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the unreinforced infill material layer 
(MPa)

Esurf 	� Surface modulus (MPa)
Esurf_R (MPa)	� Surface modulus with reinforcement 

(MPa)
Esurf_un (MPa)	� Surface modulus in the absence of 

reinforcement (MPa)
Eun (MPa)	� Modulus of unreinforced infill layer 

(MPa)
k	� Modulus number (dimensionless)
RC	� Relative compaction
R2	� Coefficient of determination
Si	� Relative stiffness of the reinforcement
Su	� Undrained shear strength (kPa)
wn	� Natural water content (%)
wopt	� optimum water content (%)
γd	� Dry unit weight (kN/m3)
γs	� Unit weight of solids (kN/m3)

Introduction

Geocells can be used in the design of many geotechnical 
projects, including embankments, foundations, slope sta-
bilization, erosion control, retaining walls, protection of 

List of symbols
Dr	� Relative density (%)
emax	� Maximum void ratio (dimensionless)
emin	� Minimum void ratio (dimensionless)
ER	� Modulus of the reinforced infill layer 

(MPa)
Es	� Modulus of subgrade (MPa)
Es_R	� Modulus of the subgrade supporting 

the reinforced infill material layer 
(MPa)

Es_un	� Modulus of the subgrade supporting 
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Abstract
This article presents the analysis of results from Plate Load Tests (PLT) involving a series of load-unload-reload cycles. A 
total of 128 tests were conducted to investigate the parameters governing the Modulus Improvement Factor (MIF) based 
on the performance of unreinforced and geocell-reinforced coarse materials under varied conditions. A soft clay and a 
sandy soil, prepared at three different relative densities, were used as subgrade. The geocell infill material consisted of 
sandy soil and Granular Subbase (GSB) material, placed at two different densities each. Two types of HDPE geocells 
with different dimensions were used. Multilayer Perceptron (MLP) neural networks were used to analyze the combined 
influence of the various parameters on MIF. The results show that MIF has an increasing trend with increasing subgrade 
modulus, and a decreasing trend with increasing geocell pocket size and infill material modulus. Overall, the MLP was 
identified as a suitable tool for parametric analyses to assess the benefits of geosynthetics in roadway applications.
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buried pipelines, and paved and unpaved roads [1–8]. In 
Transportation Infrastructure projects, their typical function 
involves the stiffening of the unbound granular layers of 
roadway structures [9, 10].

In pavement design using the Mechanistic-Empirical 
Pavement Design Guide (MEPDG), the elastic parameters 
are particularly significant parameters to characterize the 
unbound aggregate layers [11, 12]. The increase in modulus 
in a layer reinforced with geocells can be captured by the 
Modulus Improvement Factor (MIF), defined as the ratio 
between the modulus in the reinforced condition to that 
in the unreinforced condition [13, 14]. Typically reported 
magnitudes of MIF have ranged from 1.5 to 5.0 based on 
laboratory experiments, although the reported magnitudes 
have ranged from 2.0 to 4.0 when the parameters are back-
calculated from in-service roadway applications or full-
scale tests [9, 14–18]. The characteristics of the infill soil, 
the geocell, the infill compaction process, and the subgrade 
layer can influence the MIF [19, 20]. Due to the complex-
ity involved in quantifying the MIF, some studies have rec-
ommended using analytical methods or conducting specific 
laboratory tests to predict it for the specific conditions of 
roadway projects [9, 21].

The Plate Load Test (PLT) is probably the most common 
laboratory test used to quantify the improvement resulting 

from the inclusion of geocells. Specifically, the performance 
of geocell-reinforced soil has been studied extensively 
through PLT to assess the influence of parameters such as 
the infill material properties, subgrade conditions, and geo-
cell characteristics [22–24]. However, the study of these fac-
tors has mainly focused on the Ultimate Limit State (ULS) 
and not on the Serviceability Limit State (SLS), which is the 
basis of the MEPDG [19].

Recent studies using Artificial Intelligence (AI) — spe-
cifically neural networks — have shown promising results 
in predicting the settlement and vertical stresses in geo-
cell-reinforced soils subjected to PLT [25–28]. Although 
the application of neural networks in geocell performance 
analysis is still emerging, these studies suggest that this 
approach can reliably enhance the prediction process, as it 
considers the complex interactions among various influenc-
ing factors.

In this context, the main objective of this paper is to 
evaluate the influence of infill material, subgrade condi-
tions, and geocell geometry on MIF values. As part of the 
experimental program, numerous PLTs were conducted to 
subsequently back-calculate the moduli of unreinforced and 
reinforced layers under different conditions. The obtained 
MIF values were then analyzed using neural network mod-
els. These models were employed to predict and interpret 
the results, as well as to generate charts correlating the rel-
evant variables.

Laboratory Model Tests

Testing Setup and Procedures

The laboratory model, presented in Fig. 1, consisted of a 
metallic test box in which both reinforced and unreinforced 
soil layers were constructed and subsequently subjected to 
PLT. The box measured 0.8 m x 0.8 m x 0.9 m (length x 
width x height) and was rigid enough to minimize lateral 
displacements. A computer-controlled pneumatic actuator 
was used to apply pressure to a circular metal plate with a 
diameter of 200 mm. A load cell and a Linear Variable Dif-
ferential Transformer (LVDT), connected to a data acqui-
sition system, were used to record the load and settlement 
during testing. In these tests, which followed the German 
standard DIN 18134 [29], the first loading cycle was con-
sidered complete when either a maximum load of 600 kPa 
or a maximum settlement of 8 mm was reached, which-
ever occurred first. After which unloading and subsequent 
reloading followed. The maximum load for the reload cycle 
was the same as that reached in the first cycle.

The experimental study was conducted in four series, 
each with 16 laboratory model tests, involving a two-layer 

Fig. 1  PLT laboratory test setup
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system configuration (i.e., a subgrade layer and a granu-
lar unreinforced or geocell-reinforced top layer), as sum-
marized in Table 1. Each configuration involved two tests 
(one per layer), resulting in a total of 128 PLT conducted in 
this study. The subgrade in Series 1, 2, and 3 consisted of 
a sand layer placed at relative densities (Dr) of 20%, 50%, 
and 80%, respectively. A soft clay layer was used as sub-
grade in Series 4. The top layer in all four series consisted 
of a sand layer placed at Dr of 50% and 80%, as well as a 
material identified as Granular Subbase (GSB) placed at a 
relative compaction (RC) of 95% and 100% in relation to 
the maximum dry unit weight obtained from Modified Proc-
tor Compaction tests. Two geocells (Geocells A and B) with 
distinct geometries were used for the reinforced condition. 
Further details regarding the testing setup and procedures 
can be consulted in Trujillo [30].

Materials

The sand used in this study was obtained from a quarry 
located in the southern region of Bogotá, Colombia, and 
served both as subgrade, with Dr of 20%, 50%, and 80% in 
Series 1, 2, and 3, respectively, and as infill material with Dr 
of 50% and 80% in all series (Table 1).

The sand had a fines content of 11.9% (fraction of par-
ticles smaller than 75 µm), a unit weight of solids (γs) equal 
to 24 kN/m3, no plasticity, and was used in dry condition 
during the tests. The minimum void ratio (eₘiₙ) and maxi-
mum void ratio (eₘₐₓ) were 0.31 and 0.79, respectively, with 
corresponding maximum and minimum dry unit weights of 
18.3 and 13.4 kN/m3. The sand is classified as poorly graded 
sand with silt (SP-SM) according to the Unified Soil Clas-
sification System (USCS) and as A-2–4 according to the 
Highway Research Board (HRB) system classification. The 
friction angle (φ’) of the sand at 90% Dr was determined as 
28.4°, which falls within the typical range reported in the 
literature for similar soils [31, 32]. Table 2 summarizes the 
properties of the soil used in this study.

The GSB, used only in the top layer, had a maximum 
grain size of 38 mm, a fines content of 16%, and γs of 25.6 
kN/m3. The liquid limit and plasticity index of the fines frac-
tion were 21 and 10, respectively. The maximum dry unit 
weight for the Modified Proctor Compaction test was 20.3 
kN/m3 for an optimum water content (wopt) of 7.9%. The φ’ 
of the GSB and California Bearing Ratio (CBR) for Modi-
fied Proctor Compaction condition were 38.5° and 18.5%, 

Table 1  Configurations of the two-layer models in this study
Series Configuration Subgrade Top layer Thickness of top layer (cm) Reinforcement Layers tested per config.
1 1 Sand

(Dr = 20%)
Sand
(Dr = 50%)

13 Unreinforced Subgrade
and
Top layer

2 16 Unreinforced
3 13 Geocell A
4 16 Geocell B
5 Sand

(Dr = 80%)
13 Same as configurations 1 to 4

6 16
7 13
8 16
9 GSB

(RC = 95%)
13 Same as configurations 1 to 4

10 16
11 13
12 16
13 GSB

(RC = 100%)
13 Same as configurations 1 to 4

14 16
15 13
16 16

2 17 to 32 Sand
(Dr = 50%)

Same as Series 1

3 33 to 48 Sand
(Dr = 80%)

4 49 to 64 Soft clay
Total PLTs 128

Table 2  Properties of the different soils in this study
Material Sand GSB Soft clay
Unit weight of solids, γs (kN/m3) 24.0 25.6 24.3
Fines content (%) 11.9 16 90
Liquid Limit, LL - 21 48
Plastic Limit, PL - 11 26
Plasticity Index, PI - 10 22
USCS classification SP-SM GC CL
HRB classification A-2–4 A-2–4 A-7-6 (18)
Undrained shear strength, Su (kPa) - - 9
Friction angle, φ’ (°) 28.4 38.5 -
California Bearing Ratio, CBR (%) - 18.5 1.2
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steel bar with a flat square base. The compaction energy was 
adjusted empirically through preliminary trials to achieve 
the target dry densities. For the case of the 20% Dr, the sand 
was gently tamped to preserve the loose state, consistent 
with previous reports in the literature [33]. It is important 
to note that, after reaching the target Dr, the density of the 
subgrade was verified before the construction of the upper 
layer. Since a small manual compactor with limited com-
pactive energy was employed, the stresses transmitted dur-
ing placement of the top layer were substantially lower than 
those applied in field operations [17, 18], thereby minimiz-
ing the risk of further densification of the underlying sub-
grade. This procedure ensured that the intended relative 
densities of 20%, 50%, and 80% were preserved within 
acceptable tolerance.

In Series 4, the clayey soil was first pulverized and then 
mixed with water to reach a water content of 19%. Addi-
tionally, to verify uniformity after placement and compac-
tion, the Su was measured using a mini vane shear device. 
Test bed preparation followed the same procedure as that for 
Series 1–3. The first PLT were carried out after completing 
the placement of the subgrade. Given the high water con-
tent of this clay, particular care was taken during construc-
tion of the overlying granular layers. The sand used as infill 
was placed in dry condition, and the relatively short time 
between placement and testing minimized the possibility of 
water migration. Therefore, no thick moist-sand interface 
was observed to develop, and the clay–sand boundary main-
tained the properties of each constituent layer throughout 
the duration of the experiments.

A procedure similar to that followed for the placement 
of the sandy soil was carried out for preparation of the 
top soil layer. For the GSB, after the wopt was reached, the 
mixture was homogenized and compacted with previously 
adjusted energy to achieve a target γd corresponding to a 
RC of 95 and 100%, respectively, according to the Modified 
Proctor. Density control for the GSB consisted of check-
ing the required weight of water and material for its total 
thickness. Again, the use of manual compaction resulted in 
lower applied stresses than those of heavy field equipment 
[17, 18], thus reducing the potential effect on the condition 
of the underlying subgrade. It is important to note that dif-
ferences in compaction stress can significantly influence the 
MIF, which is also influenced by the stresses induced during 
the process [19].

For the reinforced conditions, the geocells were placed 
and fixed to the sides of the test box using steel bars driven 
into the subgrade, ensuring contact between the center 
of the circular plate and the junctions of four open cells. 
The granular material was then deposited and compacted, 
after which a second PLT was performed to generate the 
stress-displacement curve of the two-layer system. Further 

respectively. The GSB is classified as a clayey gravel (GC) 
and a A-2–4 according to the USCS and HRB, respectively.

The soft clay subgrade used in Series 4 consisted of a 
typical clay from Bogotá, with a fines content of 90%, liq-
uid limit and plasticity index of 48 and 22, respectively. 
This material is classified as lean clay (CL) and A-7-6 (18) 
according to the USCS and HRB, respectively. The CBR 
for the soft clay was determined to be 1.2%. The undrained 
shear strength (Su) under undisturbed conditions was 9 kPa. 
In Series 4, this Su was achieved by setting the water con-
tent at 19%, previously calibrated using a mini vane shear 
device.

Two types of geocells, manufactured using High-Density 
Polyethylene (HDPE) were used in this study. Geocell A was 
characterized by a height of 120 mm, weld spacing of 356 
mm for a folded cell, and pocket cell area of 29 × 10− 3 m² 
corresponding to an equivalent diameter (deq) of 193 mm. 
Geocell B had a height, weld spacing, pocket cell area, and 
equivalent diameter of 150 mm, 445 mm, 48 × 10− 3 m², and 
247 mm, respectively. The walls of both geocells were tex-
tured, with 10-mm-diameter perforations covering an area 
of 10% of the wall area, an elastic modulus equal to 700 
MPa, and a thickness of 1.5 mm. Geocells A and B were 
used to reinforce the top layers with total thicknesses of 130 
mm and 160 mm, respectively. A summary of the geocell 
characteristics is listed in Table 3. Additional information 
on the material characterization and geocell configuration 
can be found in Trujillo [30].

Model Preparation

The internal surface of the box was coated with petroleum 
jelly to minimize sidewall friction effects. The models pre-
pared for Series 1–3 involved initial placement and densi-
fication of the sandy subgrade. The test bed was prepared 
by placing the sandy soil in the box and compacting it in 
100-mm-thick sublayers until reaching the target height. 
For each densified sublayer, the amount of soil required to 
achieve the target Dr was weighed and placed in the test 
box. Compaction was performed using the tamping method, 
employing a manual compactor consisting of a lightweight 

Table 3  Summary of geocell characteristics [57]
Properties Geocell A Geocell B
Polymer HDPE HDPE
Weld spacing (mm) 356 445
Density (g/cm³) 0.945–0.960 0.945–0.960
Open cell dimensions (mm) 259 × 226 315 × 304
Cell wall height (mm) 120 150
Pocket cell area (m²) 29 × 10− 3 48 × 10− 3

Equivalent diameter (mm) 193 247
Cell wall thickness (mm) 1.5 1.5
Elastic modulus (MPa) 700 700
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Layer Moduli and MIF Results

Table 4 summarizes the results obtained for each configu-
ration described in Table 1. The first column presents the 
test series (1 to 4). The second column indicates the pair of 
unreinforced (un) and reinforced (R) models with the same 
soil layer configuration. The third and fourth columns detail 
the materials for the top layer. The fifth and sixth columns 
present the subgrade moduli for the unreinforced (Es_un) and 
reinforced (Es_R) conditions of the top layer, respectively. 
The seventh and eighth columns show the surface moduli, 
obtained from PLTs conducted over the top layer, for the 
unreinforced (Esurf_un) and reinforced (Esurf_R) conditions, 
respectively. The ninth and tenth columns show the top 
layer moduli for the unreinforced (Eun) and reinforced (ER) 
configurations, respectively. Finally, the eleventh column 
presents the MIF calculated as the ratio of reinforced to 
unreinforced top layer modulus (ER/Eun).

Inspection of the results presented in Table 4 confirms the 
beneficial effect of geocell reinforcement on the top layer 
modulus in all performed experiments. Specifically, the 
MIF always exceeded 1.0 for all test configurations, with 
values ranging from 1.05 to 2.14, with an average of 1.44. 
As previously mentioned in the Model Preparation section, 
low compaction stresses were applied to densify the materi-
als. However, even in the absence of relevant compaction, 
which generates high horizontal stresses inside the cell 
pocket and is one of the most important factors for increased 
confinement and MIF [19], a significant improvement was 
observed in the top layer modulus in reinforced condi-
tions. As previously stated, MIF values are not constant but 
depend on factors such as subgrade conditions, infill mate-
rial, and geocell geometry [9, 20, 21, 38].

A review of the sandy soil subgrade moduli in Table 4 
reveals that the average value of Es increases, and the Coef-
ficient of Variation (COV) decreases, with increasing Dr. 
Specifically, for a 20% Dr (Series 1), the average Es is 23.5 
MPa (with a COV of 22%). As the Dr of the sand increased to 
50% (Series 2), Es rose to 29.0 MPa (with a decreased COV 
of 17%). Further increase in Dr to 80% (Series 3) resulted in 
an increased average Es of 34.8 MPa (with a COV of 18%). 
These results align with correlations reported in literature 
between Dr and stiffness of sands [31]. Consistent with this 
trend, the soft clay subgrade (Series 4) displayed a lower 
average Es of 9.4 MPa (with a higher COV of 38%). The 
Es values obtained in the laboratory fall within the typical 
range reported in the literature for different materials [35, 
39] as well as within the usual range of variability expected 
for both sandy soil and soft clays in pavement subgrade [40].

Since the main objective of this study is to evaluate the 
improvement provided by the geocell inclusion in top layer, 
the surface moduli are treated as intermediate values used 

information on the model preparation is provided in Trujillo 
[30].

Results and Discussion

Plate load tests (PLTs) were carried out directly over the 
subgrade and top layer in each configuration to obtain stress-
displacement curves. The moduli of the subgrade material 
(Es) were obtained from the first set of PLT tests conducted 
after subgrade construction. Also, the equivalent moduli of 
the two-layer system (i.e. subgrade + top layer, Esurf) were 
obtained from the second set of PLT tests conducted after 
the construction of the top layer [13, 17, 34]. The moduli 
were determined using an extension of the Boussinesq 
equation for a homogeneous and isotropic semi-infinite 
mass subjected to a rigid circular load, as follows:

E = σ

s
B(1 − v2)Cs� (1)

where E is the elastic modulus; σ is the applied stress corre-
sponding to a deflection s; B is the plate diameter (200 mm); 
ν is the Poisson’s ratio; and Cs is a geometric factor (0.79 for 
the center of a rigid circular load).

A Poisson’s ratio was adopted for each layer based on 
values typically reported in the literature for similar soils 
and conditions [7, 12, 17, 18, 35–37]. The sandy soil with 
20% Dr was assigned a Poisson’s ratio of 0.30; both sandy 
soil with 50% and 80% Dr and the GSB layer were assigned 
a value of 0.35; the soft clay was assigned a value of 0.45; 
and the geocell-reinforced layers were assigned a value of 
0.25. Although adopting representative values for Poisson’s 
ratio may be a simplification, its effect on determining the 
MIF is expected to be marginal, since the MIF is calculated 
based on the relationship between reinforced and unrein-
forced modulus.

Moduli (Es and Esurf) were obtained by back analysis of 
the PLT results. Specifically, the stress-displacement pair on 
the reload-unload cycle was analyzed following the Ger-
man standard DIN 18,134 [29]. To single out the top layer 
modulus using both Es and Esurf (the latter obtained from the 
PLT conducted over the top layer), the analytical equation 
by Avesani Neto [34], based on two-layered elastic system 
solutions, was employed following the methodology of Zip-
oli and Avesani Neto [17] and Feng et al. [18].

The following sections initially present the PLT results, 
followed by the analysis of the corresponding moduli and 
MIF, as well as the evaluation of the influence of the sub-
grade, infill material and geocell geometry. Finally, design 
charts are provided to correlate the relevant variables affect-
ing the MIF using multilayer perceptron models.
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A and B, respectively), while Fig. 2b and d show the cor-
responding MIF values. Figure 3a and c show the top layer 
moduli of the GSB infill at RC of 95% and 100% for unre-
inforced and Geocell-reinforced cases (Geocells A and B, 
respectively), and Fig.  3b and d show the corresponding 
MIF values.

The results in Figs. 2 and 3 indicate that the material type 
in the top layer, as well as its density, significantly influences 
the top layer moduli in relation to that in the unreinforced 
condition. Overall, the GSB exhibited a higher unreinforced 
modulus—an average of 44% higher—than the sandy soil. 
Increased densification of the top layer material also pro-
moted higher modulus independent of the material type. 
Specifically, an increase in the sandy soil Dr from 50% to 
80% caused an increase in its modulus from 20% to 151% 
(84% on average). Similarly, increasing the RC of the GSB 

solely for back-calculating the moduli of the top layer. 
Therefore, they are not analyzed herein.

The results in Table 4 show that the use of geocells led 
to an increase in the moduli of the top layer, generating the 
observed MIF values (ER/Eun). These results also indicate 
that the subgrade material and condition, infill material 
and geocell geometry influence the MIF value. A detailed 
analysis of these parameters is presented in the following 
sections.

Influence of the Infill Material

Figures 2 and 3 present the influence of the infill material 
on the top layer moduli and MIF for the two geocells inves-
tigated in this study. Specifically, Fig.  2a and c show the 
top layer moduli of the sandy soil infill at Dr of 50% and 
80% for unreinforced and geocell-reinforced cases (Geocell 

Table 4  Summary of moduli and MIF obtained in the experimental program
Series/
subgrade

Conf. (Un−R) Top layer/geocell infill 
material

Es_un 
(MPa)

Es_R 
(MPa)

Esurf_un 
(MPa)

Esurf_R 
(MPa)

Eun 
(MPa)

ER (MPa) MIF

Material Thickness 
(mm)

Series 1
Sand
Dr = 20%

1–3 Sand − 50% 130 25.7 18.3 25.6 26.6 24.0 41.2 1.72
5–7 Sand − 80% 16.0 18.4 28.0 32.0 49.9 62.5 1.25
9–11 GSB − 95% 16.3 16.5 27.7 31.5 47.1 69.7 1.48
13–15 GSB − 100% 23.7 28.8 49.6 59.3 114.5 147.0 1.28
2–4 Sand − 50% 160 25.3 20.3 24.7 24.1 22.9 28.6 1.25
6–8 Sand − 80% 26.2 24.0 36.0 34.2 43.1 46.8 1.08
10–12 GSB − 95% 27.3 32.6 31.6 39.8 33.0 48.2 1.46
14–16 GSB − 100% 26.7 29.6 45.9 48.6 67.7 75.6 1.12

Series 2
Sand
Dr = 50%

17–19 Sand − 50% 130 27.8 30.0 30.8 40.3 33.9 61.6 1.82
21–23 Sand − 80% 20.9 24.7 39.3 45.3 85.0 104.1 1.22
25–27 GSB − 95% 39.3 31.7 51.3 55.2 68.0 117.9 1.74
29–31 GSB − 100% 30.9 29.5 47.0 52.0 73.7 112.7 1.53
18–20 Sand − 50% 160 25.3 29.4 28.6 34.4 31.1 43.0 1.38
22–24 Sand − 80% 23.4 28.7 30.5 36.3 37.3 48.1 1.29
26–28 GSB − 95% 24.4 37.8 33.0 52.0 41.7 74.0 1.78
30–32 GSB − 100% 31.4 28.7 44.5 48.7 58.6 84.6 1.44

Series 3
Sand
Dr = 80%

33–35 Sand − 50% 130 36.5 38.1 36.5 47.4 36.5 66.5 1.82
37–39 Sand − 80% 26.9 30.2 44.5 51.4 79.8 106.5 1.33
41–43 GSB − 95% 43.1 29.6 58.6 57.7 81.3 145.4 1.79
45–47 GSB − 100% 37.2 27.5 58.2 63.3 96.6 207.0 2.14
34–36 Sand − 50% 160 38.1 36.4 41.0 48.6 43.2 67.5 1.56
38–40 Sand − 80% 28.1 44.0 42.2 54.6 58.7 71.4 1.22
42–44 GSB − 95% 35.1 38.1 48.3 67.1 61.9 120.7 1.95
46–48 GSB − 100% 43.4 24.8 57.0 52.6 70.1 116.3 1.66

Series 4
Soft clay

49–51 Sand − 50% 130 11.3 4.6 14.3 8.4 22.2 23.9 1.08
53–55 Sand − 80% 10.6 9.3 17.7 16.1 40.5 42.7 1.05
57–59 GSB − 95% 11.6 11.9 15.4 17.2 25.5 35.5 1.39
61–63 GSB − 100% 7.9 9.5 12.9 14.4 25.6 31.0 1.21
50–52 Sand − 50% 160 6.1 5.0 8.5 8.3 13.3 17.1 1.28
54–56 Sand − 80% 15.5 10.1 17.6 13.9 22.8 23.9 1.05
58–60 GSB − 95% 5.3 4.3 11.2 10.6 27.9 35.5 1.27
62–64 GSB − 100% 14.7 12.9 20.4 20.6 31.6 40.6 1.28
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Si = 2J

kPadeq
� (2)

The stiffness of the infill soil is represented by the modulus 
number (k) in Eq. 2. Soils with lower density (higher poros-
ity) exhibit lower stiffness, i.e., a reduced modulus number 
[42, 43]. Thus, small k values correspond to a higher Si, 
significantly increasing the MIF [19].

Therefore, since very low compaction energy was used in 
the soil densification process for all experimental configura-
tions, the less dense soils (more porosity) had smaller k val-
ues, which can be attributed to lead to comparatively higher 
MIF results, as reported in literature [9, 19, 20].

Influence of the Subgrade

The results in Figs.  2 and 3 are also useful to assess the 
influence of the subgrade material and its condition on the 
moduli of the top layer and MIF values for both geocells. It 
can be observed that both unreinforced and reinforced mod-
uli significantly increase with increasing subgrade modulus. 
The soft clay subgrade was the least stiff material (average 
Es of 9.4  MPa in Table  4) and resulted in comparatively 

from 95% to 100% led to an increase in the GSB modulus 
from 0.3% to 143% (average of 39%).

The results in Figs. 2 and 3 also show the impact of the 
different variables on the MIF. Specifically, MIF values 
ranging from 1 to 1.8 (averaging 1.3) were obtained for the 
cases involving sandy soil infill, while such values ranged 
from 1.1 to 2.1 (averaging 1.5) for the cases involving GSB 
infill. Although Eun and ER were consistently higher in con-
ditions involving infill with higher density, the MIF did not 
show a proportional increase. In fact, as observed in Figs. 
2 and 3, the MIF was consistently higher for the less dense 
condition (dashed lines). This behavior can be attributed 
to the comparatively low compaction energy used to den-
sify the materials and to the soil-geocell interaction. This 
interaction is quantified by the soil-reinforcement relative 
stiffness index (Si), which is expected to have a significant 
influence on the MIF values [19]. The Si (Eq. 2) is defined as 
the ratio of the geocell wall stiffness (J) to the product of the 
atmospheric pressure (Pa), the equivalent cell diameter (deq) 
and the soil modulus number (k) in the hyperbolic constitu-
tive model [41].

Fig. 2  Influence of subgrade and Dr of sandy soil infill on moduli and MIF: a unreinforced and Geocell A-reinforced modulus; b MIF for Geocell 
A; c unreinforced and Geocell B-reinforced modulus; and d MIF for Geocell B
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in an increase in the top layer unreinforced moduli for the 
sandy soil of 34% in average. Similarly, the increase in Dr 
from 50% to 80% resulted in an average improvement of 
16% and 28%, respectively, for the sandy soil and GSB. The 
relationship between the average Eun and Es was determined 
from the data, which exhibited a linear trend and indicated 
proportionality between these two variables, with increas-
ing rates (i.e. the slope of the relationship) of 1.8 and 1.2 for 
the GSB and sandy soil infills, respectively.

The influence of the bottom layer stiffness on the modu-
lus of the unbound granular material’s upper layer has been 
investigated in previous studies, resulting in trends similar 
to those observed herein [9, 12, 17, 44, 45]. This trend can 
be attributed to a lack of support from the bottom layer. That 
is, since the unbound granular materials of the upper layer 
are sensitive to confinement, a lack of support from the bot-
tom layer, especially during the compaction process, results 
in a reduced upper layer confinement, ultimately leading to 
a decrease in its modulus.

In fact, some authors have introduced a factor that rep-
resents the maximum increase in stiffness of unreinforced, 
unbound granular material relative to the stiffness of the 

smaller moduli for the two top layer materials evaluated 
in this study. Specifically, the average moduli are 25 MPa 
and 27 MPa for the unreinforced and reinforced conditions, 
respectively, for the cases involving sandy soil infill. The 
average moduli are 28  MPa and 36  MPa for the unrein-
forced and reinforced conditions, respectively, for the cases 
involving GSB infill. The sandy soil subgrade with a Dr of 
20% was stiffer than the soft clay (average Es of 23.5 MPa 
in Table 4), resulting in an increase in the top layer unrein-
forced moduli for the sandy soil and GSB, averaging 42% 
and 137%, respectively, in relation to those obtained with 
soft clay. The same sandy soil subgrade, but with a higher 
Dr of 50% (average Es of 29.0 MPa in Table 4) resulted in 
an increased unreinforced modulus of the top layer by an 
average of 90% and 119% for the sandy soil and GSB infills, 
respectively, compared to the soft clay subgrade. The sandy 
soil subgrade with a Dr of 80% (average Es of 34.8 MPa in 
Table 4) resulted in a further increase of the unreinforced 
moduli, corresponding to an average of 121% and 180% for 
the sandy soil and GSB, respectively, again compared to the 
soft clay subgrade. Comparing the results for only the sandy 
soil subgrade, the increase in Dr from 20% to 50% resulted 

Fig. 3  Influence of subgrade and RC of GSB infill on moduli and MIF: a unreinforced and Geocell A-reinforced modulus; b MIF for Geocell A; c 
unreinforced and Geocell B-reinforced modulus; and d MIF for Geocell B
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Influence of the Geocell Dimensions

Figure 4 shows the average MIF obtained in all experiments 
with Geocell A and Geocell B, for both the sandy soil and 
GSB as infill materials with different subgrade materials and 
conditions.

The results in Fig. 4 indicate that Geocell A generally 
showed greater improvement than Geocell B, except in the 
case of the sand infill with the soft clay subgrade. For the 
cases involving GSB infill, in the different subgrade con-
ditions, Geocell A exhibited a higher MIF than Geocell B, 
with values between 1% and 9% higher (5% higher on aver-
age), compared to Geocell B. For the cases involving sandy 
soil infill, Geocell A presented a maximum MIF increase 
of 27%, compared to Geocell B in the sandy subgrade with 
20% Dr, and an average of 12% for all subgrade conditions. 
When all experiments are considered, Geocell A generated 
a MIF value 8% higher than Geocell B. The geometry of 
Geocell A is characterized by a deq of 193 mm and height of 
120 mm; while Geocell B dimensions involved a deq of 247 
mm and a height of 150 mm. The trends observed in Fig. 4 
seems to be governed by the deq of the geocells. As shown 
by Garcia and Avesani Neto [19], the deq is an important 
parameter for the Si (Eq. 2): an increase in deq leads to a 
reduction in the Si and, consequently, the MIF. Although the 
geocell height influences the surface modulus obtained from 
PLTs, the layer modulus is only marginally affected by the 
geocell height.

Combined Effect of subgrade, infill, and Geocell 
Dimensions

The analyses of the 128 PLT presented in the previous 
subsections confirm that the infill, subgrade, and geocell 
dimensions influence MIF values. Despite the large number 
of PLTs conducted in this study, many additional variable 
combinations remain untested, as a parametric investigation 
accounting for the multiple remaining combinations would 
be prohibitive. Consequently, a parametric evaluation to 

underlying layer [9, 44]. This limitation on the maximum 
stiffness of materials sensitive to confinement is also indi-
cated in several pavement design manuals, which state that 
the stiffness of an unbound granular layer depends not only 
on the thickness of the layer but also on the stiffness of the 
underlying material [12, 46, 47].

Figures 2 and 3 also reveal that the MIF was affected 
by the subgrade condition following trends consistent with 
those in previous studies [9]. This behavior can again be 
explained by the low compaction stresses used to densify 
the geocell infill materials. Since the compaction process 
did not generate significant stresses in the top layer, the stiff-
ness of the subgrade had a significant influence on the MIF. 
When comparatively high stresses are induced by the com-
paction process, higher residual stresses are induced within 
the infill material, as lateral deformation is restricted by the 
geocell walls [48]. Consequently, the geocell reinforcement 
can compensate for the subgrade-induced lack of confine-
ment, improve the upper layer modulus more efficiently, 
ultimately minimizing the subgrade influence on the MIF 
value [9, 17, 18].

The average MIF obtained for the upper layer resting 
on the soft clay subgrade, as depicted in Figs.  2 and 3, 
ranged from 1.0 to 1.4 (an average of 1.2). The average MIF 
increased by approximately 11%, from the soft clay sub-
grade to the sandy soil subgrade with a Dr of 20%, reaching 
a value of 1.3. The average MIF also reached a value of 1.5 
(about 27% higher than for the soft clay subgrade) and 1.7 
(approximately 40% higher than for the soft clay subgrade) 
for the sandy soil subgrade with a Dr of 50% and 80%, 
respectively. Comparing only the cases involving sandy soil 
subgrade, the increase in subgrade Dr from 20% to 50% and 
from 20% to 80% increased the average MIF by 15% and 
27%, respectively. Additionally, the Dr increase from 50% 
to 80% improved the MIF by an average of 10%.

Fig. 4  Influence of geocell geom-
etry on average MIF for GSB and 
sandy soil in different subgrade 
conditions
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features, although including additional inputs could poten-
tially enhance model generalization.

The models were compiled using the Adaptive Moment 
Estimation (Adam) optimizer and Mean Squared Error 
(MSE) loss function. Training was conducted for 1,000 
epochs using the backpropagation algorithm, with a 
25% data split for validation and testing. Although more 
advanced validation approaches, such as k-fold cross-vali-
dation, could provide a more robust assessment of general-
ization, the hold-out split adopted in this study is consistent 
with recent geotechnical applications of neural networks, 
including studies on geosynthetics such as geocells [26, 28]. 
Hyperparameters, including the number of hidden layers, 
number of neurons, regularization parameter, and random 
seeds, were tuned based on multiple metrics, such as MSE, 
and the coefficient of determination (R²). The model selec-
tion process aimed at minimizing high variance (overfitting) 
and high bias (underfitting) while also ensuring adequate 
generalization.

Figure 5 presents the evolution of the MSE and R² dur-
ing the model training for the cases involving Geocell A 
with sandy soil infill. For this specific case, the training 
MSE showed a significant reduction with increasing epochs 
until approximately epoch 200, beyond which, the reduc-
tion became marginal. However, at this point the validation 
MSE was comparatively high, indicating a high variance of 
the model. This variance was also evidenced in the R² of the 
training data, which had a low value initially until Epoch 
200, but continued to increase until a peak value of 0.90 was 
reached. Both results show that training with approximately 
1,000 epochs could be considered adequate to reach conver-
gence, with a marginally higher validation MSE than train-
ing MSE (0.0153 and 0.0098, respectively, for Epoch 1000), 
indicating a robust fit. A similar procedure was applied to 
the other cases. The average MSE and R² obtained at the end 

assess the interdependence of different relevant variables 
was performed using analytical tools that rely on machine 
learning algorithms, in line with recent studies highlighting 
the growing application of machine learning techniques in 
geotechnical engineering [49–51].

This evaluation employed the Multilayer Perceptron 
(MLP) model, a commonly adopted type of neural net-
work, characterized by its effectiveness and robustness [52, 
53]. The MLP models have been adopted in scientific data 
analysis involving classification, regression and pattern rec-
ognition in a variety of fields, including geosynthetics appli-
cations such as geocells [26, 27, 52, 54].

The present study used MLP models to interpret the 
results collected from the 128 PLTs in order to facilitate 
MIF predictions as a function of the relevant variables 
governing the performance of geocell-reinforced layers. A 
Python code was developed to implement the MPL mod-
els, leveraging the open-source library TensorFlow and its 
high-level Application Programming Interface (API) Keras. 
The code was based on the steps and recommendations for 
scalar regression [54]. Initially, covariates were normalized 
using the Max Absolute Scaling method, consistent with 
the common practice in Deep Neural Networks (DNN) of 
using normalization techniques on the data set to optimize 
training speed and to generalize the models [55]. The archi-
tecture of the models, built using the Keras functional API, 
consisted of an input layer with two features, corresponding 
to the variables Eun and Es, followed by dense hidden layers 
employing Rectified Linear Unit (ReLU) activation func-
tions. The ReLU functions were selected to mitigate diffi-
culties related to vanishing gradients and capture non-linear 
relationships [54, 56]. Lastly, the output layer, responsible 
for returning MIF predictions, consisted of a single neu-
ron without activation function. It is worth noting that the 
MLP models were trained using only Eun and Es as input 

Fig. 5  Training metrics of the 
MLP model for sandy soil 
reinforced with Geocell A: a 
evolution of MSE for training 
and validation data sets; and b R2 
score evolution
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reported in other studies [9]. Figure 6 indicates that, for a 
given change in Es or Eun value, the Es has a greater influ-
ence than Eun on the predicted MIF values. However, due to 
the larger range of variation in Eun, the effect of Eun becomes 
significant. The absence of high compaction stress increases 
the sensitivity of MIF to subgrade stiffness, corroborating 
the observations from the experimental program. Moreover, 
Geocell B presented a different pattern than Geocell A for 
comparatively low Es values for both infill materials. This 
difference is probably due to the reduced confinement pro-
vided by greater pocket size of Geocell B under loading. 
This behavior is due to the absent high compactive effort, 
which encapsulate confinement stresses inside the geocell 
pocket, and to the very low subgrade modulus associated 
with larger pocket sizes, that generates a lack of confine-
ment at the base of the reinforced layer, reducing reinforce-
ment efficiency.

Limitations

This study has certain limitations that must be considered 
when interpreting the results. The MIF evaluation was spe-
cifically designed to investigate the influence of parameters, 
including elastic moduli of subgrade and infill material, and 
geocell dimensions, under controlled laboratory conditions.

of the training of all models were 0.009 and 0.87, respec-
tively. These models were further evaluated for the test set, 
with MSE values ranging from 0.00004 to 0.0346 (average 
of 0.01), suggesting a good generalization.

The trained models were utilized to make predictions and 
generate the charts presented in Fig. 6, which show contour 
plots depicting the relationship between the influence fac-
tors and predicted MIF values. The influence of the infill 
material and subgrade were captured by their modulus, Eun 
and Es, respectively. Each contour line represents a constant 
value of Es, as indicated by the labels (e.g., from 10 MPa to 
50 MPa, in increments of 5 MPa). Figure 6a and b present 
the results corresponding to cases involving the use of sandy 
soil infill for Geocells A and B, respectively. Figure 6c and 
d show analogous results corresponding to cases involving 
the use of GSB infill. These charts were calculated from 
PLT results, which were obtained with a marginally com-
paction stress compared to that typically adopted in the field 
and works. It should be noted that the efficient compaction 
process is expected to significantly impact MIF values.

From the trends observed in Fig. 6, it can be noted that 
the MIF increases with increasing values of Es, decreases 
with increasing values of deq (deq Geocell A < deq Geo-
cell B) and decreases with increasing values of Eun. These 
trends were previously observed in the PLT experimental 
program, as discussed earlier, and are consistent with trends 

Fig. 6  Combined effect of influ-
ence factors on predictive MIF 
values after MLP deep learning: 
a Geocell A with sandy soil infill, 
b Geocell B with sandy soil infill, 
c Geocell A with GSB infill, d 
Geocell B with GSB infill
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improvement typical of field compaction operations, 
MIF values as high as 2.1 were obtained.

	● The subgrade type and conditions were found to sig-
nificantly influence the magnitude of the unreinforced 
modulus, also probably due to the use of comparatively 
low compactive efforts on the top layer, which was also 
reflected in the MIF values.

	● As expected, the experimental results confirmed the 
significant influence of the infill material on the MIF. 
Although the unreinforced and reinforced moduli for 
both infill materials were lower than those under typical 
field compaction operations, MIF values increased with 
decreasing infill density. This indicates that unbound 
granular materials with comparatively low modulus, 
such as sand infill or those commonly used in subbase 
layers, may experience comparatively greater improve-
ment (higher MIF) when using geocells than unbound 
granular materials typically used in base layers.

	● Geocell A, with a comparatively smaller equivalent di-
ameter (deq), consistently exhibited a higher MIF com-
pared to Geocell B, with MIF values up to 27% higher 
(8% higher on average).

	● The Multilayer Perceptron (MLP) models were found 
to effectively predict the MIF as a function of param-
eters Es and Eun for Geocells A and B. Charts could be 
generated by the deep learning models, confirming the 
trends observed in the experimental program. Overall, 
the use of data science concepts such as the MLP, on 
geosynthetic applications proved to be a valuable tool to 
conduct parametric analyses.
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Importantly, the compaction level applied to the infill 
materials during test preparation was significantly lower 
than that typically used in field applications, which limit the 
representativeness of the obtained MIF values. Additional 
tests with field-equivalent compactive stresses are needed to 
validate the predictive charts for practical design use.

Additionally, the analysis was constrained by a limited 
number of influencing parameters and materials (e.g., one 
source of soft clay, one sand source, and one source of 
GSB). This restricted scope further limits the applicability 
of the results beyond the experimental conditions studied 
herein.

Therefore, the results may not fully represent the vari-
ability of conditions encountered in practical applications, 
especially in real works. The MIF values reported in this 
research should be regarded as tools for comparative and 
parametric analyses to explore the behavior of geocell-rein-
forced systems. They are not intended for direct application 
as design values in engineering projects. Further studies 
are recommended to explore a broader range of influencing 
parameters, including representative compaction levels and 
a wider variety of subgrade and infill material types, as well 
as different geocell configurations.

Conclusions

This study presented the results and evaluation of Plate Load 
Tests (PLTs) conducted with unreinforced and geocell-rein-
forced coarse materials, considering several infill materials, 
subgrades, and geocell types. Specifically, static PLTs were 
conducted on laboratory model with two load-unload cycles 
following the German standard DIN 18134. Subgrade con-
ditions included a soft clay and sandy soil at three different 
relative densities. The upper layer consisted of a sandy soil 
and GSB at two different densities each. Two geocells manu-
factured using HDPE with different heights and pocket sizes 
were adopted. A total of 128 tests were conducted aiming 
at investigating the influence of the subgrade, infill mate-
rial and geocell dimensions on the MIF. A back-calculation 
procedure based on an extension of the Boussinesq equation 
and the two-layered elastic system theory was used to deter-
mine the moduli of the different subgrades and top layers in 
both reinforced and unreinforced conditions. An analysis of 
the combined effects of subgrade, infill and geocell dimen-
sions was conducted using Multilayer Perceptron (MLP), a 
deep learning technique, with the resultant MIF predictions 
presented in the form of charts. Based on the results and 
discussion, the following conclusions can be made:

	● Even though the compaction stress during infill place-
ment was marginally, probably not resulting on modulus 

1 3

   69   Page 12 of 14



International Journal of Geosynthetics and Ground Engineering           (2025) 11:69 

18.	 Feng LX, Avesani Neto JO, Zornberg JG (2024) Evaluation of 
the elastic modulus improvement in geocell-reinforced unbound 
aggregates: full-scale experimental sections on a highway. Transp 
Geotech 49:101444. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​t​r​g​e​o​.​2​0​2​4​.​1​0​1​4​4​4

19.	 Garcia RS, Avesani Neto JO (2021) Stress-dependent method for 
calculating the modulus improvement factor in geocell-reinforced 
soil layers. Geotext Geomembr 49:146–158. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​
1​6​​/​j​.​​g​e​o​​t​e​x​​m​e​m​.​​2​0​​2​0​.​0​9​.​0​0​9

20.	 Schary Y (2020) Guidelines for the Use and Design of Geocells 
in Road Reinforcement Applications. In: Sitharam, T., Hegde, A., 
Kolathayar, S. (eds) Geocells. Springer Transactions in Civil and 
Environmental Engineering. 367–386. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​9​7​​
8​-​9​8​1​-​1​5​-​6​0​9​5​-​8​_​1​4

21.	 IRC:SP:59 (2019) Guidelines for use of geosynthetics in road 
pavements and associated works (First Revision). Indian Roads 
Congress. ​h​t​t​​p​s​:​/​​/​l​a​​w​.​r​​e​s​o​​u​r​c​​e​.​o​r​​g​/​​p​u​b​/​i​n​/​b​i​s​/​i​r​c​/​i​r​c​.​g​o​v​.​i​n​.​s​p​.​0​5​
9​.​2​0​1​8​.​p​d​f​​​

22.	 Biswas S, Hussain M, Singh KL (2023) Performance evaluation 
of infill materials of Geocell-reinforced granular bed overlying 
soft subgrade. Indian Geotech J 53:651–664. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​
0​0​7​​/​s​4​​0​0​9​8​-​0​2​2​-​0​0​6​9​5​-​z

23.	 Evirgen B, Kara HO, Ucun MS et al (2024) The effect of the 
geometrical properties of geocell reinforcements between a two-
layered road structure under overload conditions. Case Stud Con-
str Mater. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​c​s​c​m​.​2​0​2​3​.​e​0​2​7​9​3

24.	 Fazeli Dehkordi P, Ghazavi M, Karim UFA (2022) Bearing 
capacity-relative density behavior of circular footings resting on 
geocell-reinforced sand. Eur J Environ Civ Eng 26:5088–5112. ​h​
t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​8​0​​/​1​9​​6​4​8​​1​8​9​​.​2​0​2​​1​.​​1​8​8​4​9​0​1

25.	 Jeyanthi S, Venkatakrishnaiah R, Raju KVB (2023) Utilising 
recurrent neural network technique for predicting strand settle-
ment on brittle sand and geocell. Int J Intell Eng Inf 11:122–137. ​
h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​5​0​4​​/​I​J​​I​E​I​.​2​0​2​3​.​1​3​2​6​9​9

26.	 Sheikh IR, Wani KMNS, Jalal FE, Shah MY (2022) An investi-
gation on the behaviour of geosynthetic reinforced quarry waste 
bases (QWB) under vertical loading. Environ Sci Pollut Res 
29:43385–43400. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​s​1​​1​3​5​6​-​0​2​1​-​1​8​2​3​8​-​z

27.	 Sheikh IR, Shah MY (2023) Experimental and artificial neural 
network analysis of geocell reinforcement on deformation and 
vertical stress distribution of quarry waste base. Soil Mech Found 
Eng 60:362–368. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​s​1​​1​2​0​4​-​0​2​3​-​0​9​9​0​2​-​2

28.	 Ghani S, Kumari S, Choudhary AK (2024) Geocell mattress 
reinforcement for bottom ash: a comprehensive study of Load-
Settlement characteristics. Iran J Sci Technol Trans Civ Eng 
48:727–743. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​s​4​​0​9​9​6​-​0​2​3​-​0​1​2​0​5​-​8

29.	 DIN 18134 (2012) Soil - Testing procedures and testing equip-
ment- Plate load test, English translation of DIN 18134:2012-O4. 
Dtsch. Inst. für Normung 25

30.	 Trujillo HD (2025) Evaluation of influence parameters on the 
modulus improvement factor of geocell-reinforced granular soils 
based on laboratory plate load tests and supervised machine 
learning. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​6​0​​6​/​D​​.​3​.​​2​0​2​​5​.​t​d​​e​-​​0​3​0​9​2​0​2​5​-​0​7​3​9​
2​3. Master’s dissertation. Universidade de São Paulo

31.	 Kulhawy FH, Mayne PW (1990) Manual on Estimating Soil Prop-
erties for Foundation Design. Report Number: EPRI-EL-6800. ​h​t​t​
p​​s​:​/​​/​w​w​w​​.​o​​s​t​i​​.​g​o​v​​/​b​i​​b​l​i​​o​/​6​6​5​3​0​7​4

32.	 Bowles Joseph E. (1997) Foundation Analysis and Design, Fifth 
Edition. McGraw-Hill, Peoria, Illinois

33.	 Yamamuro JA, Lade PV (1997) Static liquefaction of very loose 
sands. Can Geotech J 34:905–917. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​3​9​​/​t​9​​7​-​0​5​
7

34.	 Avesani Neto JO (2019) Application of the two-layer system the-
ory to calculate the settlements and vertical stress propagation in 
soil reinforcement with geocell. Geotext Geomembr 47:32–41. ​h​
t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​g​e​o​​t​e​x​​m​e​m​.​​2​0​​1​8​.​0​9​.​0​0​3

References

1.	 Babagiray G, Oguzhan Akbas S, Anil O (2023) Full-scale field 
impact load experiments on buried pipes in geosynthetic-rein-
forced soils. Transp Geotech 38:100927. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​
j​.​​t​r​g​e​o​.​2​0​2​2​.​1​0​0​9​2​7

2.	 Khan MA, Puppala AJ (2023) Sustainable pavement with geocell 
reinforced reclaimed-asphalt-pavement (RAP) base layer. J Clean 
Prod 387:135802. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​j​c​l​​e​p​r​​o​.​2​0​​2​2​​.​1​3​5​8​0​2

3.	 Krishna A, Latha GM (2023) Evolution of geocells as sustainable 
support to transportation infrastructure. Sustainability 15:11773. ​
h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​3​​3​9​0​​/​s​u​​1​5​1​5​1​1​7​7​3

4.	 Menon V, Kolathayar S (2024) Optimizing nailing parameters 
for hybrid retaining systems using supervised learning regression 
models. Multiscale Multidiscip Model Exp Des. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​
0​.​1​​0​0​7​​/​s​4​​1​9​3​9​-​0​2​4​-​0​0​4​1​7​-​3

5.	 Saikia R, Dash SK (2024) Load carrying mechanism of geocell 
reinforced embankment on soft soil. Transp Res Rec J Transp Res 
Board 2678:462–480. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​7​7​​/​0​3​​6​1​1​9​8​1​2​4​1​2​3​0​3​
1​7

6.	 Song G, Song X, He S et al (2022) Soil reinforcement with geo-
cells and vegetation for ecological mitigation of shallow slope 
failure. Sustainability 14:11911. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​3​​3​9​0​​/​s​u​​1​4​1​9​1​
1​9​1​1

7.	 Baby LM, Avesani Neto JO (2024) Evaluation of geocell-rein-
forced railway track using FEM and FLM-based software: a para-
metric analysis. Int J Geosynth Ground Eng 10:1–9. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​
r​g​/​​1​0​.​1​​0​0​7​​/​s​4​​0​8​9​1​-​0​2​4​-​0​0​5​6​4​-​0

8.	 Rezende JCV, Avesani Neto JO, Zornberg JG (2024) Shear 
strength characterization of the interface between geocell walls 
and infill. Indian Geotech J. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​s​4​​0​0​9​8​-​0​2​4​-​
0​1​1​0​8​-​z

9.	 Vega E, van Gurp C, Kwast E (2018) Geokunststoffen Als fun-
deringswapening in Ongebonden funderingslagen (Geosynthetics 
for reinforcement of unbound base and subbase pavement Lay-
ers). SBRCUR/CROW

10.	 Zornberg JG (2017) Functions and applications of geosynthetics. 
Roadways Procedia Eng 189:298–306. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​
p​r​o​e​n​g​.​2​0​1​7​.​0​5​.​0​4​8

11.	 AASHTO (2015) Mechanistic-Empirical Pavement Design 
Guide -Second edition. Am. Assoc. State Highw. Transp. Off., 
Washington, DC, p 227

12.	 Austroads (2024) Guide to Pavement Technology Part 2: Pave-
ment Structural Design. Australia

13.	 Mahima D, Sini T (2022) Performance evaluation of demolition 
waste infilled geocell-reinforced subgrade by flexural and rutting 
analysis. Road Mater Pavement Des 23:1746–1761. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​1​​0​8​0​​/​1​4​​6​8​0​​6​2​9​​.​2​0​2​​1​.​​1​9​2​4​2​3​3

14.	 Saride S, Baadiga R, Balunaini U, Madhira MR (2022) Modulus 
improvement factor-based design coefficients for geogrid- and 
geocell-reinforced bases. J Transp Eng Part B Pavements 148:1–
14. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​6​1​​/​J​P​​E​O​D​X​.​0​0​0​0​3​8​0

15.	 Gottumukkala B, Mehar B, Minchala D et al (2023) Laboratory 
and field evaluations of geocell reinforced bases for locally avail-
able material in the Himalayan Region. Int J Geosynth Ground 
Eng 9:74. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​s​4​​0​8​9​1​-​0​2​3​-​0​0​4​9​7​-​0

16.	 Pokharel SK, Han J, Leshchinsky D, Parsons RL (2018) Experi-
mental evaluation of geocell-reinforced bases under repeated 
loading. Int J Pavement Res Technol 11:114–127. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​
1​0​.​1​​0​1​6​​/​j​.​​i​j​p​r​t​.​2​0​1​7​.​0​3​.​0​0​7

17.	 Zipoli LLR, Avesani Neto JO (2022) Evaluation of back-cal-
culated elastic moduli of unreinforced and geocell-reinforced 
unbound granular material from full-scale field tests. Geotext 
Geomembr 50:910–921. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​g​e​o​​t​e​x​​m​e​m​.​​2​0​​
2​2​.​0​5​.​0​0​6

1 3

Page 13 of 14     69 

https://doi.org/10.1016/j.trgeo.2024.101444
https://doi.org/10.1016/j.geotexmem.2020.09.009
https://doi.org/10.1016/j.geotexmem.2020.09.009
https://doi.org/10.1007/978-981-15-6095-8_14
https://doi.org/10.1007/978-981-15-6095-8_14
https://law.resource.org/pub/in/bis/irc/irc.gov.in.sp.059.2018.pdf
https://law.resource.org/pub/in/bis/irc/irc.gov.in.sp.059.2018.pdf
https://doi.org/10.1007/s40098-022-00695-z
https://doi.org/10.1007/s40098-022-00695-z
https://doi.org/10.1016/j.cscm.2023.e02793
https://doi.org/10.1080/19648189.2021.1884901
https://doi.org/10.1080/19648189.2021.1884901
https://doi.org/10.1504/IJIEI.2023.132699
https://doi.org/10.1504/IJIEI.2023.132699
https://doi.org/10.1007/s11356-021-18238-z
https://doi.org/10.1007/s11204-023-09902-2
https://doi.org/10.1007/s40996-023-01205-8
https://doi.org/10.11606/D.3.2025.tde-03092025-073923
https://doi.org/10.11606/D.3.2025.tde-03092025-073923
https://www.osti.gov/biblio/6653074
https://www.osti.gov/biblio/6653074
https://doi.org/10.1139/t97-057
https://doi.org/10.1139/t97-057
https://doi.org/10.1016/j.geotexmem.2018.09.003
https://doi.org/10.1016/j.geotexmem.2018.09.003
https://doi.org/10.1016/j.trgeo.2022.100927
https://doi.org/10.1016/j.trgeo.2022.100927
https://doi.org/10.1016/j.jclepro.2022.135802
https://doi.org/10.3390/su151511773
https://doi.org/10.3390/su151511773
https://doi.org/10.1007/s41939-024-00417-3
https://doi.org/10.1007/s41939-024-00417-3
https://doi.org/10.1177/03611981241230317
https://doi.org/10.1177/03611981241230317
https://doi.org/10.3390/su141911911
https://doi.org/10.3390/su141911911
https://doi.org/10.1007/s40891-024-00564-0
https://doi.org/10.1007/s40891-024-00564-0
https://doi.org/10.1007/s40098-024-01108-z
https://doi.org/10.1007/s40098-024-01108-z
https://doi.org/10.1016/j.proeng.2017.05.048
https://doi.org/10.1016/j.proeng.2017.05.048
https://doi.org/10.1080/14680629.2021.1924233
https://doi.org/10.1080/14680629.2021.1924233
https://doi.org/10.1061/JPEODX.0000380
https://doi.org/10.1007/s40891-023-00497-0
https://doi.org/10.1016/j.ijprt.2017.03.007
https://doi.org/10.1016/j.ijprt.2017.03.007
https://doi.org/10.1016/j.geotexmem.2022.05.006
https://doi.org/10.1016/j.geotexmem.2022.05.006


International Journal of Geosynthetics and Ground Engineering           (2025) 11:69 

49.	 Raja MNA, Mercado V, Abdoun T, El-Sekelly W (2025) Seismic 
site amplification prediction- an integrated bayesian optimisation 
explainable machine learning approach. Georisk Assess Manag 
Risk Eng Syst Geohazards 19:573–592. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​8​0​​/​
1​7​​4​9​9​​5​1​8​​.​2​0​2​​5​.​​2​5​2​1​8​7​0

50.	 Raja MNA, Abdoun T, El-Sekelly W (2024) Smart prediction 
of liquefaction-induced lateral spreading. J Rock Mech Geotech 
Eng 16:2310–2325. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​j​r​m​g​e​.​2​0​2​3​.​0​5​.​0​1​7

51.	 Banerjee L, Chawla S, Dash SK (2023) Investigations on cyclic 
loading behavior of geocell stabilized tracks with coal over-
burden refuse recycled as subballast material. Transp Geotech 
40:100969. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​t​r​g​e​o​.​2​0​2​3​.​1​0​0​9​6​9

52.	 Du K-L, Leung C-S, Mow WH, Swamy MNS (2022) Perceptron: 
learning, Generalization, model Selection, fault Tolerance, and 
role in the deep learning era. Mathematics 10:4730. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​3​​3​9​0​​/​m​a​​t​h​1​0​2​4​4​7​3​0

53.	 Turner R (2019) Python machine learning: the ultimate begin-
ner’s guide to learn python machine learning. Step by Step using 
Scikit-Learn and Tensorflow

54.	 Chollet F (2021) Deep Learning with Python. Manning Publica-
tions Co

55.	 Huang L, Qin J, Zhou Y et al (2023) Normalization techniques 
in training DNNs: methodology, analysis and application. IEEE 
Trans Pattern Anal Mach Intell 45:10173–10196. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​
1​0​.​1​​1​0​9​​/​T​P​​A​M​I​.​2​0​2​3​.​3​2​5​0​2​4​1

56.	 Goulet J-A (2020) Probabilistic Machine Learning for Civil Engi-
neers. The MIT Press, Cambridge

57.	 PAVCO (2021) Refuerzo en carreteras Geoceldas. In: Geocelda_
FT2021. ​h​t​t​p​s​:​​​/​​/​p​a​v​c​o​​w​a​v​​i​n​g​e​​o​s​i​​n​t​e​​t​i​c​​o​​s​.​​c​o​​m​​/​​w​​p​-​c​​o​n​t​​e​​n​t​​/​u​p​​l​o​​​a​
d​s​/​​2​​0​2​​​1​/​​1​2​/​G​e​o​c​​e​l​d​a​_​F​​T​2​0​2​1​.​p​d​f

Publisher’s Note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

35.	 Huang YH (2004) Pavement Analysis and Design, Second edi. 
Pearson Education, Inc

36.	 Saride S, Gautam D, Madhav MR, Vijay KR (2016) Performance 
evaluation of geocell reinforced granular subbase (GSB) layers 
through field trials. J Indian Roads Congr 76(4):249–257

37.	 Yoder EJ, Witczak MW (1975) Principles of Pavement Design. 
John Wiley & Sons, Inc., Hoboken, NJ, USA

38.	 ASTM (2021) D8269-21: Standard Guide For The Use Of Geo-
cells In Geotechnical And Roadway Projects. i:1–11. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​
r​g​/​​1​0​.​1​​5​2​0​​/​D​8​​2​6​9​-​2​1​.​2

39.	 USACE (1990) Settlement analysis. EM 1110-1-1904. ​h​t​t​p​​s​:​/​​/​w​
w​w​​.​p​​u​b​l​​i​c​a​t​​i​o​n​​s​.​u​​s​a​c​​e​.​a​​r​m​y​.​​m​i​​l​/​P​​o​r​t​a​​l​s​/​​7​6​/​​P​u​b​​l​i​c​​a​t​i​o​​n​s​​/​E​n​​g​i​n​e​​e​
r​M​​a​n​u​​a​l​s​/​E​M​_​1​1​1​0​-​1​-​1​9​0​4​.​p​d​f

40.	 Lee IK, White W, Ingles OG (1983) Geotechnical Engineering. 
Pitman Publishing Inc, Massachusetts

41.	 Duncan JM, Byrne P, Wong KS, Mabry P (1980) Strength, stress-
strain and bulk modulus parameters for finite analyses of stresses 
and movements in soil masses. Report No. UCB/GT/BO-O. Col-
lege of Engineering, University of California, Berkeley, CA

42.	 Duncan JM, Chang C-Y (1970) Nonlinear analysis of stress and 
strain in soils. J Soil Mech Found Div 96:1629–1653. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​
o​​r​g​/​​1​0​.​1​​0​6​1​​/​j​s​​f​e​a​q​.​0​0​0​1​4​5​8

43.	 Janbu N (1963) Soil compressibility as determined by oedom-
eter and triaxial tests. In: Proceeding of the European Conference 
on Soil Mechanics and Founation Engineering (ECSMFE). pp 
19–25

44.	 Giroud JP, Han J (2004) Design method for geogrid-reinforced 
unpaved roads. I. Development of design method. J Geotech 
Geoenviron Eng 130:775–786. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​1​0​.​1​0​6​1​/​(​A​S​C​E​)​1​
0​9​0​-​0​2​4​1​(​2​0​0​4​)​1​3​0​:​8​(​7​7​5​)

45.	 STAC (2016) Rational design methodology for flexible airfield 
pavement. Technical guide. The French Civil Aviation Technical 
Center

46.	 IRA (2003) Design guidelines for asphalt highway structural 
pavements. Israel Road Authority, Tel Aviv

47.	 Shell (1978) Shell Pavement Design Manual: Asphalt Pavements 
and Overlays for Road Traffic. Shell International Petroleum 
Company Limited, London, England

48.	 Zhao Y, Lu Z, Liu J et al (2024) Compaction-induced prestressing 
effect of geocell reinforcement. Geosynth Int 1–48. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​
/​​1​0​.​1​​6​8​0​​/​j​g​​e​i​n​.​2​4​.​0​0​0​8​2

1 3

   69   Page 14 of 14

https://doi.org/10.1080/17499518.2025.2521870
https://doi.org/10.1080/17499518.2025.2521870
https://doi.org/10.1016/j.jrmge.2023.05.017
https://doi.org/10.1016/j.trgeo.2023.100969
https://doi.org/10.3390/math10244730
https://doi.org/10.3390/math10244730
https://doi.org/10.1109/TPAMI.2023.3250241
https://doi.org/10.1109/TPAMI.2023.3250241
https://pavcowavingeosinteticos.com/wp-content/uploads/2021/12/Geocelda_FT2021.pdf
https://pavcowavingeosinteticos.com/wp-content/uploads/2021/12/Geocelda_FT2021.pdf
https://doi.org/10.1520/D8269-21.2
https://doi.org/10.1520/D8269-21.2
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-1-1904.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-1-1904.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-1-1904.pdf
https://doi.org/10.1061/jsfeaq.0001458
https://doi.org/10.1061/jsfeaq.0001458
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(775)
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(775)
https://doi.org/10.1680/jgein.24.00082
https://doi.org/10.1680/jgein.24.00082

	﻿Integrating Supervised Machine Learning with Laboratory Data To Evaluate the Modulus Improvement Factor in Geocell-Reinforced Soils
	﻿Abstract
	﻿Introduction
	﻿Laboratory Model Tests
	﻿Testing Setup and Procedures
	﻿Materials
	﻿Model Preparation

	﻿Results and Discussion
	﻿Layer Moduli and MIF Results
	﻿Influence of the Infill Material
	﻿Influence of the Subgrade
	﻿Influence of the Geocell Dimensions
	﻿Combined Effect of subgrade, infill, and Geocell Dimensions

	﻿Limitations
	﻿Conclusions
	﻿References


