• About INIA-Neuroimmune
  • Resources
  • Publications
  • Meetings
  • News
  • Contact Us
  • Skip to primary navigation
  • Skip to main content
UT Shield
Integrative Neuroscience Initiative on Alcoholism
  • About INIA-Neuroimmune
    • INIA-N Research Projects
    • INIA-N Organizational Structure
  • Resources
    • Mutant animals in alcohol research
    • Knock-in mice and alcohol publications
  • Publications
  • Meetings
    • Past Meetings
  • News
  • Contact Us
The University of Texas at Austin

2015

Mary-Louise Risher, Hannah G. Sexton, W. Christopher Risher, Wilkie A. Wilson, Rebekah L. Fleming, Roger D. Madison, Scott D. Moore, Cagla Eroglu, and H. Scott Swartzwelder. “Adolescent Intermittent Alcohol Exposure: Dysregulation of Thrombospondins and Synapse Formation are Associated with Decreased Neuronal Density in the Adult Hippocampus.” Alcoholism, Clinical and Experimental Research, 39, 12, Pp. 2403–2413. 

Abstract

BACKGROUND: Adolescent intermittent alcohol exposure (AIE) has profound effects on neuronal function. We have previously shown that AIE causes aberrant hippocampal structure and function that persists into adulthood. However, the possible contributions of astrocytes and their signaling factors remain largely unexplored. We investigated the acute and enduring effects of AIE on astrocytic reactivity and signaling on synaptic expression in the hippocampus, including the impact of the thrombospondin (TSP) family of astrocyte-secreted synaptogenic factors and their neuronal receptor, alpha2delta-1 (α2δ-1). Our hypothesis is that some of the influences of AIE on neuronal function may be secondary to direct effects on astrocytes. METHODS: We conducted Western blot analysis on TSPs 1 to 4 and α2δ-1 from whole hippocampal lysates 24 hours after the 4th and 10th doses of AIE, then 24 days after the last dose (in adulthood). We used immunohistochemistry to assess astrocyte reactivity (i.e., morphology) and synaptogenesis (i.e., colocalization of pre- and postsynaptic puncta). RESULTS: Adolescent AIE reduced α2δ-1 expression, and colocalized pre- and postsynaptic puncta after the fourth ethanol (EtOH) dose. By the 10th dose, increased TSP2 levels were accompanied by an increase in colocalized pre- and postsynaptic puncta, while α2δ-1 returned to control levels. Twenty-four days after the last EtOH dose (i.e., adulthood), TSP2, TSP4, and α2δ-1 expression were all elevated. Astrocyte reactivity, indicated by increased astrocytic volume and area, was also observed at that time. CONCLUSIONS: Repeated EtOH exposure during adolescence results in long-term changes in specific astrocyte signaling proteins and their neuronal synaptogenic receptor. Continued signaling by these traditionally developmental factors in adulthood may represent a compensatory mechanism whereby astrocytes reopen the synaptogenic window and repair lost connectivity, and consequently contribute to the enduring maladaptive structural and functional abnormalities previously observed in the hippocampus after AIE.

Mary-Louise Risher, Rebekah L. Fleming, W. Christopher Risher, K. M. Miller, Rebecca C. Klein, Tiffany Wills, Shawn K. Acheson, Scott D. Moore, Wilkie A. Wilson, Cagla Eroglu, and H. S. Swartzwelder. “Adolescent intermittent alcohol exposure: persistence of structural and functional hippocampal abnormalities into adulthood.” Alcoholism, Clinical and Experimental Research, 39, 6, Pp. 989–997. 

Abstract

BACKGROUND: Human adolescence is a crucial stage of neurological development during which ethanol (EtOH) consumption is often at its highest. Alcohol abuse during adolescence may render individuals at heightened risk for subsequent alcohol abuse disorders, cognitive dysfunction, or other neurological impairments by irreversibly altering long-term brain function. To test this possibility, we modeled adolescent alcohol abuse (i.e., intermittent EtOH exposure during adolescence [AIE]) in rats to determine whether adolescent exposure to alcohol leads to long-term structural and functional changes that are manifested in adult neuronal circuitry. METHODS: We specifically focused on hippocampal area CA1, a brain region associated with learning and memory. Using electrophysiological, immunohistochemical, and neuroanatomical approaches, we measured post-AIE changes in synaptic plasticity, dendritic spine morphology, and synaptic structure in adulthood. RESULTS: We found that AIE-pretreated adult rats manifest robust long-term potentiation, induced at stimulus intensities lower than those required in controls, suggesting a state of enhanced synaptic plasticity. Moreover, AIE resulted in an increased number of dendritic spines with characteristics typical of immaturity. Immunohistochemistry-based analysis of synaptic structures indicated a significant decrease in the number of co-localized pre- and postsynaptic puncta. This decrease is driven by an overall decrease in 2 postsynaptic density proteins, PSD-95 and SAP102. CONCLUSIONS: Taken together, these findings reveal that repeated alcohol exposure during adolescence results in enduring structural and functional abnormalities in the hippocampus. These synaptic changes in the hippocampal circuits may help to explain learning-related behavioral changes in adult animals preexposed to AIE.

James M. Reno, Neha Thakore, Rueben Gonzales, Timothy Schallert, Richard L. Bell, W. Todd Maddox, and Christine L. Duvauchelle. “Alcohol-preferring P rats emit spontaneous 22-28 kHz ultrasonic vocalizations that are altered by acute and chronic alcohol experience.” Alcoholism, Clinical and Experimental Research, 39, 5, Pp. 843–852. 

Abstract

BACKGROUND: Emotional states are often thought to drive excessive alcohol intake and influence the development of alcohol use disorders. To gain insight into affective properties associated with excessive alcohol intake, we utilized ultrasonic vocalization (USV) detection and analyses to characterize the emotional phenotype of selectively bred alcohol-preferring (P) rats; an established animal model of excessive alcohol intake. USVs emitted by rodents have been convincingly associated with positive (50-55 kHz frequency-modulated [FM]) and negative (22-28 kHz) affective states. Therefore, we hypothesized that 50-55 and 22-28 kHz USV emission patterns in P rats would reveal a unique emotional phenotype sensitive to alcohol experience. METHODS: 50-55 kHz FM and 22-28 kHz USVs elicited from male P rats were assessed during access to water, 15 and 30% EtOH (v/v). Ethanol (EtOH; n = 12) or water only (Control; n = 4) across 8 weeks of daily drinking-in-the-dark (DID) sessions. RESULTS: Spontaneous 22-28 kHz USVs are emitted by alcohol-naïve P rats and are enhanced by alcohol experience. During DID sessions when alcohol was not available (e.g., “EtOH OFF” intervals), significantly more 22-28 kHz than 50-55 kHz USVs were elicited, while significantly more 50-55 kHz FM than 22-28 kHz USVs were emitted when alcohol was available (e.g., “EtOH ON” intervals). In addition, USV acoustic property analyses revealed chronic effects of alcohol experience on 22-28 kHz USV mean frequency, indicative of lasting alcohol-mediated alterations to neural substrates underlying emotional response. CONCLUSIONS: Our findings demonstrate that acute and chronic effects of alcohol exposure are reflected in changes in 22-28 and 50-55 kHz FM USV counts and acoustic patterns. These data support the notion that initiation and maintenance of alcohol intake in P rats may be due to a unique, alcohol-responsive emotional phenotype and further suggest that spontaneous 22-28 kHz USVs serve as behavioral markers for excessive drinking vulnerability.

Sunil Goodwani, P. S. S. Rao, Richard L. Bell, and Youssef Sari. “Amoxicillin and amoxicillin/clavulanate reduce ethanol intake and increase GLT-1 expression as well as AKT phosphorylation in mesocorticolimbic regions.” Brain Research, 1622, Pp. 397–408. 

Abstract

Studies have shown that administration of the β-lactam antibiotic ceftriaxone (CEF) attenuates ethanol consumption and cocaine seeking behavior as well as prevents ethanol-induced downregulation of glutamate transporter 1 (GLT-1) expression in central reward brain regions. However, it is not known if these effects are compound-specific. Therefore, the present study examined the effects of two other β-lactam antibiotics, amoxicillin (AMOX) and amoxicillin/clavulanate (Augmentin, AUG), on ethanol drinking, as well as GLT-1 and phosphorylated-AKT (pAKT) levels in the nucleus accumbens (Acb) and medial prefrontal cortex (mPFC) of alcohol-preferring (P) rats. P rats were exposed to free-choice of ethanol (15% and 30%) for five weeks and were given five consecutive daily i.p. injections of saline vehicle, 100 mg/kg AMOX or 100mg/kg AUG. Both compounds significantly decreased ethanol intake and significantly increased GLT-1 expression in the Acb. AUG also increased GLT-1 expression in the mPFC. Results for changes in pAKT levels matched those for GLT-1, indicating that β-lactam antibiotic-induced reductions in ethanol intake are negatively associated with increases in GLT-1 and pAKT levels within two critical brains regions mediating drug reward and reinforcement. These findings add to a growing literature that pharmacological increases in GLT-1 expression are associated with decreases in ethanol intake and suggest that one mechanism mediating this effect may be increased phosphorylation of AKT. Thus, GLT-1 and pAKT may serve as molecular targets for the treatment of alcohol and drug abuse/dependence.

Sean P. Farris, Andrzej Z. Pietrzykowski, Michael F. Miles, Megan A. O’Brien, Pietro P. Sanna, Samir Zakhari, R. Dayne Mayfield, and R. Adron Harris. “Applying the new genomics to alcohol dependence.” Alcohol (Fayetteville, N.Y.), 49, 8, Pp. 825–836. 

Abstract

This review summarizes the proceedings of a symposium presented at the “Alcoholism and Stress: A Framework for Future Treatment Strategies” conference held in Volterra, Italy on May 6-9, 2014. The overall goal of the symposium titled “Applying the New Genomics to Alcohol Dependence”, chaired by Dr. Adron Harris, was to highlight recent genomic discoveries and applications for profiling alcohol use disorder (AUD). Dr. Sean Farris discussed the gene expression networks related to lifetime consumption of alcohol within human prefrontal cortex. Dr. Andrzej Pietrzykowski presented the effects of alcohol on microRNAs in humans and animal models. Alcohol-induced alterations in the synaptic transcriptome were discussed by Dr. Michael Miles. Dr. Pietro Sanna examined methods to probe the gene regulatory networks that drive excessive alcohol drinking, and Dr. Samir Zakhari served as a panel discussant and summarized the proceedings. Collectively, the presentations emphasized the power of integrating multiple levels of genetics and transcriptomics with convergent biological processes and phenotypic behaviors to determine causal factors of AUD. The combined use of diverse data types demonstrates how unique approaches and applications can help categorize genetic complexities into relevant biological networks using a systems-level model of disease.

Melanie M. Pina, Emily A. Young, Andrey E. Ryabinin, and Christopher L. Cunningham. “The bed nucleus of the stria terminalis regulates ethanol-seeking behavior in mice.” Neuropharmacology, 99, Pp. 627–638. 

Abstract

Drug-associated stimuli are considered important factors in relapse to drug use. In the absence of drug, these cues can trigger drug craving and drive subsequent drug seeking. One structure that has been implicated in this process is the bed nucleus of the stria terminalis (BNST), a chief component of the extended amygdala. Previous studies have established a role for the BNST in cue-induced cocaine seeking. However, it is unclear if the BNST underlies cue-induced seeking of other abused drugs such as ethanol. In the present set of experiments, BNST involvement in ethanol-seeking behavior was assessed in male DBA/2J mice using the conditioned place preference procedure (CPP). The BNST was inhibited during CPP expression using electrolytic lesions (Experiment 1), co-infusion of GABAA and GABAB receptor agonists muscimol and baclofen (M+B; Experiment 2), and activation of inhibitory designer receptors exclusively activated by designer drugs (hM4Di-DREADD) with clozapine-N-oxide (CNO; Experiment 3). The magnitude of ethanol CPP was reduced significantly by each of these techniques. Notably, infusion of M+B (Exp. 2) abolished CPP altogether. Follow-up studies to Exp. 3 showed that ethanol cue-induced c-Fos immunoreactivity in the BNST was reduced by hM4Di activation (Experiment 4) and in the absence of hM4Di, CNO did not affect ethanol CPP (Experiment 5). Combined, these findings demonstrate that the BNST is involved in the modulation of cue-induced ethanol-seeking behavior.

Jody Mayfield, Yuri A. Blednov, and R. Adron Harris. “Behavioral and Genetic Evidence for GIRK Channels in the CNS: Role in Physiology, Pathophysiology, and Drug Addiction.” International Review of Neurobiology, 123, Pp. 279–313. 

Abstract

G protein-coupled inwardly rectifying potassium (GIRK) channels are widely expressed throughout the brain and mediate the inhibitory effects of many neurotransmitters. As a result, these channels are important for normal CNS function and have also been implicated in Down syndrome, Parkinson’s disease, psychiatric disorders, epilepsy, and drug addiction. Knockout mouse models have provided extensive insight into the significance of GIRK channels under these conditions. This review examines the behavioral and genetic evidence from animal models and genetic association studies in humans linking GIRK channels with CNS disorders. We further explore the possibility that subunit-selective modulators and other advanced research tools will be instrumental in establishing the role of individual GIRK subunits in drug addiction and other relevant CNS diseases and in potentially advancing treatment options for these disorders.

Max Kreifeldt, Chelsea Cates-Gatto, Amanda J. Roberts, and Candice Contet. “BK Channel β1 Subunit Contributes to Behavioral Adaptations Elicited by Chronic Intermittent Ethanol Exposure.” Alcoholism, Clinical and Experimental Research, 39, 12, Pp. 2394–2402. 

Abstract

BACKGROUND: Large conductance, calcium- and voltage-activated potassium (BK) channels regulate neuronal excitability and neurotransmission. They can be directly activated by ethanol (EtOH) and they may be implicated in EtOH dependence. In this study, we sought to determine the influence of the auxiliary β1 and β4 subunits on EtOH metabolism, acute sensitivity to EtOH intoxication, acute functional tolerance, chronic tolerance, and handling-induced convulsions during withdrawal. METHODS: Motor coordination, righting reflex, and body temperature were evaluated in BK β1 and β4 knockout, heterozygous, and wild-type mice following acute EtOH administration. Chronic tolerance and physical dependence were induced by chronic intermittent inhalation of EtOH vapor. RESULTS: Constitutive deficiency in BK β1 or β4 subunits did not alter the clearance rate of EtOH, acute sensitivity to EtOH-induced ataxia, sedation, and hypothermia, nor acute functional tolerance to ataxia. BK β1 deletion reduced chronic tolerance to sedation and abolished chronic tolerance to hypothermia, while BK β4 deletion did not affect these adaptations to chronic EtOH exposure. Finally, the absence of BK β1 accelerated the appearance, while the absence of BK β4 delayed the resolution, of the hyperexcitable state associated with EtOH withdrawal. CONCLUSIONS: Altogether, the present findings reveal the critical role of BK β1 in behavioral adaptations to prolonged, repeated EtOH intoxication.

Changhai Cui, Antonio Noronha, Kenneth R. Warren, George F. Koob, Rajita Sinha, Mahesh Thakkar, John Matochik, Fulton T. Crews, L. Judson Chandler, Adolf Pfefferbaum, Howard C. Becker, David Lovinger, Barry J. Everitt, Mark Egli, Chitra D. Mandyam, George Fein, Marc N. Potenza, R. Adron Harris, Kathleen A. Grant, Marisa Roberto, Dieter J. Meyerhoff, and Edith V. Sullivan. “Brain pathways to recovery from alcohol dependence.” Alcohol (Fayetteville, N.Y.), 49, 5, Pp. 435–452. 

Abstract

This article highlights the research presentations at the satellite symposium on “Brain Pathways to Recovery from Alcohol Dependence” held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed.

Nicholas W. Gilpin, Melissa A. Herman, and Marisa Roberto. “The central amygdala as an integrative hub for anxiety and alcohol use disorders.” Biological Psychiatry, 77, 10, Pp. 859–869. 

Abstract

The central amygdala (CeA) plays a central role in physiologic and behavioral responses to fearful stimuli, stressful stimuli, and drug-related stimuli. The CeA receives dense inputs from cortical regions, is the major output region of the amygdala, is primarily GABAergic (inhibitory), and expresses high levels of prostress and antistress peptides. The CeA is also a constituent region of a conceptual macrostructure called the extended amygdala that is recruited during the transition to alcohol dependence. We discuss neurotransmission in the CeA as a potential integrative hub between anxiety disorders and alcohol use disorder, which are commonly co-occurring in humans. Imaging studies in humans and multidisciplinary work in animals collectively suggest that CeA structure and function are altered in individuals with anxiety disorders and alcohol use disorder, the end result of which may be disinhibition of downstream “effector” regions that regulate anxiety-related and alcohol-related behaviors.

Elizabeth A. Osterndorff-Kahanek, Howard C. Becker, Marcelo F. Lopez, Sean P. Farris, Gayatri R. Tiwari, Yury O. Nunez, R. Adron Harris, and R. Dayne Mayfield. “Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks.” PloS One, 10, 3, Pp. e0121522. 

Abstract

Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC), and liver after four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000) at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600). Within each region, there was little gene overlap across time (\textasciitilde20%). All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global ‘rewiring’ of coexpression systems involving glial and immune signaling as well as neuronal genes.

Angela R. Ozburn, Aaron J. Janowsky, and John C. Crabbe. “Commonalities and Distinctions Among Mechanisms of Addiction to Alcohol and Other Drugs.” Alcoholism, Clinical and Experimental Research, 39, 10, Pp. 1863–1877. 

Abstract

BACKGROUND: Alcohol abuse is comorbid with abuse of many other drugs, some with similar pharmacology and others quite different. This leads to the hypothesis of an underlying, unitary dysfunctional neurobiological basis for substance abuse risk and consequences. METHODS: In this review, we discuss commonalities and distinctions of addiction to alcohol and other drugs. We focus on recent advances in preclinical studies using rodent models of drug self-administration. RESULTS: While there are specific behavioral and molecular manifestations common to alcohol, psychostimulant, opioid, and nicotine dependence, attempts to propose a unifying theory of the addictions inevitably face details where distinctions are found among classes of drugs. CONCLUSIONS: For alcohol, versus other drugs of abuse, we discuss and compare advances in: (i) neurocircuitry important for the different stages of drug dependence; (ii) transcriptomics and genetical genomics; and (iii) enduring effects, noting in particular the contributions of behavioral genetics and animal models.

Ovidiu D. Iancu, Alexandre Colville, Denesa Oberbeck, Priscila Darakjian, Shannon K. McWeeney, and Robert Hitzemann. “Cosplicing network analysis of mammalian brain RNA-Seq data utilizing WGCNA and Mantel correlations.” Frontiers in Genetics, 6, Pp. 174. 

Abstract

Across species and tissues and especially in the mammalian brain, production of gene isoforms is widespread. While gene expression coordination has been previously described as a scale-free coexpression network, the properties of transcriptome-wide isoform production coordination have been less studied. Here we evaluate the system-level properties of cosplicing in mouse, macaque, and human brain gene expression data using a novel network inference procedure. Genes are represented as vectors/lists of exon counts and distance measures sensitive to exon inclusion rates quantifies differences across samples. For all gene pairs, distance matrices are correlated across samples, resulting in cosplicing or cotranscriptional network matrices. We show that networks including cosplicing information are scale-free and distinct from coexpression. In the networks capturing cosplicing we find a set of novel hubs with unique characteristics distinguishing them from coexpression hubs: heavy representation in neurobiological functional pathways, strong overlap with markers of neurons and neuroglia, long coding lengths, and high number of both exons and annotated transcripts. Further, the cosplicing hubs are enriched in genes associated with autism spectrum disorders. Cosplicing hub homologs across eukaryotes show dramatically increasing intronic lengths but stable coding region lengths. Shared transcription factor binding sites increase coexpression but not cosplicing; the reverse is true for splicing-factor binding sites. Genes with protein-protein interactions have strong coexpression and cosplicing. Additional factors affecting the networks include shared microRNA binding sites, spatial colocalization within the striatum, and sharing a chromosomal folding domain. Cosplicing network patterns remain relatively stable across species.

Adolf Pfefferbaum and Edith V. Sullivan. “Cross-sectional versus longitudinal estimates of age-related changes in the adult brain: overlaps and discrepancies.” Neurobiology of Aging, 36, 9, Pp. 2563–2567. 

Abstract

The healthy adult brain undergoes tissue volume decline with age, but contradictory findings abound regarding rate of change. To identify a source of this discrepancy, we present contrasting statistical approaches to estimate hippocampal volume change with age based on 200 longitudinally-acquired magnetic resonance imaging in 70 healthy adults, age 20-70 years, who had 2-5 magnetic resonance imaging collected over 6 months to 8 years. Linear mixed-effects modeling using volume trajectories over age for each subject revealed significantly negative slopes with aging after a linear decline with a suggestion of acceleration in older individuals. By contrast, general linear modeling using either the first observation only of each subject or all observations treated independently (thereby disregarding trajectories) indicated no significant correlation between volume and age. Entering a quadratic term into the linear model yielded a biologically plausible function that was not supported by longitudinal analysis. The results underscore the importance of analyses that incorporate the trajectory of individuals in the study of brain aging.

Paul Chu Sin Chung, Annie Boehrer, Aline Stephan, Audrey Matifas, Grégory Scherrer, Emmanuel Darcq, Katia Befort, and Brigitte L. Kieffer. “Delta opioid receptors expressed in forebrain GABAergic neurons are responsible for SNC80-induced seizures.” Behavioural Brain Research, 278, Pp. 429–434. 

Abstract

The delta opioid receptor (DOR) has raised much interest for the development of new therapeutic drugs, particularly to treat patients suffering from mood disorders and chronic pain. Unfortunately, the prototypal DOR agonist SNC80 induces mild epileptic seizures in rodents. Although recently developed agonists do not seem to show convulsant properties, mechanisms and neuronal circuits that support DOR-mediated epileptic seizures remain to be clarified. DORs are expressed throughout the nervous system. In this study we tested the hypothesis that SNC80-evoked seizures stem from DOR activity at the level of forebrain GABAergic transmission, whose inhibition is known to facilitate the development of epileptic seizures. We generated a conditional DOR knockout mouse line, targeting the receptor gene specifically in GABAergic neurons of the forebrain (Dlx-DOR). We measured effects of SNC80 (4.5, 9, 13.5 and 32 mg/kg), ARM390 (10, 30 and 60 mg/kg) or ADL5859 (30, 100 and 300 mg/kg) administration on electroencephalograms (EEGs) recorded in Dlx-DOR mice and their control littermates (Ctrl mice). SNC80 produced dose-dependent seizure events in Ctrl mice, but these effects were not detected in Dlx-DOR mice. As expected, ARM390 and ADL5859 did not trigger any detectable change in mice from both genotypes. These results demonstrate for the first time that SNC80-induced DOR activation induces epileptic seizures via direct inhibition of GABAergic forebrain neurons, and supports the notion of differential activities between first and second-generation DOR agonists.

Juan L. Gomez, Christopher L. Cunningham, Deborah A. Finn, Emily A. Young, Lily K. Helpenstell, Lindsey M. Schuette, Tara L. Fidler, Therese A. Kosten, and Andrey E. Ryabinin. “Differential effects of ghrelin antagonists on alcohol drinking and reinforcement in mouse and rat models of alcohol dependence.” Neuropharmacology, 97, Pp. 182–193. 

Abstract

An effort has been mounted to understand the mechanisms of alcohol dependence in a way that may allow for greater efficacy in treatment. It has long been suggested that drugs of abuse seize fundamental reward pathways and disrupt homeostasis to produce compulsive drug seeking behaviors. Ghrelin, an endogenous hormone that affects hunger state and release of growth hormone, has been shown to increase alcohol intake following administration, while antagonists decrease intake. Using rodent models of dependence, the current study examined the effects of two ghrelin receptor antagonists, [DLys3]-GHRP-6 (DLys) and JMV2959, on dependence-induced alcohol self-administration. In two experiments adult male C57BL/6J mice and Wistar rats were made dependent via intermittent ethanol vapor exposure. In another experiment, adult male C57BL/6J mice were made dependent using the intragastric alcohol consumption (IGAC) procedure. Ghrelin receptor antagonists were given prior to voluntary ethanol drinking. Ghrelin antagonists reduced ethanol intake, preference, and operant self-administration of ethanol and sucrose across these models, but did not decrease food consumption in mice. In experiments 1 and 2, voluntary drinking was reduced by ghrelin receptor antagonists, however this reduction did not persist across days. Despite the transient effects of ghrelin antagonists, the drugs had renewed effectiveness following a break in administration as seen in experiment 1. The results show the ghrelin system as a potential target for studies of alcohol abuse. Further research is needed to determine the central mechanisms of these drugs and their influence on addiction in order to design effective pharmacotherapies.

A. M. Barkley-Levenson and J. C. Crabbe. “Distinct ethanol drinking microstructures in two replicate lines of mice selected for drinking to intoxication.” Genes, Brain, and Behavior, 14, 5, Pp. 398–410. 

Abstract

The High Drinking in the Dark (HDID) mice have been selectively bred for reaching high blood ethanol concentrations (BECs) following the limited access Drinking in the Dark (DID) test. We have shown previously that mice from the first HDID replicate line (HDID-1) drink in larger, but not longer, ethanol drinking bouts than the low-drinking HS/Npt control mice when consuming modest amounts in the DID test. Here, we assessed drinking microstructure in HDID-1 mice during binge-like levels of ethanol intake using a lickometer system. Mice from both HDID replicates (HDID-1 and -2) and HS mice were also given three DID tests (single-bottle ethanol, two-bottle choice and single-bottle saccharin) using a continuously recording BioDAQ system to determine whether there are selection-dependent changes in drinking microstructure. Larger ethanol bout size in the HDID-1 mice than the HS mice was found to be due to a larger lick volume in these mice. HDID-1 and HDID-2 mice were also seen to have different drinking microstructures that both resulted in high intake and high BECs. The HDID-1 mice drank in larger ethanol bouts than HS, whereas HDID-2 mice drank in more frequent bouts. This pattern was also seen in two-bottle choice DID. The HDID-2 mice had a high bout frequency for all fluid types tested, whereas the large bout size phenotype of the HDID-1 mice was specific to alcohol. These findings suggest that selection for drinking to intoxication has resulted in two distinct drinking microstructures, both of which lead to high BECs and high ethanol intake.

Adolf Pfefferbaum, Natalie M. Zahr, Dirk Mayer, Torsten Rohlfing, and Edith V. Sullivan. “Dynamic responses of selective brain white matter fiber tracts to binge alcohol and recovery in the rat.” PloS One, 10, 4, Pp. e0124885. 

Abstract

To determine the dynamics of white matter vulnerability to excessive alcohol consumption, diffusion tensor imaging (DTI) was used in an animal model of alcohol exposure. Quantitative, in vivo fiber tracking results are presented from rats with DTI conducted at 3 time points: baseline; after 4 days of intragastric alcohol to blood alcohol levels of \textasciitilde250 mg/dL; and after one week of recovery. Binge alcohol followed by a week of sobriety resulted in rapidly reversible decreases in fractional anisotropy (FA), a measure of the coherence of fiber tracts, in callosal genu and fimbria-fornix but not splenium; and increases in mean diffusivity (MD), an index of freely diffusing water in tissue, selective to the fimbria-fornix. These effects were confirmed with tract-based spatial statistics (TBSS). The directionality of changes in DTI metrics reproduce those observed in human alcoholism. That a single exposure to binge alcohol can cause substantial transient changes detectable in DTI metrics demonstrates the potential for rapid neuroplasticity.

P. S. S. Rao, S. Goodwani, R. L. Bell, Y. Wei, S. H. S. Boddu, and Y. Sari. “Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats.” Neuroscience, 295, Pp. 164–174. 

Abstract

Chronic ethanol consumption is known to downregulate expression of the major glutamate transporter 1 (GLT-1), which increases extracellular glutamate concentrations in subregions of the mesocorticolimbic reward pathway. While β-lactam antibiotics were initially identified as potent upregulators of GLT-1 expression, only ceftriaxone has been extensively studied in various drug addiction models. Therefore, in this study, adult male alcohol-preferring (P) rats exposed chronically to ethanol were treated with other β-lactam antibiotics, ampicillin, cefazolin or cefoperazone (100mg/kg) once daily for five consecutive days to assess their effects on ethanol consumption. The results demonstrated that each compound significantly reduced ethanol intake compared to the saline-treated control group. Importantly, each compound significantly upregulated both GLT-1 and pAKT expressions in the nucleus accumbens and prefrontal cortex compared to saline-treated control group. In addition, only cefoperazone significantly inhibited hepatic aldehyde dehydrogenase-2 enzyme activity. Moreover, these β-lactams exerted only a transient effect on sucrose drinking, suggesting specificity for chronically inhibiting ethanol reward in adult male P rats. Cerebrospinal fluid concentrations of ampicillin, cefazolin or cefoperazone have been confirmed using high-performance liquid chromatography. These findings demonstrate that multiple β-lactam antibiotics demonstrate efficacy in reducing alcohol consumption and appear to be potential therapeutic compounds for treating alcohol abuse and/or dependence. In addition, these results suggest that pAKT may be an important player in this effect, possibly through increased transcription of GLT-1.

Sean P. Farris, Robert A. Harris, and Igor Ponomarev. “Epigenetic modulation of brain gene networks for cocaine and alcohol abuse.” Frontiers in Neuroscience, 9, Pp. 176. 

Abstract

Cocaine and alcohol are two substances of abuse that prominently affect the central nervous system (CNS). Repeated exposure to cocaine and alcohol leads to longstanding changes in gene expression, and subsequent functional CNS plasticity, throughout multiple brain regions. Epigenetic modifications of histones are one proposed mechanism guiding these enduring changes to the transcriptome. Characterizing the large number of available biological relationships as network models can reveal unexpected biochemical relationships. Clustering analysis of variation from whole-genome sequencing of gene expression (RNA-Seq) and histone H3 lysine 4 trimethylation (H3K4me3) events (ChIP-Seq) revealed the underlying structure of the transcriptional and epigenomic landscape within hippocampal postmortem brain tissue of drug abusers and control cases. Distinct sets of interrelated networks for cocaine and alcohol abuse were determined for each abusive substance. The network approach identified subsets of functionally related genes that are regulated in agreement with H3K4me3 changes, suggesting cause and effect relationships between this epigenetic mark and gene expression. Gene expression networks consisted of recognized substrates for addiction, such as the dopamine- and cAMP-regulated neuronal phosphoprotein PPP1R1B/DARPP-32 and the vesicular glutamate transporter SLC17A7/VGLUT1 as well as potentially novel molecular targets for substance abuse. Through a systems biology based approach our results illustrate the utility of integrating epigenetic and transcript expression to establish relevant biological networks in the human brain for addiction. Future work with laboratory models may clarify the functional relevance of these gene networks for cocaine and alcohol, and provide a framework for the development of medications for the treatment of addiction.

Donghong He, Hu Chen, Hisako Muramatsu, and Amy W. Lasek. “Ethanol activates midkine and anaplastic lymphoma kinase signaling in neuroblastoma cells and in the brain.” Journal of Neurochemistry, 135, 3, Pp. 508–521. 

Abstract

Alcohol engages signaling pathways in the brain. Midkine (MDK) is a neurotrophic factor that is over-expressed in the prefrontal cortex of alcoholics. MDK and one of its receptors, anaplastic lymphoma kinase (ALK), also regulate behavioral responses to ethanol in mice. The goal of this study was to determine whether MDK and ALK expression and signaling are activated by ethanol. We found that ethanol treatment of neuroblastoma cells increased MDK and ALK expression. We also assessed activation of ALK by ethanol in cells and found that ALK and ALK-dependent extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3) phosphorylation increased rapidly with ethanol exposure. Similarly, treatment of cells with recombinant MDK protein increased ALK, ERK and STAT3 phosphorylation, suggesting that ethanol may utilize MDK to activate ALK signaling. In support of this, transfection of cells with MDK siRNAs attenuated ALK signaling in response to ethanol. Ethanol also activates ERK signaling in the brain. We found that inhibition of ALK or knockout of MDK attenuated ethanol-induced ERK phosphorylation in mouse amygdala. These results demonstrate that ethanol engages MDK and ALK signaling, which has important consequences for alcohol-induced neurotoxicity and the regulation of behaviors related to alcohol abuse.

William A. Truitt, Sheketha R. Hauser, Gerald A. Deehan, Jamie E. Toalston, Jessica A. Wilden, Richard L. Bell, William J. McBride, and Zachary A. Rodd. “Ethanol and nicotine interaction within the posterior ventral tegmental area in male and female alcohol-preferring rats: evidence of synergy and differential gene activation in the nucleus accumbens shell.” Psychopharmacology, 232, 3, Pp. 639–649. 

Abstract

RATIONALE: Ethanol and nicotine are frequently co-abused. The biological basis for the high co-morbidity rate is not known. Alcohol-preferring (P) rats will self-administer EtOH or nicotine directly into the posterior ventral tegmental area (pVTA). OBJECTIVE: The current experiments examined whether sub-threshold concentrations of EtOH and nicotine would support the development of self-administration behaviors if the drugs were combined. METHODS: Rats were implanted with a guide cannula aimed at the pVTA. Rats were randomly assigned to groups that self-administered sub-threshold concentrations of EtOH (50 mg%) or nicotine (1 μM) or combinations of ethanol (25 or 50 mg%) and nicotine (0.5 or 1.0 μM). Alterations in gene expression downstream projections areas (nucleus accumbens shell, AcbSh) were assessed following a single, acute exposure to EtOH (50 mg%), nicotine (1 μM), or ethanol and nicotine (50 mg% + 1 μM) directly into the pVTA. RESULTS: The results indicated that P rats would co-administer EtOH and nicotine directly into the pVTA at concentrations that did not support individual self-administration. EtOH and nicotine directly administered into the pVTA resulted in alterations in gene expression in the AcbSh (50.8-fold increase in brain-derived neurotrophic factor (BDNF), 2.4-fold decrease in glial cell line-derived neurotrophic factor (GDNF), 10.3-fold increase in vesicular glutamate transporter 1 (Vglut1)) that were not observed following microinjections of equivalent concentrations/doses of ethanol or nicotine. CONCLUSION: The data indicate that ethanol and nicotine act synergistically to produce reinforcement and alter gene expression within the mesolimbic dopamine system. The high rate of co-morbidity of alcoholism and nicotine dependence could be the result of the interactions of EtOH and nicotine within the mesolimbic dopamine system.

Jeanette N. McClintick, William J. McBride, Richard L. Bell, Zheng-Ming Ding, Yunlong Liu, Xiaoling Xuei, and Howard J. Edenberg. “Gene expression changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking.” Pharmacology, Biochemistry, and Behavior, 129, Pp. 87–96. 

Abstract

Alcohol binge-drinking during adolescence is a serious public health concern with long-term consequences. We used RNA sequencing to assess the effects of excessive adolescent ethanol binge-drinking on gene expression in the dorsal raphe nucleus (DRN) of alcohol preferring (P) rats. Repeated binges across adolescence (three 1h sessions across the dark-cycle per day, 5 days per week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session) significantly altered the expression of approximately one-third of the detected genes. Multiple neurotransmitter systems were altered, with the largest changes in the serotonin system (21 of 23 serotonin-related genes showed decreased expression) and GABA-A receptors (8 decreased and 2 increased). Multiple neuropeptide systems were also altered, with changes in the neuropeptide Y and corticotropin-releasing hormone systems similar to those associated with increased drinking and decreased resistance to stress. There was increased expression of 21 of 32 genes for potassium channels. Expression of downstream targets of CREB signaling was increased. There were also changes in expression of genes involved in inflammatory processes, axonal guidance, growth factors, transcription factors, and several intracellular signaling pathways. These widespread changes indicate that excessive binge drinking during adolescence alters the functioning of the DRN and likely its modulation of many regions of the central nervous system, including the mesocorticolimbic system.

Amanda M. Barkley-Levenson and John C. Crabbe. “Genotypic and sex differences in anxiety-like behavior and alcohol-induced anxiolysis in High Drinking in the Dark selected mice.” Alcohol (Fayetteville, N.Y.), 49, 1, Pp. 29–36. 

Abstract

Alcohol use disorders and anxiety disorders are highly comorbid in humans. In rodent lines selected for alcohol drinking, differences in anxiety-like behavior are also seen. The High Drinking in the Dark (HDID) lines of mice are selectively bred for drinking to intoxication during limited access to alcohol, and these mice represent a genetic model of risk for binge-like drinking. The present studies investigated whether these selected lines differ from control (HS) mice in basal anxiety behavior or in anxiolytic response to alcohol. We also assessed the genetic correlation between alcohol drinking in the dark (DID) and basal anxiety-like behavior using existing inbred strain data. Mice of both sexes and HDID replicates (HDID-1 and HDID-2) were tested on an elevated zero maze immediately following a DID test. In general, HDID mice showed more time spent in the open arms after drinking alcohol than HS mice, and open-arm time was significantly correlated with blood alcohol concentration. HDID-1 male mice also showed less anxiety-like behavior at baseline (water-drinking controls). In a separate experiment, HDID-1 and HS mice were tested for anxiolytic dose-response to acute alcohol injections. Both genotypes showed increasing time spent in the open arms with increasing alcohol doses, and HDID-1 and female mice had greater open-arm time across all doses. HDID-1 control males showed lower anxiety-like behavior than the HS control males. Inbred strain data analysis also showed no significant genetic relationship between alcohol DID and anxiety. These findings suggest that HDID selection has not produced systematic changes in anxiety-like behavior or sensitivity to alcohol-induced anxiolysis, though there is a tendency in the male mice of the first replicate toward reduced basal anxiety-like behavior. Therefore, anxiety state and sensitivity to alcohol’s anxiolytic effects do not appear to contribute significantly to the high drinking behavior of the HDID mice.

Melissa A. Herman, Harpreet Sidhu, David G. Stouffer, Max Kreifeldt, David Le, Chelsea Cates-Gatto, Michaelanne B. Munoz, Amanda J. Roberts, Loren H. Parsons, Marisa Roberto, Kevin Wickman, Paul A. Slesinger, and Candice Contet. “GIRK3 gates activation of the mesolimbic dopaminergic pathway by ethanol.” Proceedings of the National Academy of Sciences of the United States of America, 112, 22, Pp. 7091–7096. 

Abstract

G protein-gated inwardly rectifying potassium (GIRK) channels are critical regulators of neuronal excitability and can be directly activated by ethanol. Constitutive deletion of the GIRK3 subunit has minimal phenotypic consequences, except in response to drugs of abuse. Here we investigated how the GIRK3 subunit contributes to the cellular and behavioral effects of ethanol, as well as to voluntary ethanol consumption. We found that constitutive deletion of GIRK3 in knockout (KO) mice selectively increased ethanol binge-like drinking, without affecting ethanol metabolism, sensitivity to ethanol intoxication, or continuous-access drinking. Virally mediated expression of GIRK3 in the ventral tegmental area (VTA) reversed the phenotype of GIRK3 KO mice and further decreased the intake of their wild-type counterparts. In addition, GIRK3 KO mice showed a blunted response of the mesolimbic dopaminergic (DA) pathway to ethanol, as assessed by ethanol-induced excitation of VTA neurons and DA release in the nucleus accumbens. These findings support the notion that the subunit composition of VTA GIRK channels is a critical determinant of DA neuron sensitivity to drugs of abuse. Furthermore, our study reveals the behavioral impact of this cellular effect, whereby the level of GIRK3 expression in the VTA tunes ethanol intake under binge-type conditions: the more GIRK3, the less ethanol drinking.

Yuri A. Blednov, Jillian M. Benavidez, Mendy Black, Courtney R. Leiter, Elizabeth Osterndorff-Kahanek, and R. Adron Harris. “Glycine receptors containing α2 or α3 subunits regulate specific ethanol-mediated behaviors.” The Journal of Pharmacology and Experimental Therapeutics, 353, 1, Pp. 181–191. 

Abstract

Glycine receptors (GlyRs) are broadly expressed in the central nervous system. Ethanol enhances the function of brain GlyRs, and the GlyRα1 subunit is associated with some of the behavioral actions of ethanol, such as loss of righting reflex. The in vivo role of GlyRα2 and α3 subunits in alcohol responses has not been characterized despite high expression levels in the nucleus accumbens and amygdala, areas that are important for the rewarding properties of drugs of abuse. We used an extensive panel of behavioral tests to examine ethanol actions in mice lacking Glra2 (the gene encoding the glycine receptor alpha 2 subunit) or Glra3 (the gene encoding the glycine receptor alpha 3 subunit). Deletion of Glra2 or Glra3 alters specific ethanol-induced behaviors. Glra2 knockout mice demonstrate reduced ethanol intake and preference in the 24-hour two-bottle choice test and increased initial aversive responses to ethanol and lithium chloride. In contrast, Glra3 knockout mice show increased ethanol intake and preference in the 24-hour intermittent access test and increased development of conditioned taste aversion to ethanol. Mutants and wild-type mice consumed similar amounts of ethanol in the limited access drinking in the dark test. Other ethanol effects, such as anxiolysis, motor incoordination, loss of righting reflex, and acoustic startle response, were not altered in the mutants. The behavioral changes in mice lacking GlyRα2 or α3 subunits were distinct from effects previously observed in mice with knock-in mutations in the α1 subunit. We provide evidence that GlyRα2 and α3 subunits may regulate ethanol consumption and the aversive response to ethanol.

Arshad Haider, Nicholas C. Woodward, Kevin D. Lominac, Arianne D. Sacramento, Matthias Klugmann, Richard L. Bell, and Karen K. Szumlinski. “Homer2 within the nucleus accumbens core bidirectionally regulates alcohol intake by both P and Wistar rats.” Alcohol (Fayetteville, N.Y.), 49, 6, Pp. 533–542. 

Abstract

In murine models of alcoholism, the glutamate receptor scaffolding protein Homer2 bidirectionally regulates alcohol intake. Although chronic alcohol drinking increases Homer2 expression within the core subregion of the nucleus accumbens (NAc) of alcohol-preferring P rats, the relevance of this neuroadaptation for alcohol intake has yet to be determined in rats. Thus, the present study employed an adeno-associated viral vector (AAV) strategy to over-express and knock down the major rodent isoform Homer2b within the NAc of both P and outbred Wistar rats to examine for changes in alcohol preference and intake (0-30% v/v) under continuous-access procedures. The generalization of AAV effects to non-drug, palatable, sweet solutions was also determined in tests of sucrose (0-5% w/v) and saccharin (0-0.125% w/v) intake/preference. No net-flux in vivo microdialysis was conducted for glutamate in the NAc to relate Homer2-dependent changes in alcohol intake to extracellular levels of glutamate. Line differences were noted for sweet solution preference and intake, but these variables were not affected by intra-NAc AAV infusion in either line. In contrast, Homer2b over-expression elevated, while Homer2b knock-down reduced, alcohol intake in both lines, and this effect was greatest at the highest concentration. Strikingly, in P rats there was a direct association between changes in Homer2b expression and NAc extracellular glutamate levels, but this effect was not seen in Wistar rats. These data indicate that NAc Homer2b expression actively regulates alcohol consumption by rats, paralleling this previous observation in mice. Overall, these findings underscore the importance of mesocorticolimbic glutamate activity in alcohol abuse/dependence and suggest that Homer2b and/or its constituents may serve as molecular targets for the treatment of these disorders.

Brooke E. Schmeichel, Estelle Barbier, Kaushik K. Misra, Candice Contet, Joel E. Schlosburg, Dimitri Grigoriadis, John P. Williams, Camilla Karlsson, Caleb Pitcairn, Markus Heilig, George F. Koob, and Leandro F. Vendruscolo. “Hypocretin receptor 2 antagonism dose-dependently reduces escalated heroin self-administration in rats.” Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 40, 5, Pp. 1123–1129. 

Abstract

The hypocretin/orexin (HCRT) system has been associated with both positive and negative drug reinforcement, implicating HCRT receptor 1 (HCRT-R1) signaling in drug-related behaviors for all major drug classes, including opioids. However, to date there are limited studies investigating the role of HCRT receptor 2 (HCRT-R2) signaling in compulsive-like drug seeking. Escalation of drug intake with extended access has been suggested to model the transition from controlled drug use to compulsive-like drug seeking/taking. The current study examined the effects of a HCRT-R2 antagonist, NBI-80713, on heroin self-administration in rats allowed short- (1 h; ShA) or long- (12 h; LgA) access to intravenous heroin self-administration. Results indicate that systemically administered NBI-80713 dose-dependently decreased heroin self-administration in LgA, but not in ShA, animals. Quantitative PCR analyses showed an increase in Hcrtr2 mRNA levels in the central amygdala, a stress-related brain region, of LgA rats. These observations suggest a functional role for HCRT-R2 signaling in compulsive-like heroin self-administration associated with extended access and indicate HCRT-R2 antagonism as a potential pharmacological target for the treatment of heroin dependence.

Richard L. Bell, Marcelo F. Lopez, Changhai Cui, Mark Egli, Kirk W. Johnson, Kelle M. Franklin, and Howard C. Becker. “Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence.” Addiction Biology, 20, 1, Pp. 38–42. 

Abstract

Neuroinflammatory signaling pathways in the central nervous system are of current interest as potential pharmacotherapy targets for alcohol dependence. In this study, we examined the ability of ibudilast, a non-selective phosphodiesterase inhibitor, to reduce alcohol drinking and relapse in alcohol-preferring P rats, high-alcohol drinking HAD1 rats, and in mice made dependent on alcohol through cycles of alcohol vapor exposure. When administered twice daily, ibudilast reduced alcohol drinking in rats by approximately 50% and reduced drinking by alcohol-dependent mice at doses which had no effect in non-dependent mice. These findings support the viability of ibudilast as a possible treatment for alcohol dependence.

Vez Repunte-Canonigo, William Shin, Leandro F. Vendruscolo, Celine Lefebvre, Lena van der Stap, Tomoya Kawamura, Joel E. Schlosburg, Mariano Alvarez, George F. Koob, Andrea Califano, and Pietro Paolo Sanna. “Identifying candidate drivers of alcohol dependence-induced excessive drinking by assembly and interrogation of brain-specific regulatory networks.” Genome Biology, 16, Pp. 68. 

Abstract

BACKGROUND: A systems biology approach based on the assembly and interrogation of gene regulatory networks, or interactomes, was used to study neuroadaptation processes associated with the transition to alcohol dependence at the molecular level. RESULTS: Using a rat model of dependent and non-dependent alcohol self-administration, we reverse engineered a global transcriptional regulatory network during protracted abstinence, a period when relapse rates are highest. We then interrogated the network to identify master regulator genes that mechanistically regulate brain region-specific signatures associated with dependent and non-dependent alcohol self-administration. Among these, the gene coding for the glucocorticoid receptor was independently identified as a master regulator in multiple brain regions, including the medial prefrontal cortex, nucleus accumbens, central nucleus of the amygdala, and ventral tegmental area, consistent with the view that brain reward and stress systems are dysregulated during protracted abstinence. Administration of the glucocorticoid antagonist mifepristone in either the nucleus accumbens or ventral tegmental area selectively decreased dependent, excessive, alcohol self-administration in rats but had no effect on non-dependent, moderate, alcohol self-administration. CONCLUSIONS: Our study suggests that assembly and analysis of regulatory networks is an effective strategy for the identification of key regulators of long-term neuroplastic changes within specific brain regions that play a functional role in alcohol dependence. More specifically, our results support a key role for regulatory networks downstream of the glucocorticoid receptor in excessive alcohol drinking during protracted alcohol abstinence.

Michal Bajo, Florence P. Varodayan, Samuel G. Madamba, Amanda J. Robert, Lindsey M. Casal, Christopher S. Oleata, George R. Siggins, and Marisa Roberto. “IL-1 interacts with ethanol effects on GABAergic transmission in the mouse central amygdala.” Frontiers in Pharmacology, 6, Pp. 49. 

Abstract

Neuroinflammation is hypothesized to enhance alcohol consumption and contribute to the development of alcoholism. GABAergic transmission in the central amygdala (CeA) plays an important role in the transition to alcohol dependence. Therefore, we studied the effects of interleukin-1β (IL-1β), a proinflammatory cytokine mediating ethanol-induced neuroinflammation, and its interaction with ethanol on CeA GABAegic transmission in B6129SF2/J mice. We also assessed ethanol intake in B6129SF2/J mice. Intake with unlimited (24 h) ethanol access was 9.2-12.7 g/kg (3-15% ethanol), while limited (2 h) access produced an intake of 4.1 ± 0.5 g/kg (15% ethanol). In our electrophysiology experiments, we found that recombinant IL-1β (50 and 100 ng/ml) significantly decreased the amplitude of evoked inhibitory postsynaptic potentials (eIPSPs), with no significant effects on paired-pulse facilitation (PPF). IL-1β (50 ng/ml) had dual effects on spontaneous miniature inhibitory postsynaptic currents (mIPSCs): increasing mIPSC frequencies in most CeA neurons, but decreasing both mIPSC frequencies and amplitudes in a few cells. The IL-1β receptor antagonist (IL-1ra; 100 ng/ml) also had dual effects on mIPSCs and prevented the actions of IL-1β on mIPSC frequencies. These results suggest that IL-1β can alter CeA GABAergic transmission at pre- and postsynaptic sites. Ethanol (44 mM) significantly increased eIPSP amplitudes, decreased PPFs, and increased mIPSC frequencies. IL-1β did not alter ethanol’s enhancement of the eIPSP amplitude, but, in IL-1β-responsive neurons, the ethanol effects on mIPSC frequencies were lost. Overall, our data suggest that the IL-1 system is involved in basal GABAergic transmission and that IL-1β interacts with the ethanol-induced facilitation of CeA GABAergic transmission.

Christa M. Helms, Richard L. Bell, Allyson J. Bennett, Daryl L. Davies, Julia A. Chester, Therese A. Kosten, Robert F. Leeman, Sangeeta Panicker, Donna M. Platt, Jeff L. Weiner, and Scott Edwards. “The importance of animals in advancing research on alcohol use disorders.” Alcoholism, Clinical and Experimental Research, 39, 4, Pp. 575–578.

Monique L. Smith, Ju Li, and Andrey E. Ryabinin. “Increased alcohol consumption in urocortin 3 knockout mice is unaffected by chronic inflammatory pain.” Alcohol and Alcoholism (Oxford, Oxfordshire), 50, 2, Pp. 132–139. 

Abstract

AIMS: Stress neurocircuitry may modulate the relationship between alcohol drinking and chronic pain. The corticotropin-releasing factor (CRF) system is crucial for regulation of stress responses. The current study aimed to elucidate the role of the endogenous CRF ligand Urocortin 3 (Ucn3) in the relationship between alcohol drinking behavior and chronic pain using a genetic approach. METHODS: Ucn3 (KO) and wildtype (WT) littermates were subjected to a 24-h access drinking procedure prior to and following induction of chronic inflammatory pain. RESULTS: Ucn3 KO mice displayed significantly increased ethanol intake and preference compared with WT across the time course. There were no long-term effects of chronic pain on alcohol drinking behavior, regardless of genotype, nor any evidence for alcohol-induced analgesia. CONCLUSION: The increased drinking in Ucn3 KO supports a role for this peptide in alcohol-related behavior. These data suggest the necessity for more research exploring the relationship between alcohol drinking, chronic pain and the CRF system in rodent models.

Lauren A. Vanderlinden, Laura M. Saba, Beth Bennett, Paula L. Hoffman, and Boris Tabakoff. “Influence of sex on genetic regulation of “drinking in the dark” alcohol consumption.” Mammalian Genome: Official Journal of the International Mammalian Genome Society, 26, 1-2, Pp. 43–56. 

Abstract

The ILSXISS (LXS) recombinant inbred (RI) panel of mice is a valuable resource for genetic mapping studies of complex traits, due to its genetic diversity and large number of strains. Male and female mice from this panel were used to investigate genetic influences on alcohol consumption in the “drinking in the dark” (DID) model. Male mice (38 strains) and female mice (36 strains) were given access to 20% ethanol during the early phase of their circadian dark cycle for four consecutive days. The first principal component of alcohol consumption measures on days 2, 3, and 4 was used as a phenotype (DID phenotype) to calculate QTLs, using a SNP marker set for the LXS RI panel. Five QTLs were identified, three of which included a significant genotype by sex interaction, i.e., a significant genotype effect in males and not females. To investigate candidate genes associated with the DID phenotype, data from brain microarray analysis (Affymetrix Mouse Exon 1.0 ST Arrays) of male LXS RI strains were combined with RNA-Seq data (mouse brain transcriptome reconstruction) from the parental ILS and ISS strains in order to identify expressed mouse brain transcripts. Candidate genes were determined based on common eQTL and DID phenotype QTL regions and correlation of transcript expression levels with the DID phenotype. The resulting candidate genes (in particular, Arntl/Bmal1) focused attention on the influence of circadian regulation on the variation in the DID phenotype in this population of mice.

Maenghee Kang-Park, Brigitte L. Kieffer, Amanda J. Roberts, George R. Siggins, and Scott D. Moore. “Interaction of CRF and kappa opioid systems on GABAergic neurotransmission in the mouse central amygdala.” The Journal of Pharmacology and Experimental Therapeutics, 355, 2, Pp. 206–211. 

Abstract

{The corticotropin-releasing factor (CRF) and kappa-opioid receptor (KOR) systems are both implicated in stress-related behaviors and drug dependence. Although previous studies suggest that antagonism of each system blocks aspects of experimental models of drug dependence, the possible interaction between these systems at the neuronal level has not been completely examined. We used an in vitro brain slice preparation to investigate the interaction of these two peptide systems on inhibitory neurotransmission in the central nucleus of the amygdala (CeA). Application of exogenous CRF increased the mean frequency of GABAergic miniature inhibitory postsynaptic currents (mIPSC) by 20.2%, suggesting an increase in presynaptic GABA release. Although the pharmacological blockade of KORs by norBNI alone did not significantly affect mIPSC frequency, it significantly enhanced the effect of CRF (by 43.9%

Kelle M. Franklin, Sheketha R. Hauser, Amy W. Lasek, Richard L. Bell, and William J. McBride. “Involvement of Purinergic P2X4 Receptors in Alcohol Intake of High-Alcohol-Drinking (HAD) Rats.” Alcoholism, Clinical and Experimental Research, 39, 10, Pp. 2022–2031. 

Abstract

BACKGROUND: The P2X4 receptor (P2X4R) is thought to be involved in regulating alcohol-consuming behaviors, and ethanol (EtOH) has been reported to inhibit P2X4Rs. Ivermectin is an antiparasitic agent that acts as a positive allosteric modulator of the P2X4R. This study examined the effects of systemically and centrally administered ivermectin on alcohol drinking of replicate lines of high-alcohol-drinking (HAD-1/HAD-2) rats, and the effects of lentiviral-delivered short-hairpin RNAs (shRNAs) targeting P2rx4 on EtOH intake of female HAD-2 rats. METHODS: For the first experiment, adult male HAD-1 and HAD-2 rats were given 24-hour free-choice access to 15% EtOH versus water. Dose-response effects of ivermectin (1.5 to 7.5 mg/kg, intraperitoneally [i.p.]) on EtOH intake were determined; the effects of ivermectin were then examined for 2% w/v sucrose intake over 5 consecutive days. In the second experiment, female HAD-2 rats were trained to consume 15% EtOH under 2-hour limited access conditions, and dose-response effects of intracerebroventricular (ICV) administration of ivermectin (0.5 to 2.0 μg) were determined over 5 consecutive days. The third experiment determined the effects of microinfusion of a lentivirus expressing P2rx4 shRNAs into the posterior ventral tegmental area (VTA) on 24-hour EtOH free-choice drinking of female HAD-2 rats. RESULTS: The highest i.p. dose of ivermectin reduced alcohol drinking (30 to 45%) in both rat lines, but did not alter sucrose intake. HAD-2 rats appeared to be more sensitive than HAD-1 rats to the effects of ivermectin. ICV administration of ivermectin reduced 2-hour limited access intake (\textasciitilde35%) of female HAD-2 rats; knockdown of P2rx4 expression in the posterior VTA reduced 24-hour free-choice EtOH intake (\textasciitilde20%). CONCLUSIONS: Overall, the results of this study support a role for P2X4Rs within the mesolimbic system in mediating alcohol-drinking behavior.

Caitlin E. Johnston, Daniel J. Herschel, Amy W. Lasek, Ronald P. Hammer, and Ella M. Nikulina. “Knockdown of ventral tegmental area mu-opioid receptors in rats prevents effects of social defeat stress: implications for amphetamine cross-sensitization, social avoidance, weight regulation and expression of brain-derived neurotrophic factor.” Neuropharmacology, 89, Pp. 325–334. 

Abstract

Social defeat stress causes social avoidance and long-lasting cross-sensitization to psychostimulants, both of which are associated with increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area (VTA). Moreover, social stress upregulates VTA mu-opioid receptor (MOR) mRNA. In the VTA, MOR activation inhibits GABA neurons to disinhibit VTA dopamine neurons, thus providing a role for VTA MORs in the regulation of psychostimulant sensitization. The present study determined the effect of lentivirus-mediated MOR knockdown in the VTA on the consequences of intermittent social defeat stress, a salient and profound stressor in humans and rodents. Social stress exposure induced social avoidance and attenuated weight gain in animals with non-manipulated VTA MORs, but both these effects were prevented by VTA MOR knockdown. Rats with non-manipulated VTA MOR expression exhibited cross-sensitization to amphetamine challenge (1.0 mg/kg, i.p.), evidenced by a significant augmentation of locomotion. By contrast, knockdown of VTA MORs prevented stress-induced cross-sensitization without blunting the locomotor-activating effects of amphetamine. At the time point corresponding to amphetamine challenge, immunohistochemical analysis was performed to examine the effect of stress on VTA BDNF expression. Prior stress exposure increased VTA BDNF expression in rats with non-manipulated VTA MOR expression, while VTA MOR knockdown prevented stress-induced expression of VTA BDNF. Taken together, these results suggest that upregulation of VTA MOR is necessary for the behavioral and biochemical changes induced by social defeat stress. Elucidating VTA MOR regulation of stress effects on the mesolimbic system may provide new therapeutic targets for treating stress-induced vulnerability to substance abuse.

Vez Repunte-Canonigo, Melissa A. Herman, Tomoya Kawamura, Henry R. Kranzler, Richard Sherva, Joel Gelernter, Lindsay A. Farrer, Marisa Roberto, and Pietro Paolo Sanna. “Nf1 regulates alcohol dependence-associated excessive drinking and gamma-aminobutyric acid release in the central amygdala in mice and is associated with alcohol dependence in humans.” Biological Psychiatry, 77, 10, Pp. 870–879. 

Abstract

BACKGROUND: The neurofibromatosis type 1 (Nf1) gene encodes a GTPase activating protein that negatively regulates small GTPases of the Ras family. METHODS: We assessed alcohol-related behaviors including alcohol sensitivity, dependent and nondependent drinking, and basal and alcohol-induced gamma-aminobutyric acid (GABA) release in the central nucleus of the amygdala (CeA) in Nf1 heterozygous null mice (Nf1(+/-)). We also investigated the associations of NF1 polymorphisms with alcohol dependence risk and severity in humans. RESULTS: Nf1(+/-) mice do not differ from wild-type mice in nondependent drinking, such as 24-hour, 2-bottle choice drinking in the dark binge drinking or limited access 2-bottle choice. However, Nf1(+/-) mice failed to escalate alcohol drinking following chronic intermittent ethanol vapor exposure (CIE) to induce dependence. Alcohol acutely increases GABA release in the CeA and alcohol dependence is characterized by increased baseline GABA release in CeA. Interestingly, GABA release in Nf1(+/-) mice is greater at baseline than wild-type mice, is not elevated by induction of dependence by CIE, and failed to show alcohol-induced facilitation both before and after CIE. Additionally, we observed that multiple variants in the human NF1 gene are associated with a quantitative measure of alcohol dependence in both African Americans and European Americans. CONCLUSIONS: In this translational investigation, we found that Nf1 activity regulates excessive drinking and basal and ethanol-stimulated GABA release in the mouse central amygdala. We also found that genetic variation in NF1 may confer an inherent susceptibility to the transition from nondependent to dependent drinking in humans.

Paul Chu Sin Chung, Helen L. Keyworth, Elena Martin-Garcia, Pauline Charbogne, Emmanuel Darcq, Alexis Bailey, Dominique Filliol, Audrey Matifas, Grégory Scherrer, Abdel-Mouttalib Ouagazzal, Claire Gaveriaux-Ruff, Katia Befort, Rafael Maldonado, Ian Kitchen, and Brigitte L. Kieffer. “A novel anxiogenic role for the delta opioid receptor expressed in GABAergic forebrain neurons.” Biological Psychiatry, 77, 4, Pp. 404–415. 

Abstract

BACKGROUND: The delta opioid receptor (DOR) is broadly expressed throughout the nervous system; it regulates chronic pain, emotional responses, motivation, and memory. Neural circuits underlying DOR activities have been poorly explored by genetic approaches. We used conditional mouse mutagenesis to elucidate receptor function in GABAergic neurons of the forebrain. METHODS: We characterized DOR distribution in the brain of Dlx5/6-CreXOprd1(fl/fl) (Dlx-DOR) mice and tested main central DOR functions through behavioral testing. RESULTS: The DOR proteins were strongly deleted in olfactory bulb and striatum and remained intact in cortex and basolateral amygdala. Olfactory perception, circadian activity, and despair-like behaviors were unchanged. In contrast, locomotor stimulant effects of SNC80 (DOR agonist) and SKF81297 (D1 agonist) were abolished and increased, respectively. The Dlx-DOR mice showed lower levels of anxiety in the elevated plus maze, opposing the known high anxiety in constitutive DOR knockout animals. Also, Dlx-DOR mice reached the food more rapidly in a novelty suppressed feeding task, despite their lower motivation for food reward observed in an operant paradigm. Finally, c-fos protein staining after novelty suppressed feeding was strongly reduced in amygdala, concordant with the low anxiety phenotype of Dlx-DOR mice. CONCLUSIONS: We demonstrate that DORs expressed in the forebrain mediate the described locomotor effect of SNC80 and inhibit D1-stimulated hyperactivity. Our data also reveal an unanticipated anxiogenic role for this particular DOR subpopulation, with a potential novel adaptive role. In emotional responses, DORs exert dual anxiolytic and anxiogenic roles, both of which may have implications in the area of anxiety disorders.

Yuri A. Blednov, Jillian M. Benavidez, Mendy Black, Laura B. Ferguson, Grant L. Schoenhard, Alison M. Goate, Howard J. Edenberg, Leah Wetherill, Victor Hesselbrock, Tatiana Foroud, and R. Adron Harris. “Peroxisome proliferator-activated receptors α and γ are linked with alcohol consumption in mice and withdrawal and dependence in humans.” Alcoholism, Clinical and Experimental Research, 39, 1, Pp. 136–145. 

Abstract

BACKGROUND: Peroxisome proliferator-activated receptor (PPAR) agonists reduce voluntary ethanol (EtOH) consumption in rat models and are promising therapeutics in the treatment for drug addictions. We studied the effects of different classes of PPAR agonists on chronic EtOH intake and preference in mice with a genetic predisposition for high alcohol consumption and then examined human genomewide association data for polymorphisms in PPAR genes in alcohol-dependent subjects. METHODS: Two different behavioral tests were used to measure intake of 15% EtOH in C57BL/6J male mice: 24-hour 2-bottle choice and limited access (3-hour) 2-bottle choice, drinking in the dark. We measured the effects of pioglitazone (10 and 30 mg/kg), fenofibrate (50 and 150 mg/kg), GW0742 (10 mg/kg), tesaglitazar (1.5 mg/kg), and bezafibrate (25 and 75 mg/kg) on EtOH intake and preference. Fenofibric acid, the active metabolite of fenofibrate, was quantified in mouse plasma, liver, and brain by liquid chromatography tandem mass spectrometry. Data from a human genome-wide association study (GWAS) completed in the Collaborative Study on the Genetics of Alcoholism (COGA) were then used to analyze the association of single nucleotide polymorphisms (SNPs) in different PPAR genes (PPARA, PPARD, PPARG, and PPARGC1A) with 2 phenotypes: DSM-IV alcohol dependence (AD) and the DSM-IV criterion of withdrawal. RESULTS: Activation of 2 isoforms of PPARs, α and γ, reduced EtOH intake and preference in the 2 different consumption tests in mice. However, a selective PPARδ agonist or a pan agonist for all 3 PPAR isoforms did not decrease EtOH consumption. Fenofibric acid, the active metabolite of the PPARα agonist fenofibrate, was detected in liver, plasma, and brain after 1 or 8 days of oral treatment. The GWAS from COGA supported an association of SNPs in PPARA and PPARG with alcohol withdrawal and PPARGC1A with AD but found no association for PPARD with either phenotype. CONCLUSIONS: We provide convergent evidence using both mouse and human data for specific PPARs in alcohol action. Reduced EtOH intake in mice and the genetic association between AD or withdrawal in humans highlight the potential for repurposing FDA-approved PPARα or PPARγ agonists for the treatment of AD.

Beth Bennett, Colin Larson, Phillip A. Richmond, Aaron T. Odell, Laura M. Saba, Boris Tabakoff, Robin Dowell, and Richard A. Radcliffe. “Quantitative trait locus mapping of acute functional tolerance in the LXS recombinant inbred strains.” Alcoholism, Clinical and Experimental Research, 39, 4, Pp. 611–620. 

Abstract

BACKGROUND: We previously reported that acute functional tolerance (AFT) to the hypnotic effects of alcohol was significantly correlated with drinking in the dark (DID) in the LXS recombinant inbred panel, but only in mice that had been pretreated with alcohol. Here, we have conducted quantitative trait locus (QTL) mapping for AFT. DNA sequencing of the progenitor ILS and ISS strains and microarray analyses were also conducted to identify candidate genes and functional correlates. METHODS: LXS mice were given either saline or alcohol (5 g/kg) on day 1 and then tested for loss of righting reflex AFT on day 2. QTLs were mapped using standard procedures. Two microarray analyses from brain were conducted: (i) naïve LXS mice and (ii) an alcohol treatment time course in the ILS and ISS. The full genomes of the ILS and ISS were sequenced to a depth of approximately 30×. RESULTS: A significant QTL for AFT in the alcohol pretreatment group was mapped to distal chromosome 4; numerous suggestive QTLs were also mapped. Preference drinking and DID have previously been mapped to the chromosome 4 locus. The credible interval of the significant chromosome 4 QTL spanned 23 Mb and included 716 annotated genes of which 150 had at least 1 nonsynonymous single nucleotide polymorphism or small indel that differed between the ILS and ISS; expression of 48 of the genes was cis-regulated. Enrichment analysis indicated broad functional categories underlying AFT, including proteolysis, transcription regulation, chromatin modification, protein kinase activity, and apoptosis. CONCLUSIONS: The chromosome 4 QTL is a key region containing possibly pleiotropic genes for AFT and drinking behavior. Given that the region contains many viable candidates and a large number of the genes in the interval fall into 1 or more of the enriched functional categories, we postulate that many genes of varying effect size contribute to the observed QTL effect.

Kelle M. Franklin, Sheketha R. Hauser, Amy W. Lasek, Jeanette McClintick, Zheng-Ming Ding, William J. McBride, and Richard L. Bell. “Reduction of alcohol drinking of alcohol-preferring (P) and high-alcohol drinking (HAD1) rats by targeting phosphodiesterase-4 (PDE4).” Psychopharmacology, 232, 13, Pp. 2251–2262. 

Abstract

RATIONALE: Phosphodiesterase-4 (PDE4) and neuroimmune signaling have been posited to regulate alcohol drinking. OBJECTIVES: This study evaluated the involvement of PDE4 and Il22ra2 on ethanol (EtOH) intake by alcohol-preferring (P) and high-alcohol-drinking (HAD1) rats. METHODS: Exp 1 determined the dose-response effects of PDE4 inhibitors, rolipram, and Ro 20-1724, on 2 h/day free-choice EtOH intake by adult P and HAD1 rats. Exps 2-3 examined the effects of repeated administration with the PDE4 inhibitors on EtOH or sucrose intake and locomotor behavior. Exp 4 determined Pde4-associated gene expression differences in subregions of the extended amygdala, between high- and low-alcohol-consuming rat lines. Exp 5 evaluated the effects of infusing short hairpin RNA to knock down Il22ra2 in the nucleus accumbens (NAc) shell on a 24-h free-choice EtOH drinking by P rats. RESULTS: Administration of rolipram or Ro 20-1724 reduced EtOH intake by P rats; Ro 20-1724 reduced EtOH intake by HAD1 rats. Repeated rolipram or Ro 20-1724 exposure reduced EtOH intake by P and HAD1 rats. PDE4 inhibition induced motor impairment during the first hour of EtOH intake by P rats. Higher gene expression levels for PDE4A were found in the NAc shell of P vs NP rats. ShRNAs targeting Il22ra2 in the NAc shell significantly reduced chronic EtOH intake. CONCLUSIONS: PDE4 and neuroinflammatory/immune signaling pathways could represent molecular targets for the treatment of alcohol use disorders in genetically predisposed subjects. This study underscores the importance of testing compounds over multiple days and rat lines when determining efficacy to disrupt excessive alcohol intake.

Jamie E. Toalston, Gerald A. Deehan, Sheketha R. Hauser, Eric A. Engleman, Richard L. Bell, James M. Murphy, William J. McBride, and Zachary A. Rodd. “The reinforcing properties of ethanol are quantitatively enhanced in adulthood by peri-adolescent ethanol, but not saccharin, consumption in female alcohol-preferring (P) rats.” Alcohol (Fayetteville, N.Y.), 49, 5, Pp. 513–518. 

Abstract

Alcohol drinking during adolescence is associated in adulthood with heavier alcohol drinking and an increased rate of alcohol dependence. Past research in our laboratory has indicated that peri-adolescent ethanol consumption can enhance the acquisition and reduce the rate of extinction of ethanol self-administration in adulthood. Caveats of the past research include reinforcer specificity, increased oral consumption during peri-adolescence, and a lack of quantitative assessment of the reinforcing properties of ethanol. The current experiments were designed to determine the effects of peri-adolescent ethanol or saccharin drinking on acquisition and extinction of oral ethanol self-administration and ethanol seeking, and to quantitatively assess the reinforcing properties of ethanol (progressive ratio). Ethanol or saccharin access by alcohol-preferring (P) rats occurred during postnatal day (PND) 30-60. Animals began operant self-administration of ethanol or saccharin after PND 85. After 10 weeks of daily operant self-administration, rats were tested in a progressive ratio paradigm. Two weeks later, self-administration was extinguished in all rats. Peri-adolescent ethanol consumption specifically enhanced the acquisition of ethanol self-administration, reduced the rate of extinction for ethanol self-administration, and quantitatively increased the reinforcing properties of ethanol during adulthood. Peri-adolescent saccharin consumption was without effect. The data indicate that ethanol consumption during peri-adolescence results in neuroadaptations that may specifically enhance the reinforcing properties of ethanol during adulthood. This increase in the reinforcing properties of ethanol could be a part of biological sequelae that are the basis for the effects of adolescent alcohol consumption on the increase in the rate of alcoholism during adulthood.

Hu Chen, Donghong He, and Amy W. Lasek. “Repeated Binge Drinking Increases Perineuronal Nets in the Insular Cortex.” Alcoholism, Clinical and Experimental Research, 39, 10, Pp. 1930–1938. 

Abstract

BACKGROUND: Alcohol exposure leads to changes in the extracellular matrix (ECM) in the brain, which profoundly impacts neuronal plasticity. Perineuronal nets (PNs) are specialized ECM structures that enclose subpopulations of neurons in the cortex. Adolescent exposure to alcohol induces long-lasting increases in the expression of PN components in the cortex in adult mice. However, it has not been determined whether binge alcohol exposure in young adults alters PNs. Here, we examined PNs and their core components in the insula and primary motor cortex after repeated binge-like ethanol (EtOH) consumption in adult mice. METHODS: The 4-day drinking in the dark (DID) procedure was performed in mice for 1 or 6 weeks to model binge alcohol consumption. The impact of EtOH drinking on PNs was examined by fluorescent staining of brain sections using a marker for PNs, Wisteria floribunda agglutinin (WFA). In another set of experiments, cortex was dissected and Western blots and real-time quantitative polymerase chain reaction were performed to evaluate the expression of the PN proteins aggrecan, brevican, and phosphacan. RESULTS: Binge-like EtOH drinking for 6 weeks caused a significant increase in PNs in the insula, as measured by WFA binding. Aggrecan, brevican, and phosphacan protein expression, and aggrecan mRNA expression, were also elevated in the insula after 6 weeks of EtOH drinking. In contrast, expression of PN components did not change after 1 week of DID. The increase in PNs appears to be specific to the insula, because alterations were not observed in the primary motor cortex. CONCLUSIONS: Our results provide the first evidence that insular PNs increase after long-term binge drinking. The insula mediates compulsive alcohol use. As PNs influence neuronal firing and plasticity, increased PNs in the insula after multiple binge cycles may contribute to restricted neuronal plasticity and lead to the development of compulsive alcohol use.

Amanda M. Barkley-Levenson, Christopher L. Cunningham, Phoebe J. Smitasin, and John C. Crabbe. “Rewarding and aversive effects of ethanol in High Drinking in the Dark selectively bred mice.” Addiction Biology, 20, 1, Pp. 80–90. 

Abstract

Both rewarding and aversive effects contribute to alcohol consumption. Animals genetically predisposed to be high drinkers show reduced sensitivity to the aversive effects of alcohol, and in some instances, increased sensitivity to alcohol’s rewarding effects. The present studies tested the high drinking in the dark (HDID) selected lines, a genetic model of drinking to intoxication, to determine whether intake in these mice was genetically related to sensitivity to alcohol aversion or reward. Male HDID mice from the first and second replicate lines (HDID-1 and HDID-2, respectively) and mice from the heterogeneous progenitor control population (HS/Npt, or HS) were conditioned for a taste aversion to a salt solution using two doses of alcohol, and lithium chloride (LiCl) and saline controls. In separate experiments, male and female HDID-1, HDID-2 and HS mice were conditioned for place preference using alcohol. HDID mice were found to have an attenuated sensitivity to alcohol at a moderate (2 g/kg) dose compared to HS mice, but did not differ on conditioned taste aversion to a high (4 g/kg) dose or LiCl or saline injections. HDID and HS mice showed comparable development of alcohol-induced conditioned place preference. These results indicate that high blood alcohol levels after drinking in the HDID mice is genetically related to attenuated aversion to alcohol, while sensitivity to alcohol reward is not altered in these mice. Thus, HDID mice may find a moderate dose of alcohol to be less aversive than control mice and consequently may drink more because of this reduced aversive sensitivity.

Yuri A. Blednov, Jillian M. Benavidez, Mendy Black, Jody Mayfield, and R. Adron Harris. “Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines.” Neuropharmacology, 95, Pp. 309–320. 

Abstract

Gene expression studies identified the interleukin-1 receptor type I (IL-1R1) as part of a pathway associated with a genetic predisposition to high alcohol consumption, and lack of the endogenous IL-1 receptor antagonist (IL-1ra) strongly reduced ethanol intake in mice. Here, we compared ethanol-mediated behaviors in mice lacking Il1rn or Il1r1. Deletion of Il1rn (the gene encoding IL-1ra) increases sensitivity to the sedative/hypnotic effects of ethanol and flurazepam and reduces severity of acute ethanol withdrawal. Conversely, deletion of Il1r1 (the gene encoding the IL-1 receptor type I, IL-1R1) reduces sensitivity to the sedative effects of ethanol and flurazepam and increases the severity of acute ethanol withdrawal. The sedative effects of ketamine and pentobarbital were not altered in the knockout (KO) strains. Ethanol intake and preference were not changed in mice lacking Il1r1 in three different tests of ethanol consumption. Recovery from ethanol-induced motor incoordination was only altered in female mice lacking Il1r1. Mice lacking Il1rn (but not Il1r1) showed increased ethanol clearance and decreased ethanol-induced conditioned taste aversion. The increased ethanol- and flurazepam-induced sedation in Il1rn KO mice was decreased by administration of IL-1ra (Kineret), and pre-treatment with Kineret also restored the severity of acute ethanol withdrawal. Ethanol-induced sedation and withdrawal severity were changed in opposite directions in the null mutants, indicating that these responses are likely regulated by IL-1R1 signaling, whereas ethanol intake and preference do not appear to be solely regulated by this pathway.

M. Bajo, M. A. Herman, F. P. Varodayan, C. S. Oleata, S. G. Madamba, R. A. Harris, Y. A. Blednov, and M. Roberto. “Role of the IL-1 receptor antagonist in ethanol-induced regulation of GABAergic transmission in the central amygdala.” Brain, Behavior, and Immunity, 45, Pp. 189–197. 

Abstract

The IL-1 receptor antagonist (IL-1ra), encoded by the Il1rn gene, is an endogenous antagonist of the IL-1 receptor. Studies of Il1rn knockout (KO) and wild type (WT) mice identified differences in several ethanol-related behaviors, some of which may be mediated by GABAergic transmission in the central nucleus of the amygdala (CeA). In this study we examined phasic (both evoked and spontaneous) and tonic GABAergic transmission in the CeA of Il1rn KO and WT mice and the ethanol sensitivity of these GABAergic synapses. The mean amplitude of baseline evoked GABAA-inhibitory postsynaptic potentials (IPSPs), and the baseline frequency of spontaneous GABAA-inhibitory postsynaptic currents (sIPSCs), but not the frequency of miniature GABAA-IPSCs (mIPSCs), were significantly increased in KO compared to WT mice, indicating enhanced presynaptic action potential-dependent GABA release in the CeA of KO mice. In KO mice, we also found a cell-type specific switch in the ongoing tonic GABAA receptor conductance such that the tonic conductance in low threshold bursting (LTB) neurons is lost and a tonic conductance in late spiking (LS) neurons appears. Notably, the ethanol-induced facilitation of evoked and spontaneous GABA release was lost in most of the CeA neurons from KO compared to WT mice. Ethanol superfusion increased the sIPSC rise and decay times in both KO and WT mice, suggesting ethanol-induced postsynaptic effects. The pretreatment of CeA slices with exogenous IL-1ra (Kineret; 100ng/ml) returned sIPSC frequency in KO mice to the levels found in WT. Importantly, Kineret also restored ethanol-induced potentiation of the sIPSC frequency in the KO mice. These results show that IL-1ra regulates baseline GABAergic transmission in the CeA and is critical for the ethanol effects at these synapses.

Rajani Maiya, Regina A. Mangieri, Richard A. Morrisett, Ulrike Heberlein, and Robert O. Messing. “A Selective Role for Lmo4 in Cue-Reward Learning.” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35, 26, Pp. 9638–9647. 

Abstract

The ability to use environmental cues to predict rewarding events is essential to survival. The basolateral amygdala (BLA) plays a central role in such forms of associative learning. Aberrant cue-reward learning is thought to underlie many psychopathologies, including addiction, so understanding the underlying molecular mechanisms can inform strategies for intervention. The transcriptional regulator LIM-only 4 (LMO4) is highly expressed in pyramidal neurons of the BLA, where it plays an important role in fear learning. Because the BLA also contributes to cue-reward learning, we investigated the role of BLA LMO4 in this process using Lmo4-deficient mice and RNA interference. Lmo4-deficient mice showed a selective deficit in conditioned reinforcement. Knockdown of LMO4 in the BLA, but not in the nucleus accumbens, recapitulated this deficit in wild-type mice. Molecular and electrophysiological studies identified a deficit in dopamine D2 receptor signaling in the BLA of Lmo4-deficient mice. These results reveal a novel, LMO4-dependent transcriptional program within the BLA that is essential to cue-reward learning.

Laura M. Saba, Stephen C. Flink, Lauren A. Vanderlinden, Yedy Israel, Lutske Tampier, Giancarlo Colombo, Kalervo Kiianmaa, Richard L. Bell, Morton P. Printz, Pamela Flodman, George Koob, Heather N. Richardson, Joseph Lombardo, Paula L. Hoffman, and Boris Tabakoff. “The sequenced rat brain transcriptome–its use in identifying networks predisposing alcohol consumption.” The FEBS journal, 282, 18, Pp. 3556–3578. 

Abstract

A quantitative genetic approach, which involves correlation of transcriptional networks with the phenotype in a recombinant inbred (RI) population and in selectively bred lines of rats, and determination of coinciding quantitative trait loci for gene expression and the trait of interest, has been applied in the present study. In this analysis, a novel approach was used that combined DNA-Seq data, data from brain exon array analysis of HXB/BXH RI rat strains and six pairs of rat lines selectively bred for high and low alcohol preference, and RNA-Seq data (including rat brain transcriptome reconstruction) to quantify transcript expression levels, generate co-expression modules and identify biological functions that contribute to the predisposition of consuming varying amounts of alcohol. A gene co-expression module was identified in the RI rat strains that contained both annotated and unannotated transcripts expressed in the brain, and was associated with alcohol consumption in the RI panel. This module was found to be enriched with differentially expressed genes from the selected lines of rats. The candidate genes within the module and differentially expressed genes between high and low drinking selected lines were associated with glia (microglia and astrocytes) and could be categorized as being related to immune function, energy metabolism and calcium homeostasis, as well as glial-neuronal communication. The results of the present study show that there are multiple combinations of genetic factors that can produce the same phenotypic outcome. Although no single gene accounts for predisposition to a particular level of alcohol consumption in every animal model, coordinated differential expression of subsets of genes in the identified pathways produce similar phenotypic outcomes. DATABASE: The datasets supporting the results of the present study are available at http://phenogen.ucdenver.edu.

Christina L. Zheng, Beth Wilmot, Nicole AR Walter, Denesa Oberbeck, Sunita Kawane, Robert P. Searles, Shannon K. McWeeney, and Robert Hitzemann. “Splicing landscape of the eight collaborative cross founder strains.” BMC genomics, 16, Pp. 52. 

Abstract

BACKGROUND: The Collaborative Cross (CC) is a large panel of genetically diverse recombinant inbred mouse strains specifically designed to provide a systems genetics resource for the study of complex traits. In part, the utility of the CC stems from the extensive genome-wide annotations of founder strain sequence and structural variation. Still missing, however, are transcriptome-specific annotations of the CC founder strains that could further enhance the utility of this resource. RESULTS: We provide a comprehensive survey of the splicing landscape of the 8 CC founder strains by leveraging the high level of alternative splicing within the brain. Using deep transcriptome sequencing, we found that a majority of the splicing landscape is conserved among the 8 strains, with \textasciitilde65% of junctions being shared by at least 2 strains. We, however, found a large number of potential strain-specific splicing events as well, with an average of \textasciitilde3000 and \textasciitilde500 with ≥3 and ≥10 sequence read coverage, respectively, within each strain. To better understand strain-specific splicing within the CC founder strains, we defined criteria for and identified high-confidence strain-specific splicing events. These splicing events were defined as exon-exon junctions 1) found within only one strain, 2) with a read coverage ≥10, and 3) defined by a canonical splice site. With these criteria, a total of 1509 high-confidence strain-specific splicing events were identified, with the majority found within two of the wild-derived strains, CAST and PWK. Strikingly, the overwhelming majority, 94%, of these strain-specific splicing events are not yet annotated. Strain-specific splicing was also located within genomic regions recently reported to be over- and under-represented within CC populations. CONCLUSIONS: Phenotypic characterization of CC populations is increasing; thus these results will not only aid in further elucidating the transcriptomic architecture of the individual CC founder strains, but they will also help in guiding the utilization of the CC populations in the study of complex traits. This report is also the first to establish guidelines in defining and identifying strain-specific splicing across different mouse strains.

Hyo-Jin Park, Yong Ran, Joo In Jung, Oliver Holmes, Ashleigh R. Price, Lisa Smithson, Carolina Ceballos-Diaz, Chul Han, Michael S. Wolfe, Yehia Daaka, Andrey E. Ryabinin, Seong-Hun Kim, Richard L. Hauger, Todd E. Golde, and Kevin M. Felsenstein. “The stress response neuropeptide CRF increases amyloid-β production by regulating γ-secretase activity.” The EMBO journal, 34, 12, Pp. 1674–1686. 

Abstract

The biological underpinnings linking stress to Alzheimer’s disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid-β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ-secretase internalization. Co-immunoprecipitation studies establish that γ-secretase associates with CRFR1; this is mediated by β-arrestin binding motifs. Additionally, CRFR1 and γ-secretase co-localize in lipid raft fractions, with increased γ-secretase accumulation upon CRF treatment. CRF treatment also increases γ-secretase activity in vitro, revealing a second, receptor-independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ-secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ-secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ-secretase.

D. Most, L. Ferguson, Y. Blednov, R. D. Mayfield, and R. A. Harris. “The synaptoneurosome transcriptome: a model for profiling the emolecular effects of alcohol.” The Pharmacogenomics Journal, 15, 2, Pp. 177–188. 

Abstract

Chronic alcohol consumption changes gene expression, likely causing persistent remodeling of synaptic structures via altered translation of mRNAs within synaptic compartments of the cell. We profiled the transcriptome from synaptoneurosomes (SNs) and paired total homogenates (THs) from mouse amygdala following chronic voluntary alcohol consumption. In SN, both the number of alcohol-responsive mRNAs and the magnitude of fold-change were greater than in THs, including many GABA-related mRNAs upregulated in SNs. Furthermore, SN gene co-expression analysis revealed a highly connected network, demonstrating coordinated patterns of gene expression and highlighting alcohol-responsive biological pathways, such as long-term potentiation, long-term depression, glutamate signaling, RNA processing and upregulation of alcohol-responsive genes within neuroimmune modules. Alterations in these pathways have also been observed in the amygdala of human alcoholics. SNs offer an ideal model for detecting intricate networks of coordinated synaptic gene expression and may provide a unique system for investigating therapeutic targets for the treatment of alcoholism.

P. S. S. Rao, Richard L. Bell, Eric A. Engleman, and Youssef Sari. “Targeting glutamate uptake to treat alcohol use disorders.” Frontiers in Neuroscience, 9, Pp. 144. 

Abstract

Alcoholism is a serious public health concern that is characterized by the development of tolerance to alcohol’s effects, increased consumption, loss of control over drinking and the development of physical dependence. This cycle is often times punctuated by periods of abstinence, craving and relapse. The development of tolerance and the expression of withdrawal effects, which manifest as dependence, have been to a great extent attributed to neuroadaptations within the mesocorticolimbic and extended amygdala systems. Alcohol affects various neurotransmitter systems in the brain including the adrenergic, cholinergic, dopaminergic, GABAergic, glutamatergic, peptidergic, and serotonergic systems. Due to the myriad of neurotransmitter and neuromodulator systems affected by alcohol, the efficacies of current pharmacotherapies targeting alcohol dependence are limited. Importantly, research findings of changes in glutamatergic neurotransmission induced by alcohol self- or experimenter-administration have resulted in a focus on therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Glutamatergic receptors implicated in the effects of ethanol include the ionotropic glutamate receptors (AMPA, Kainate, and NMDA) and some metabotropic glutamate receptors. Regarding glutamatergic homeostasis, ceftriaxone, MS-153, and GPI-1046, which upregulate glutamate transporter 1 (GLT1) expression in mesocorticolimbic brain regions, reduce alcohol intake in genetic animal models of alcoholism. Given the hyperglutamatergic/hyperexcitable state of the central nervous system induced by chronic alcohol abuse and withdrawal, the evidence thus far indicates that a restoration of glutamatergic concentrations and activity within the mesocorticolimbic system and extended amygdala as well as multiple memory systems holds great promise for the treatment of alcohol dependence.

S. P. Farris, D. Arasappan, S. Hunicke-Smith, R. A. Harris, and R. D. Mayfield. “Transcriptome organization for chronic alcohol abuse in human brain.” Molecular Psychiatry, 20, 11, Pp. 1438–1447. 

Abstract

Alcohol dependence is a heterogeneous psychiatric disorder characterized by high genetic heritability and neuroadaptations occurring from repeated drug exposure. Through an integrated systems approach we observed consistent differences in transcriptome organization within postmortem human brain tissue associated with the lifetime consumption of alcohol. Molecular networks, determined using high-throughput RNA sequencing, for drinking behavior were dominated by neurophysiological targets and signaling mechanisms of alcohol. The systematic structure of gene sets demonstrates a novel alliance of multiple ion channels, and related processes, underlying lifetime alcohol consumption. Coordinate expression of these transcripts was enriched for genome-wide association signals in alcohol dependence and a meta-analysis of alcohol self-administration in mice. Further dissection of genes within alcohol consumption networks revealed the potential interaction of alternatively spliced transcripts. For example, expression of a human-specific isoform of the voltage-gated sodium channel subunit SCN4B was significantly correlated to lifetime alcohol consumption. Overall, our work demonstrates novel convergent evidence for biological networks related to excessive alcohol consumption, which may prove fundamentally important in the development of pharmacotherapies for alcohol dependence.

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025