Publication

(Last Updated: December 2024)
For the latest list of publications, visit: Google Scholar


2024

  • LIGHTCODE: Light Analytical and Neural Codes for Channels with Feedback
    S Ankireddy, K Narayanan, H Kim
    [IEEE Journal on Selected Areas in Communications (JSAC)][code]
  • Neural Distributed Source Coding
    J Whang*, A Nagle*, A Acharya, H Kim, AG Dimakis
    [IEEE Journal on Selected Areas in Information Theory (JSAIT)][blog][code]
  • Fundamental Limits of Prompt Compression: A Rate-Distortion Framework for Black-Box Language Models
    A Girish*, A Nagle*, A V Makkuva, M Bondaschi, M Gastpar, H Kim
    [NeurIPS 2024, ICML TF2M Workshop Oral 2024][blog][code]
  • Neural Cover Selection for Image Steganography
    K Chahine, H Kim
    [NeurIPS 2024][blog][code]
  • Local to Global: Learning Dynamics and Effect of Initialization for Transformers
    AV Makkuva, M Bondaschi, A Girish, A Nagle, H Kim, M Gastpar, C Ekbote
    [NeurIPS 2024]
  • Clustered Federated Learning via Gradients-based Partitioning
    Heasung Kim, H. Kim, G. de Veciana
    [ICML 2024][blog][code]
  • DeepPolar: Inventing Nonlinear Large-Kernel Polar Codes via Deep Learning
    A Hebbar*, SK Ankireddy*, H. Kim, S. Oh, P. Viswanath
    [ICML 2024][blog][code]
  • LASER: Linear Compression in Wireless Distributed Optimization
    A. Makkuva, M. Bondaschi, T. Vogels, M. Jaggi, H. Kim, M. Gastpar
    [ICML 2024]
  • Estimation of Rate-Distortion Function for Computing with Decoder Side Information
    Heasung Kim, H Kim, G de Veciana
    [ISIT 2024][blog][code]
  • Deep Learning-Based mmWave Beam Alignment with Only Pilot Channel Measurements
    T Lee, H Kim, J Andrews
    [ICC 2024]
  • Deep Learning-based Autodetection of 5G NR mmWave Waveforms
    T Lee, A Mahadevan, H Kim, J Andrews
    [ICC 2024]
  • Generating High Dimensional User-Specific Wireless Channels using Diffusion Models
    T Lee, J Park, H Kim, J Andrews
    [arXiv][blog]
  • Enhancing K-user Interference Alignment for Discrete Constellations via Learning
    Rajesh Mishra, Syed Jafar, Sriram Vishwanath and Hyeji Kim
    [arXiv]
  • Attention with Markov: A Framework for Principled Analysis of Transformers via Markov Chains
    A Makkuva, M Bondaschi, A Girish, A Nagle, M Jaggi, H Kim, M Gastpar
    [arXiv]
  • Optimality of the Lossy Körner-Marton Scheme for Distributed Modulo-Two Sum Computation of Doubly Symmetric Binary Sources
    S Li, H Kim
    [Preprint]

 


2023

  • Task-aware Distributed Source Coding under Dynamic Bandwidth
    P Li*, SK Ankireddy*, R Zhao, H Mahjoub, E Pari, U Topcu, S Chinchali, H Kim
    [NeurIPS 2023][blog]
  • Compressed Error HARQ: Feedback Communication on Noise-Asymmetric Channels
    SK Ankireddy, SA Hebbar, Y Jiang, P Viswanath, H Kim
    [ISIT 2023]
  • Interpreting Neural Min-Sum Decoders
    SK Ankireddy, H Kim
    [ICC 2023]
  • Linear Coding for AWGN channels with Noisy Output Feedback via Dynamic Programming
    R. Mishra, D. Vasal, H. Kim
    [IEEE Trans. on Information Theory]
  • DeepIC+: Learning Codes for Interference Channels
    K Chahine, Y Jiang, J Cho, H Kim
    [IEEE Trans on Wireless Communications][blog]

 


2022

  • Channel Coding via Machine Learning (Book chapter)
    H Kim
    [Machine Learning and Wireless Communications, Y Eldar, A Goldsmith, D Gunduz, V Poor]
  • Inventing Codes for Channels with Active Feedback via Deep Learning
    K Chahine, R Mishra, H Kim
    [IEEE JSAIT 2022]
  • Learning Variable-Rate Codes for CSI Feedback
    H Kim, H Kim, G de Veciana
    [GLOBECOM 2022]
  • TinyTurbo: Efficient Turbo Decoders on Edge
    S. Hebbar, R. Mishra, S. Ankireddy, A. Makkuva, H. Kim, P. Viswanath
    [ISIT 2022]
  • Turbo Autoencoder with a Trainable Interleaver
    K Chahine, Y Jiang, P Nuti, H Kim, J Cho

 


2021

  • A Channel Coding Benchmark for Meta-Learning
    R Li, O Bohdal, R Mishra, H Kim, D Li, N Lane, T Hospedales
  • DeepIC: Coding for Interference Channels via Deep Learning
    K Chahine, N Ye, H Kim
  • Distributed Interference Alignment for K -user Interference Channels via Deep Learning
    R Mishra, K Chahine, H Kim, S Jafar, S Vishwanath
    [ISIT 2021]
  • Gaussian Channels with Feedback: A Dynamic Programming Approach
    R Mishra, D Vasal, H Kim
    [ISIT 2021]

 


2020

2019

  • Turbo Autoencoder: Deep learning based channel code for point-to-point communication channels
    Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, P. Viswanath
    [NeurIPS 2019] [code]
  • DeepTurbo: Deep Turbo Decoder
    Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, P. Viswanath
    [SPAWC 2019] [code]
  • MIND: Model Independent Neural Decoder
    Y. Jiang, H. Kim, H. Asnani, S. Kannan
    [SPAWC 2019]
  • LEARN Codes: Inventing low-latency codes via recurrent neural networks
    Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath
    [ICC 2019] [code]

2018

  • Deepcode: Feedback Codes via Deep Learning
    H. Kim, Y. Jiang, S. Kannan, S. Oh, P. Viswanath
    [NeurIPS 2018] [code]
  • Communication Algorithms via Deep Learning
    H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, P. Viswanath,
    [ICLR 2018] [code] [blog]

2010-2017