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Abstract: An isotropic softening model for predicting the post-peak behavior of frictional 

geomaterials is presented. The proposed softening model is a function of plastic work which 

can include all possible stress-strain combinations. The development of softening model is 

based on the Lade and Kim constitutive soil model but improves previous work by 

characterizing the size of decaying yield surface more realistically by assuming an inverse 

sigmoid function. Compared to original softening model using the exponential decay function, 

the benefits of using the inverse sigmoid function are highlighted as: (1) provide a smoother 

transition from hardening to softening occurring at the peak strength point, and (2) limit the 

decrease of yield surface at a residual yield surface, which is a minimum size of yield surface 

during softening. The proposed softening model requires three parameters; each parameter 

has it own physical meaning and can be easily calibrated by a triaxial compression test. Data 

from triaxial compression testing on Monterey No. 30 sand is applied to demonstrate the 

calibration procedure and examine the variation of model parameters with different loading 

conditions. Results show all parameters are highly correlated to confining pressures. The 

proposed softening model can provide a useful tool for evaluating those structures on which 

the post-peak behavior of frictional materials should be emphasized, e.g. earth structures 

under large loading or deformation conditions or the structures having an intensive soil-

structures interaction, etc.  

 
Keywords: Lade and Kim soil model; Softening function; Post-peak behavior; Frictional 
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1. INTRODUCTION 

 

The terminology of soil “softening” is referred to, after soil reaches peak strength, the soil 

strength would decrease with the increasing deformation. This softening behavior can be 

often observed from conventional laboratory tests, specifically for triaxial test (Lade and 

Prabucki 1995; Chu et al.1996; Yoshida and Tatsuoka 1997; Suzuki and Yamada 2006, etc.). 

Figure 1a illustrates a typical stress-strain behavior of frictional soil under triaxial 

compression. Strain hardening is developed initially and then strain softening after deviatoric 

stress reaches peak value. The strain softening will cease at residual value. The stress state 

reaches residual strength is also called critical state by some researchers. The soil specimen 
will eventually “fail” at large soil strain. In Fig. 1b, the rate of changing deviatoric stress with 

axial strain is close to zero at peak strength then gradually decreases to a minimum negative 
value during softening and slowly increases back to zero again. Figure 1c shows the 

corresponding volumetric strain behavior. The volumetric compression and dilatancy occurs 
during shearing and then the dilatancy will level out at a constant volumetric strain. 

 

 

     
Figure 1: Typical stress-strain behavior of frictional soils: (a) deviatoric stress vs axial strain; 

(b) rate of hardening and softening vs axial strain; (c) volumetric strain vs axial strain 
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Beside the observation in laboratory, the softening behavior is also often noticed in the 

field for earth structures under large loading and deformation conditions or the structures 

having an intensive soil-structures interaction; for example, landslide, foundation and 

platform, soil anchors, soil piles and Geosynthetic-Reinforced Soil (GRS) structures (e.g. 

Murff 1980; Huang et al. 1994; Leschinsky 2001; Liu et al. 2004; Hsu 2005; Troncone 2005; 

etc.). Numerical methods have been frequently adopted to study the behavior of earth 

structures in soil under various loading conditions. The merit of numerical analyses mainly 

include the relatively low-cost, less labor and capability of reduplication compared to physical 

tests; however, the interactive behavior between an earth structure and soil is difficult to 

analyze accurately by a simple numerical model. The soil constitutive model used to analyze 
an earth structure’s behavior in frictional soil is often considered as a nonlinear elastic model: 

e.g. Duncan hyperbolic model (Duncan and Chang 1970), elastic-perfectly plastic model: e.g. 

Mohr- Coulomb model, and an elastoplastic model: e.g. Hardening Soil model (Schanz 1999) 

and Lade and Kim soil model (Kim and Lade 1988; Lade and Kim 1988a, 1988b and 1995; 
Lade and Jakobsen 2002) etc. Although those models have their own specialties for analyzing 

specific problem; the natures of strain softening and volumetric dilatancy of frictional soil are 
usually not taken into account. 

Among aforementioned models, Lade and Kim soil constitutive model (Kim and Lade 

1988; Lade and Kim 1988a,1988b and 1995; Lade and Jakobsen 2002) equips both work 

hardening and softening model and has been applied to model the behavior of soils or rocks in 

numerous researches (e.g. Lee et al. 2002; Borja 2004; Baxvanisetal et al. 2006). A review of 

Lade and Kim model is provided in Section 2 and Appendix A. In Lade and Kim model, the 

soil hardening and softening behavior is modeled by an isotropic inflation and deflation of 

yield surface which is governed by hardening and softening laws. The hardening and 

softening laws are function of plastic work Wp. Lade and Kim argued that the advantages of 

using plastic work characterizing yield behavior is because it does not involve tests with 

complicated stress-paths and it also avoids difficulties in determination of yield points on 

stress-strain curves. In addition, computation of plastic work is straight forward and the 

plastic work appears to capture yielding in terms of shear strains as well as volumetric strains. 

They also claimed that the evaluation of the yield criterion was performed in the hardening 
regime where the soil behavior has been studied experimentally and is reasonably well known. 

However, actual movement and shape of yield surface in the softening regime is much less 
known; therefore in Lade and Kim soil model, the decrease of yield surface is just simply 

assumed as an exponential decay function. 
This study presents an isotropic softening model for predicting the post-peak behavior of 

frictional geomaterials. The development of softening model is based on the Lade and Kim 
constitutive soil model but improves previous work by characterizing the size of decaying 

yield surface more realistically by assuming an inverse sigmoid function. Compared to 

original softening model using the exponential decay function, the benefits of using the 

inverse sigmoid function are highlighted as: (1) smooth the abruptly transition from hardening 

to softening occurring at the peak strength point, and (2) limit the decrease of yield surface 

until a residual yield surface is reached. This paper is organized by first reviewing the Lade 

and Kim soil mode in Section 2. The proposed model and equations will be introduced in 

Section 3. A calibration procedure will be elaborated in Section 4 and, in Section 5, the 

predicted results will be compared to the experimental results of triaxial compression testing 

on Monterey No. 30 sand under different confining pressures. This paper will be concluded in 

Section 6. 

 

 

2. REVIEW OF LADE AND KIM SOIL MODEL 
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Lade and Kim (or called single hardening) constitutive soil model (Kim and Lade 1988; 

Lade and Kim 1988a, 1988b and 1995; Lade and Jakobsen 2002) is an elastoplastic model 

composed by following components: elastic model, failure criterion, plastic potential function 

for non-associated flow rule, yield criterion, isotropic hardening and softening models. The 

formulation is developed based on numerical experimental data sets of testing frictional 

materials under various loading conditions. The model incorporates thirteen parameters and 

all can be determined using data from isotropic compression and triaxial compression tests. 

Table 1 summarized the model components, parameters and main governing equations in the 

latest version of Lade and Kim soil model (Lade and Jakobsen 2002). A brief review of the 

framework and the components are provided in Appendix A. Readers are recommended 
referring to Lade and Jakobsen (2002) for other details. This section will focus on introducing 

the softening model in Lade and Kim soil model.  

 

Table 1: Summary of Lade and Kim soil model component 

Model component Parameter Main equation 

Elastic model M, λ, ν Eq. (A1) 

Failure criterion m, η1, a' Eq. (A2) 

Plastic potential ψ2, µ Eq. (A4) 

Yield criterion h, α Eq. (A7) 

Hardening law C, p Eq. (A10) 

Softening law b' Eq. (1) 

 

2.1 Softening Model in Lade and Kim Soil Model 

 

The softening model is one of two components of isotropic yield function (Eq. (A6)) in 

Lade and Kim soil model. As discussed in Section A.4, the yield function describes the shape 

and size of yield surface; the shape of yield surface is governed by yield criterion fp
’
(σ) in Eq. 

(A7) and the increasing and decreasing size of yield surface is controlled by hardening and 

softening law fp
’’
(Wp), respectively. Hardening law is introduced in Section A.5 and softening 

law will be discussed in this section.  

For soil during hardening, as the plastic work increases, the isotropic yield surface inflates 

until the current stress point reaches the peak failure surface or stress level S=1. The relation 

between the increasing yield surface fp
’’and plastic work Wp (normalized by atmospheric 

pressure pa) is described by a monotonically increasing function whose slope decrease with 

increasing plastic work, as shown in Fig. 2. After stress state reaches peak failure surface, the 

soil behavior changes from hardening to softening. During soil softening, the increase of 

plastic work will case the deflation of yield surface. The yield surface is assumed deflating 

isotropically according to an exponential decay function: 

 

a
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in which A and B are positive constants to be determined on the basis of the location and slope 
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In which both the size of the yield surface fp
’’
 and the derivative d fp

’’
/d (Wp /pa) are obtained 

from the hardening curve at S=1. The value of d fp
’’
 is negative during softening. The only 

parameter in softening model is b
’
, which is a positive value ( 0b ≥′ ). The b

’
 parameter value 

equal to zero corresponds to a perfect plastic material. The effect of b
’
on softening curve is 

illustrated in Fig.2. 

 

 
   Figure 2: Modeling of work hardening and softening (Lade and Jakobsen 2002) 

 

 

3. PROPOSED SOIL SOFTENING MODEL  

 

Base on the general observation of soil post-peak behavior stated in Section 1 and the 

experience of using and calibrating the softening model in Lade and Kim soil model, it is 

found that the size of decaying yield surface is more like an inverse sigmoid curve rather than 

an exponential decay curve. This will be demonstrated using the data from three triaxial 

compression tests in Section 4. Figure 3 illustrate the inverse sigmoid function used for 

proposed softening model. The improvement of predicting softening behavior by using 

inverse sigmoid function is highlighted in following two factors:  
 

1. Provide a smoother transition from hardening to softening at the peak strength point. The 
abruptly transition observed in Fig. 2 indicates a suddenly rate changing form hardening 

to softening at peak strength point; this doesn’t agree with the observation in Fig 1b 
which shows the rate changing from hardening to softening is gradually at peak strength 

point.  
 

2. Limit the deflation of yield surface until a residual yield surface fpr
’’ 

is reached. In Eq. (1), 

the softening model in Lade and Kim soil model allow the size yield surface shrink to 

zero if plastic work is large enough. This implies the deviatoric stress will go back to 
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zero or the stress state is going to the original stress state before loading starts. However, 

as shown in Fig 1b, the stress state should stay at a residual strength when soil 

experiences large deformation. This can be simulated by the model parameter fpr
’’ 

in 

proposed softening model. 

 

 

 
      Figure 3: Proposed softening model based on inverse sigmoid function 

 
The governing equation is expressed as: 
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where (fp
’’)S=1 is the size of yield surface at peak condition and (Wp/pa)S=1 is the value of 

normalized plastic work at peak condition which can be evaluated from the hardening curve at 

S=1. a, b and c are all positive real numbers: a controls the magnitude of softening curve; b 

controls the curvature of softening curve; and c controls the vertical distance of softening 

curve. a, b and c can be calibrated from a triaxial compression test. c is calculated as: 
 

pr1Sp f)f(

1
c

′′−′′
=

=

                                                                   (5) 

 

where fpr
’’ is the yield function on residual condition which can be obtained by substituting the 

stress components at residual stress state into Eq. (A7). a, b and fpr
’’
 are three parameters for 

the proposed softening model. In addition, when the normalized plastic work starts at 
(Wp/pa)S=1, the size of yield surface (fp

’’)(Wp/pa)S=1 calculated by Eq. (4) would differ from 

(fp
’’
)S=1 by 1/(c+a) (indicated in Fig.3). Preliminary study shows c is usually negligible 

compared to parameter a and the discontinuity between (fp
’’)S=1 and (fp

’’)(Wp/pa)S=1 can be 

eliminated by using a larger value of parameter a. Although this discontinuity will not cause 
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any numerical difficulty in further application, for sustaining the continuity between 

hardening and softening curves, the value of this gap (i.e. 1/a) is recommend less than 5% of 

(fp
’’
)S=1. 

An incremental form of the new softening model is also provided for the calculation of 

plastic modulus H and the implementation into a finite element program, such as ABAQUS 

(ABAQUS 1995) and PLAXIS (2005), through a user-defined material module. 
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4. CALIBRATION PROCEDURE 

 

4.1   Properties of Test Soil 

 

Data of triaxial compression testing on Monterey No. 30 sand (Li 2005) is selected to 

demonstrate the calibration procedure. Monterey No. 30 sand is a clean uniformly graded 

sand classified as SP in the unified system. The properties of Monterey No. 30 sand are listed 
in Table 2. 

The specimen with relative density of 65% was tested under three confining pressures. 
Figure 4a shows the deviatoric stress and strain relations. A clear strength softening behavior 

in stress-train curve can be observed at larger confining pressure. Figure 4b shows the 
volumetric and axial strain relations. Figure 4c shows the isotropic compression and 

volumetric strain relations. Note the data in Fig. 4c is only for calibrating hardening 
parameters, C and p, and not necessary for the proposed softening parameters. 

 

Table 2: The properties of Monterey No. 30 sand 

Soil Type Monterey No. 30 sand 

D50 (mm) 0.4 

Uniformity coefficient, Cu 3 
Coefficient of gradation, Cz 1.1 

Specific gravity, G 2.66 
Soil classification SP 

Max dry unit weight, γd,max (kN/m
3
) 16.70 

Min dry unit weight, γd,min (kN/m
3
) 14.76 

 

 

4.2 Calibration Procedure 

 

The step of calibration procedure is as follows: 

 

1. For the calibration of all model parameters (expect for the softening parameters), select 

the data points until the peak strength point and follow the procedure addressed by Lade 

and Kim (Kim and Lade 1988; Lade and Kim 1988a,1988b). Obtain (fp
’’
)S=1 and (Wp)S=1 

from hardening curve at S=1. 

CIMLAMCE 2008 7



 

 

Figure 4: Triaxial compression test results: (a) deviatoric stress and axial strain; 

(b) volumetric and axial strain; (c) isotropic compression and volumetric strain 

 

2. For the calibration of softening parameters, select the data points from the peak strength 

point to the last data point for each triaxial test. Calculate fp
’’
using equation Eq. (A7) and 

obtain softening parameter fpr
’’ from the calculated fp

’’ at the last data point. 

 

3. Calculate Wp using following equation: 

 

∑ εσ+=
=

=
=

ji

1i
p1Spp dd)W(W                                                            (7) 

 

where dσ and dεp are the incremental stress and plastic strains tensors. dεp can be calculated 

by subtracting elastic strain increment from total strain increment, i is the number of 

increments of data points. 

(a) 

(b) (c) 
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4. Calculate c using Eq. (5) 

 

5. Plot the data points in following coordinates 

 

1Sapap )pW(pWX =−=′                                                           (8) 

and  
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                                                                (9) 

 
The softening function in Eq. (4) is translated into  

 
XbaeY

′−=′                                                                         (10) 

 

Best fitting the plotted data points using an exponential function and obtain softening 
parameters a and b. Figures. 5 shows the best fitting curve and the obtained model parameters 

a and b for three confining pressures. Table 3 shows the final calibrated parameters. 
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        (b) σ3 = 115kPa                              (c) σ3 = 60.5kPa  

 
       Figure 5: Best fitting curve for obtaining model parameters a and b 
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      Table 3: Material parameters for Monterey No. 30 sand  

Model component Parameter Value 

Elastic model M, λ, ν 705, 0.257, 0.35 

Failure criterion m,η1, a' 0.0214, 24, 0 

Plastic potential ψ, µ -8.51, 2.4 

Yield criterion h, α 0.67, 0.2 

Hardening law C, p 5.07x10-5, 1.9 

Softening law f''pr, a,b  

Confining pressure 211kPa 85.68, 1.88, 54.3 

 115kPa 52.48, 1.10, 124.7 

 60.5kPa 50.13, 0.75, 165.4 
 
 

Figures 6 show the correlations of calibrated softening parameters with confining 

pressures. Because frictional material does not have strength under unconfined condition, the 
regression line in Fig. 6a is forced to intercept at origin. Figures 6 show the softening model 

parameter are highly correlated to confining pressure.  
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       (b) parameter a                                 (c) parameter b 

 

  Figure 6: Correlation of softening model parameters with confining pressures:  

   softening parameter (a) fpr
’’; (b) a; (c) b  
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Figures 7 show final results of calibration. The calibration curves using original 

softening model are also plotted for comparison. The calibration curves from original 

softening model are calculated by varying original softening parameter b
’
 until maximum 

correlation with the experimental data is found (i.e., maximum R2). As shown in Figs. 7, the 

calibration curves using original approach either overestimate the size of yield surface at last 

data point in Fig. 7a or underestimate that in Fig. 7b. It is fair to conclude that the new 

softening model based on inverse sigmoid function can depict the trend of experimental data 

better than original approach by exponential decaying function. 

 

 
     (a) σ3 = 211kPa  

 
       (b) σ3 = 115kPa                            (c) σ3 = 60.5kPa  

 

       Figure 7: Comparison of calibration results with different confining pressures 
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5 COMPARE TO EXPERIMENTAL RESULTS 

 

After the calibration of softening parameters, Lade and Kim soil model with the proposed 

softening model are used to predict stress-strain relation of Monterey No. 30 sand. The results 

of prediction are shown in Fig. 8. A modified forward Euler scheme with error control 

(Jakobsen and Lade, 2002) is adopted to integrate stress at each strain subincrement. In 

modified forward Euler scheme, the size of each strain subincrement is determined so that the 

new stress state fulfils the specified tolerance and only the absolutely necessary number of 

strain subdivision are applied. As demonstrate in a special example in Jakobsen and Lade 

(2002), they showed that with this integration scheme, the error can be suppressed under 10
-4

 
approximately with a maximum number of subincrements of 30.  

The prediction curves using original softening model are also plotted for comparison. Due 
to the over and under estimation of the sizes of yield surfaces in Figs. 7, the original softening 

model also shows an over and under estimation of prediction in Figs. 8. Figure 8 confirms the 
proposed softening model shows better prediction results. Figure 8 also shows that the 

proposed softening model can capture well different magnitudes of strength softening under 
different confining pressures. Last, because volumetric strain is computed by using plastic 

potential function in Eq. (A4), the difference between using proposed and original softening 

model to predict volumetric and axial strain seems slight; therefore, the results of predicting 

volumetric and axial strain are not presented herein.   

  

 
Figure 8: Comparison of prediction results 
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6 CONCLUSIONS 

 

This paper proposed an isotropic softening model for predicting the post-peak behavior of 

frictional geomaterials. The development of softening model was based on the Lade and Kim 

soil constitutive model but improved previous work by characterizing the size of decaying 

yield surface by using an inverse sigmoid function. The inverse sigmoid function more 

realistically captured the softening behavior in following twofold: (1) provide a smooth 

transition from hardening to softening occurring at the peak strength point, and (2) limit the 

decrease of yield surface until a residual yield surface. Three softening model parameters fpr
’’
, 

a and b could be easily calibrated by a triaxial test. The calibration produce was demonstrated 
by using the data of three triaxial compression tests on Monterey No. 30 sand. Results 

indicate three softening parameters were strongly correlated to confining pressures.      
In future work, the proposed softening model can be implemented into a finite element 

program through a user-defined material module. This can provide a useful tool to 
numerically evaluate the structures on which the post-peak behavior of frictional material 

should be emphasized. 
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APPENDIX A 

 

This appendix provides a brief review of the framework and the components of the Lade 

and Kim soil constitutive model. In order that the presentation follows a logic developmental 

sequence, the components are presented in the following sequence: elastic model, failure 

criterion plastic potential and flow rule, yield criterion and work hardening law. 

 

A.1  Elastic Model 

 

The elastic strain increments are calculated following Hook’s law. The Young’s modulus 
E nonlinearly varies with stress state. The expression of Young’s modulus was derived based 

on the principle of energy conservation. According to this derivation, Young’s modulus can 
be expressed in following equation in term of a power law: 
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where I1 is the first invariant of the stress tensor; J’2 is the second invariant of the deviatoric 

stress; and pa is the atmospheric pressure in the same unit as E and I1; M, λ, and Poisson’s 

ratio ν are constant dimensionless material parameters, which can be obtained from simple 

tests such as triaxial compression tests. 

 

A.2  Failure Criterion 

 

A three-dimensional failure criterion is expressed in terms of the first I2 and third I3 

invariant of the stress tensor: 
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and 

1nf η=  at failure                                                                  (A3) 

 

1= ηnf  means current stress state reaches material peak failure surface. Another parameter a
’
 

is required in order to include the effective cohesion and the tension which can be sustained 

by concrete and rock. A translation of the principal stress space along the hydrostatic axis is 

performed; thus, a constant stress a
’
pa is added to the normal stresses before substitution into 

Eq. (A2). The value of a’pa reflects the effect of the tensile strength of the material. The 

parameters m, η1, and  a
’ are constant dimensionless numbers, which may be determined from 

results of simple tests such as triaxial compression tests. 

 

A.3  Plastic Potential and Flow Rule 

 

The plastic potential function is written in terms of the three invariants of the stress tensor 

and presented in Eq. (A4). Note that this function is different from the yield function and non-

associated flow is consequently obtained. 
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where I2 is the second invariant of the stress tensor. The material parameters ψ2 and µ are 

dimensionless constants that may be determined from triaxial compression tests. The 

parameter ψ1 is related to the curvature parameter m of the failure criterion as follows: 

 
27.1

1 m00155.0 −=Ψ                                                               (A5) 

 

A.4  Yield Criterion  

 
The yield surface are associated with and derived from surfaces of constant plastic work, 

as explained by Lade and Kim (1988a). The isotropic yield function is expressed as follows:  

 

0)W(f)(ff pppp =′′−σ′=                                                           (A6) 

 

in which fp
’
(σ) defines the shape of yield surface and is expressed in Eq. (A7); fp

’’
(Wp) is 

hardening or softening law which defines the increasing or decreasing size of yield surface. 

The formula for hardening and softening laws are discussed later. 
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where h is constant and q varies from zero at the hydrostatic axis to unity at the peak failure 

surface 1= ηnf . The constant parameter h is determined on the basis that the plastic work is 

constant along a yield surface. The value of q varies with stress level S defined as the ratio of 

fn to η1.  
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The stress level S varies from zero at the hydrostatic axis to unity at the peak failure surface, 

and the variation of q with S is expressed as: 

 

S)1(1

S
q

α−−

α
=                                                                    (A9) 

 

in which α is a constant. The material parameters α and h are dimensionless constants that 

may be determined from triaxial compression tests. 

 

A.5   Work Hardening Model 

 

For soil during hardening, the yield surface inflates isotropically with plastic work 

according to: 
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where the values of ρ and D are constant for a given material; thus, fp
’’ varies with the plastic 

work only. The values of ρ and D are given by: 
 

ρ+Ψ
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)327(
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                                                                (A11) 

and 

h

p
=ρ                                                                            (A12) 

 

The parameters C and p are used to model the plastic work during isotropic compression: 
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The material parameters C and p are dimensionless constants that may be determined from 
isotropic compression tests. As the plastic work increases, the isotropic yield surface inflates 

until the current stress point reaches the peak failure surface. The relation between the 
increasing yield surface fp

’’and plastic work Wp is described by a monotonically increasing 

function whose slope decrease with increasing plastic work, as shown in Fig. 2. 
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