While much work has continued during the day focus has begun to shift to support of night operations and commissioning. The blogger has moved back to working the night shift so updates on day operations may be second hand.
The day staff have installed the acquisition camera, pupil viewer, guide probes and Deployable Wave Front Sensors (DWFS) on the Focal Plane Assembly (FPA). In addition, they have gotten glycol lines hooked up to the VIRUS enclosures and those lines have been pressure tested. The glycol lines to the top of the telescope for cooling the electronics boxes and cameras are still on order.
The software team in Austin has been out to the telescope twice over the past few weeks to commission various aspects of the telescope and mount model. The preliminary mount model has been completed and we can now track on a star and keep constant focus and tracker induced coma through a trajectory. The DWFS will be used in the next weeks to determine the exact tip and tilt zero point to minimize the tracker induced coma and to search for any problems with the mounting of the tracker optics. This will be done on geostationary satellites which allow us to have a constant point source at infinity for long periods of time with minimal tracker motion. We have confirmed that we can acquire these geostationary satellites on the Acquisition camera.
The night staff is also in the process of commissioning the guide probes. We have been able to obtain star fields in both guide probes and the acquisition camera at the same time. With this data and probably a few more similar data sets at different guide probe positions we will be able to set the zero points to pointing with the guide probes.
While we continue to work out small problems and inefficiencies with the tracker electronics and telescope control software overall the telescope is coming along well and some ways is far more impressive than the old HET.