load is not considered (e.g., wall is designed for aes-
thetic purposes) and of 0:6μγ kN=m2 if traffic load is considered
[e.g., wall will open for public traffic: using Eq. (2)]. The COVof q
is taken to be 30% to model larger variability in traffic load.

Spatial variability of soil properties is not taken into account,
i.e., the soil is assumed homogeneous. The impact of spatial vari-

ability to the magnitude of earth pressure can be fairly complicated,
as illustrated by Fenton et al. (2005) on a cantilever wall. Their
conclusion is that the worst case happens when the scale of fluc-
tuation is on the same order of the wall height. Therefore, the most
conservative design approach is to assume the scale of fluctuation
to be on the same order of wall height. In the writers’ case, the scale
of fluctuation is assumed to be very large (homogenous). This is
definitely not the most conservative assumption. However, this
homogeneous assumption prohibits the averaging effect, which
in general will reduce the variability of the earth pressure. In
this regard, the homogeneous assumption is conservative. In
conclusion, the homogeneous assumption should be relatively
conservative, although not the most conservative one.

For the scaling parameter U, it is necessary to obtain the samples
from the posterior PDF f ðujDÞ. Fig. 9 demonstrates the posterior
PDFs in a graphical way for various levels of friction angle vari-
ability. The Metropolis algorithm (Metropolis et al. 1953) is
adopted to obtain samples from these posterior PDFs.

Design Variables θ

In this study, the design variables θ include the aspect ratio L=H
(θ1), wall height H (θ2), mean value of backfill friction angle
μtanϕ (θ3), mean value of foundation friction angle μtanϕf (θ4),
mean value of unit weight μγ (θ5), and mean value of traffic load
μq (θ6). According to practical design for MSE walls, the range of

Fig. 11.Variation of η� versus P�
F relations over L=H: (a) sliding mode, 0:3 < L=H < 0:7; (b) sliding mode, 0:2 < L=H < 0:3; (c) overturning mode,

0:3 < L=H < 0:7; (d) sliding mode, 0:2 < L=H < 0:3

Table 3. Assumed Distributions for the Random Variables

Variables PDF μ COV

Z1: tanðϕÞ Normal tan(30°)~tan(45°) 10%

Z2: tanðϕf Þ Normal tan(30°)~tan(45°) 10%

Z3: γ (kN=m3) Normal 15~20 10%

Z4: q (kN=m2) Lognormal 0 or 0:6μγ 30%

Z5: U Samples drawn f ðujDÞ
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design variables is selected as L=H ∈ ½0:2–0:7�, H ∈ ½3 m–9 m�,
μtanϕ ∈ ½tanð30°Þ– tanð45°Þ�, μtanϕf ∈ ½tanð30°Þ– tanð45°Þ�, μγ ∈
½15 kN=m3–20 kN=m3�, and μq ¼ 0 or 0:6μγ kN=m2.

AlthoughWoodruff (2003) observed that external failure mainly
happened when L=H < 0:25 for centrifuge tests, this observation
only indicates that for narrow walls with L=H < 0:25, the proba-
bility of external instability is very high (almost certain). It does not
imply narrow walls with L=H > 0:25 have “zero” probability of
external instability. Therefore, in the sense of RBD, it is still im-
portant to evaluate the external stability of walls with L=H > 0:25.
This is the reason for selecting L=H from 0.2–0.7 in this study.

For a realistic design process, engineers often need to iterate the
design variables θ to reach the optimal design. For the RBD ap-
proach, it is therefore desirable to establish η� versus P�

F relations
that are invariant over various choices of θ. Most design variables
are found to have only slight influence on the η� versus P�

F relation
because of the cancellation between SRðθÞ and SRðZ; θÞ. Specifi-
cally, μγ and μtanϕf have insignificant influence on η� versus P�

F
relations because of nearly perfect cancellation in the division be-
tween SRðθÞ and SRðZ; θÞ. The variations of the η� versus P�

F re-
lation with design variables other than μγ and μtanϕf in their
practical ranges will be illustrated in the next section.

Last, the η� versus P�
F relations in general depends on the pos-

terior PDF f ðujDÞ, which is affected by the assumed COV level for
tanðϕCFÞ, as indicated in Fig. 9. However, it is found that the

calibrated η� versus P�
F relation does not change much for various

posterior PDFs f ðujDÞ in Fig. 9; therefore, only the posterior PDF
f ðujDÞ corresponding to 10% COVof tanðϕCFÞ is taken for the sub-
sequent presentation.

Main Results

A series of calibrated η� versus P�
F relations for sliding and over-

turning modes are presented in this section. The application of
these η� versus P�

F relations for RBD designs will be illustrated
by a design example in the next section. Figs. 11 and 12 present
the variations of η� versus P�

F relations with wall aspect ratio L=H
and wall height H, respectively, when traffic load is considered.
The η� versus P�

F relation is slightly affected by μtanϕ, so this sen-
sitivity is also shown in the figures. In Fig. 11, the η� versus P�

F
relation is nearly invariant over L=H for L=H > 0:3; however,
the η� versus P�

F relations start to slightly shift for L=H < 0:3.
In developing Fig. 12, L=H is assumed to be greater than 0.3.
In Fig. 12, the η� versus P�

F relation is nearly invariant over H,
although H has a larger influence in the overturning mode. Fig. 13
presents the variations of η� versus P�

F relations with mean value of
traffic load μq. Similar to Fig. 12, μq has a larger influence in the
overturning mode.

Fig. 12. Variation of η� versus P�
F relations over H: (a) sliding mode, H ¼ 3 m; (b) sliding mode, H ¼ 9 m; (c) overturning mode, H ¼ 3 m;

(d) sliding mode, H ¼ 9 m
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When extra evidence, e.g., detailed site investigation, indi-
cates that the assumed COVs for the random variables Z are in-
appropriate, the 10% COV for tanðϕÞ and unit weight as well as
the 30% COV for traffic load should be replaced. Sensitivity
analysis shows that the COV of tanðϕÞ has a major effect on
the calibrated η� versus P�

F relation, while the effect of the

COV for traffic load and unit weight is negligible. Fig. 14 shows
the η� versus P�

F relations for tanðϕÞ COV ∈ ½5%–15%� when
traffic load is considered, while Fig. 15 shows the results for zero
traffic load. Since the COV of tanðϕÞ significantly affects the η�
versus P�

F relations, careful assessment of the COV of tanðϕÞ is
crucial.

Fig. 13. Variation of η� versus P�
F relations over μq: (a) sliding mode, traffic load; (b) sliding mode, no traffic load; (c) overturning mode, traffic load;

(d) sliding mode, no traffic load

Fig. 14. Effect of COV of tanðϕÞ when traffic load is considered: (a) sliding mode; (b) overturning mode
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Design Example

The following hypothetical example is taken to illustrate using the
design charts (Figs. 11–15) for RBD.

A construction project plans to widen an existing highway to
accommodate increasing traffic volume. The final decision of this
project is to place a MSE wall in front of the stable face of the
existing structure that has a height of 6 m. The tentatively selected
backfill has an average friction angle of 40° and mean unit weight
of 17 kN=m3. The foundation soil has an average friction angle
of 40°. The target failure probability for permanent geotechnical
structure is 0.001 selected from FHwA geotechnical risk-analysis
guidelines (Baecher 1987). What is the minimum value of wall
aspect ratio for the failure probability to satisfy the above criterion
for both sliding and overturning modes?

The procedure for the preceding design example can be ad-
dressed using the steps shown in the flowchart in Fig. 16. The
key components are presented as follows:
1. The design variables H ¼ 6 m, μtanϕ ¼ tanð40°Þ,

μtanϕf ¼ tanð40°Þ, and μγ ¼ 17 kN=m3 should be conside-
red fixed and cannot be altered by the designer unless a
decision is made to replace the soils. The traffic load should
be considered in the design because this MSE wall opens to
public traffic, hence μq ¼ 0:6μγ. The COVs of tanðϕÞ,
tanðϕf Þ, and γ are assumed to be a typical value of 10%.
The COV of q is assumed to be 30% for a larger variability
in traffic load. The only design variable subjected to a design
decision is L=H.

2. Select η� corresponding to the target failure probability:
The RBD criterion is P�

F < 0:001 for both sliding and overt-
urning modes. Recall that the influence of μtanϕf and μγ to the
η� versus P�

F relation is insignificant. Also, the influence of
L=H is insignificant as long as L=H > 0:3. First assume
that the final decision is to let L=H > 0:3. Based on this
assumption, Fig. 12 can be used to find the required nominal
safety ratio η� for both failure modes. However, Fig. 12
only shows the η� versus P�

F relations for H ¼ 3 m and
9 m. The following steps are therefore taken to estimate η�
corresponding to P�

F ¼ 0:001: find the η� corresponding to
P�
F ¼ 0:001 for H ¼ 3 m and 9 m for both failure modes

(use the curves for μtanϕ ¼ 40° in Fig. 12). This will give
two η� values for each failure mode, one for H ¼ 3 m and
the other for H ¼ 9 m. Averaging the two values will give a
good estimate for the η� value for H ¼ 6 m. The corre-
sponding η� is approximately 1.75 for sliding and 1.65 for
overturning.

3. Determine minimum value of L=H: The required nominal
safety ratio η� (i.e., 1.75 or 1.65) serves as the smallest nominal
safety ratios SR necessary for the RBD design. Since the nom-
inal safety ratios SR can be calculated using Eqs. (8) and (9),
one needs to select a minimum value of L=H so that the result-
ing SRs will be larger than 1.75 and SRo will be larger than
1.65. It is worthwhile to remind one that the definition of
SRs and SRo is different from the conventional safety factors:
the difference is in the term 1=ð1� �FÞ. The minimum value of
L=H can be determined by starting with L=H ¼ 0:2 and in-
creasing this value until SR ≥ η�. In this example, the mini-
mum value of L=H is found to be 0.44 and 0.39 for the

Fig. 15. Effect of COV of tanðϕÞ when traffic load is not considered: (a) sliding mode; (b) overturning mode

Define system variables
Η, φ, φf, γ, q

Select target failure 
probability PF* 

Use stability model 
Eqs. (8) and (9) 

calculate SR
starting from L/H = 0.2  

Use design charts 
identify η* 

corresponding to PF* 

SR η* ? 

Yes 

End of defining 

L/H 

Start RBD 

No 

Increase L/H

Fig. 16. Flowchart for the proposed design procedure
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sliding mode and overturning mode, respectively. Therefore,
L=H ¼ 0:44 should be taken.

4. Verification (optional): This design scenario of L=H ¼ 0:44 is
further verified by Monte Carlo simulation with one million
samples, which shows that the failure probability for L=H ¼
0:44 is 8 × 10�4 for sliding and 4 × 10�6 for overturning.
It is instructive to know how the FHwAMSE-wall design guide-

lines (Elias et al. 2001) compares with the proposed design charts.
In the guidelines, the conventional safety factor [i.e., Eqs. (8) and
(9) for �F ¼ 0] is required to be 1.5 for sliding and 2.0 for overturn-
ing. The minimum value of L=H can also be determined by using
the conventional safety-factor requirements. The minimum value of
L=H is 0.39 for sliding and 0.43 for overturning. As a result,
L=H ¼ 0:43 should be taken. By using Fig. 12 and recognizing
that there is a 1=ð1� �FÞ ratio of difference between SR and
the conventional safety factor, it is concluded that the FHwA
MSE-wall design guidelines correspond to P�

F ¼ 0:006 for sliding
and P�

F ¼ 0:0001 for overturning.

Conclusions

This paper studies the external stability of narrow MSE walls. A
stability model is proposed to calculate the stability against sliding
and overturning. The effect of reduced earth pressure, an important
characteristic of narrow MSE walls, is included in the proposed
stability model. The variability in the reduction factor that charac-
terizes model uncertainties is calibrated by centrifuge test data. The
main improvements over conventional works include a better cap-
ture of reduced earth pressure by introducing a reduction factor and
design charts for RBD. The following conclusions are drawn from
this study.
• Design charts representing the relation between target reliability

and required nominal safety ratio are provided for practical use.
The benefit of the relation is that one can achieve a RBD by
using the safety-factor approach, and the required safety factor
can be easily found from the charts. Readers should also notice
that a good design practice is assumed in this study (i.e. no
accumulation of water pressure within MSE walls); therefore,
the proposed design charts may not be applicable to designing
MSE walls when the consideration of water pressure is required.

• The bearing capacity failure mode is not calibrated in this study
because of the calibration limitation using centrifuge test results.
Yet, based on noncalibrated simulations, for MSE walls with
L=H greater than 0.35, the failure probability for this mode
is usually less than 0.01. For walls with L=H less than 0.35,
it is advisable that the bearing capacity mode should be carefully
assessed.

• It is worth mentioning that Fenton et al. (2005) studied the ef-
fects of correlation length over the reliability of cantilever re-
taining walls. Such effects are not taken into account, i.e.,
the soil is assumed homogeneous. The impact of spatial varia-
bility to the magnitude of earth pressure can be fairly compli-
cated, as illustrated by Fenton et al. (2005) on a cantilever wall.
Their conclusion is that the worst case happens when the scale
of fluctuation is in the same order of the wall height. Therefore,
the most conservative design approach is to assume the scale
of fluctuation to be in the same order of wall height. In the wri-
ters’ case, the scale of fluctuation is assumed to be very large
(homogenous). This is definitely not the most conservative as-
sumption. However, this homogeneous assumption prohibits the
averaging effect, which in general will reduce the variability of
the earth pressure. In this regard, the homogeneous assumption
is conservative. In conclusion, the homogeneous assumption

should be relatively conservative, although not the most conser-
vative one.

Appendix: Relationships between η� and P�
F

In this appendix, a theorem is reviewed to illustrate the relation
between the target failure probability P�

F and the required safety
factor η�. This theorem follows from a theorem originally proposed
by Ching (2009). In terms of RBD, the design target is to ensure the
chosen design will meet certain failure probability requirements as
in Eq. (17):

PðSRðZ; θÞ < 1jθ;DÞ ≤ P�
F ð17Þ

where P�
F = target failure probability; Z contains all random var-

iables (including tangent of backfill friction angle ϕ, tangent of
foundation friction angle ϕf , unit weight γ, traffic load q and scal-
ing parameter U); θ contains parameters of chosen design variables
(including the aspect ratio L=H, wall heightH, mean value of traffic
load μq, mean value of tangent of backfill friction angle μtanϕ, mean
value of tangent of foundation friction angle μtanϕf , and mean value
of unit weight μγ); D = Woodruff’s centrifuge test data. The cen-
trifuge test information is conveyed through the conditioning on D.
Ching (2009) shows that RBD in Eq. (17) is equivalent to the fol-
lowing safety-factor design:

SRðθÞ ≥ η� ð18Þ

where η� = required safety factor to meet the target failure prob-
ability. The functional relationships between η� and P�

F are shown
in Eq. (19):

PðSRðθÞ=SRðZ; θÞ > η�jθ;DÞ ¼ P�
F ð19Þ

For ease of presentation, SRðθÞ=SRðZ; θÞ will from now on be
denoted by GðZ; θÞ.

To implement this theorem, the relation between η� and P�
F is

first determined from Eq. (19). Once this relation is obtained, the
required safety factor corresponding to a prescribed target failure
probability can be identified. According to the theorem, a design

Fig. 17. Illustration of the distribution of SRðZ; θÞ and SRðθÞ=SRðZ; θÞ
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satisfying the safety-factor criterion will also satisfy the target reli-
ability, i.e., RBD can be achieved through a safety-factor design.

Although the theorem seems nontrivial, a simplified procedure
based on MCS can be used to estimate the η� versus P�

F relations:
draw N samples of Z, denoted by fZðiÞ: i ¼ 1;…;Ng, where Z
samples are drawn from the PDF of Z conditioning on the centri-
fuge data D. Let GðiÞ ¼ GðZðiÞ; θÞ. At the end of MCS, fGðiÞ: i ¼
1;…;Ng is obtained. For a chosen η� value, the corresponding P�

F
value can be easily estimated by the law of large numbers in
Eq. (20):

P�
F ≈ 1

N

XN
i¼1

IðGðiÞ > η�Þ ð20Þ

By changing the η� value, one can estimate the corresponding
P�
F values by repetitively applying Eq. (20); the entire functional

relation between η� and P�
F is then obtained. In the current study,

one million samples (N ¼ 106) are taken to establish the η� versus

P�
F relations for both sliding and overturning modes. It is essential

to obtain Z samples conditioning on the centrifuge data D. By
doing this, the so-determined η� versus P�

F relation will “absorb”
the information contained in the centrifuge tests. The equivalence
between Eqs. (17) and (18) is only for a fixed value of θ, not for a
range of θ. In fact, from Eq. (19) it is clear that the calibrated η�
versus P�

F relation in general will change with θ. In other words, the
calibrated η� should depend on θ. However, it turns out the η� ver-
sus P�

F relation usually does not change dramatically for a range of
possible θ values. This is because the probability distribution of
SRðθÞ=SRðZ; θÞ usually does not change much with θ owing to
the cancellation between SRðθÞ and SRðZ; θÞ in division: when θ
is varying, SRðθÞ and SRðZ; θÞ either increase or decrease in a
similar pattern. The concept of the cancellation between SRðθÞ
and SRðZ; θÞ is illustrated in Fig. 17. The cancellation in
SRðθÞ=SRðZ; θÞ implies that the probability PðSRðθÞ=SRðZ; θÞ >
η�jθ;DÞ and consequently the η� versus P�

F relation may not vary
drastically over θ.

Fig. 18. Results for sliding and overturning modes: (a) P�
F ¼ 0:1; (b) P�

F ¼ 0:01; (c) P�
F ¼ 0:001; (d) P�

F ¼ 0:0001. The “X” region is the region
where PF is larger than P�

F , while the “○” region is the region where PF is less than P�
F . The shaded region is the region of η�SRðθÞ ≤ 1
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One way to justify the preceding cancellation is to find the η�
versus P�

F relation for various θ to see whether the relation changes
mildly with changing θ. Another equivalent way to justify the
cancellation is to check if the allowable RBD set

P
R ¼

fθ: PðSR½Z; θ� > 1:0jθÞ ≤ P�
Fg is indeed close to the allowable

safety-factor set
P

S ¼ fθ: SRðθÞ ≥ η�g for all [η�, P�
F] pairs sat-

isfying Eq. (19). The latter way for the verification is carried
out through a series of MCSs. The comparison between the allow-
able RBD and safety-factor sets should, in principle, be made in the
θ space, a six-dimensional space of L=H, H, μq, μtanϕ, μtanϕf , and
μγ. For brevity, only the comparison for the case considering traffic
load (i.e., μq is fixed at 0:6μγ kN=m2), μγ ¼ 18 kN=m3, μtanϕf ¼
tanð40°Þ, andH ¼ 6 m is presented. Therefore, the comparison will
be made in the two-dimensional space of μtanϕ and L=H. The
verifications on other scenarios show similar conclusions and will
not be presented.

In the design region of μtanϕ and L=H, each of the coordinate
axes is divided into discrete points, creating grid points in specified
design regions: μtanϕ ∈ ½tanð30°Þ; tanð45°Þ� and L=H ∈ ½0:3–0:7�
with small intervals. A total of 525 ¼ 25 × 21 grid points represent
525 different design scenarios of μtanϕ and L=H. The actual failure
probability of each grid point (or design scenario) is evaluated by a
set of MCSs with one million samples. Fig. 18 shows the results for
given target failure probabilities P�

F ¼ 0:1, 0.01, 0.001, and 0.0001,
respectively. If the actual failure probability at a grid point is
less than P�

F , it is marked as an open circle “○”; otherwise, it is
marked as an “X.” Therefore, the region occupied by the
open circle “○” should be close to the allowable RBD setP

R ¼ fθ: PðSR½Z; θ� > 1:0jθÞ ≤ P�
Fg. On the other hand, for given

P�
F , the corresponding η� is identified from Figs. 11–15 and the

allowable safety-factor design set
P

S ¼ fθ: SRðθÞ ≥ η�g is plotted
as the shaded region. The η� versus P�

F relation is verified if all “X”
are outside the blue shadow and all “○” are inside the blue shadow.
As shown in Fig. 18, the comparisons seem satisfactory; only slight
mismatch occurs at the boundary between shaded and unshaded
regions. This slight mismatch is attributed to the imperfect cancel-
lation between SRðθÞ and SRðZ; θÞ.

In conclusion, the comparison shows that the design charts in
Figs. 11–15 are consistent to the results from MCS. Fig. 18 is only
for the purpose of validation. Once the validation is satisfactory,
Figs. 11–15 can be directly used for practical designs without
further verifications.
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