My research focuses on the functional morphology and evolution of primate locomotor adaptations.

I have particular interest and expertise in the functional morphology and evolution  of the vertebral musculoskeletal system in primates, and the biomechanics, ontogeny and evolution of primate quadrupedal locomotion.  See my CV for relevant publications.


Current Projects

Ecological Influences on Locomotor Performance in Free-Ranging Primates
(Liza Shapiro, Jesse Young PIs, Tobin Hieronymous, Co-PI)

Supported by NSF BCS 1640453, BCS 1921135, NSF BCS-1921135 and BCS-1921314

The broad goal of this research is to generate new information on the mechanics of quadrupedalism and leaping in wild primates moving in their natural environments, permitting a deeper understanding of primate arboreal athleticism. Most of our knowledge about primate locomotor mechanics has come from lab-based research in which captive primates move across simulated branches. In this study, we will bring lab-based methods to the field. Until recently, field-based biomechanical studies have been hindered by the difficulties of bringing laboratory equipment into complex and unpredictable outdoor environments. Fortunately, video technologies have become sufficiently durable and advanced to now permit high-resolution measures of animal locomotion to be collected in the wild with unprecedented precision. In this study, we are using these techniques to analyze locomotor movement (as well as substrate characteristics) in  free-ranging monkey species at sites in Ecuador, Costa Rica, Uganda, and Madagascar. The results of this project will further our understanding of primate locomotor adaptation and evolution, as well as contribute to K-12 STEM education and public outreach.

Publications from this project:

2024 Schapker N., Janisch J., Myers L.C., Phelps T., Shapiro L.J., Young J.W. From such great heights: the effects of substrate height and the perception of risk on lemur locomotor mechanics. American Journal of Biological Anthropology e24917.
2024 Janisch, J., McNamara, A., Myers L.C., Schapker , N., Dunham N.T., Phelps T., Mundry R., Hieronymus T., Shapiro L.J., and Young J.W. Ecological and phylogenetic influences on limb joint kinematics in wild primates. Zoological Journal of the Linnean Society.
2024 Janisch J., Myers L., Schapker, N,  Kirven, J., Shapiro L.J., and Young J.W. Pump and sway: wild primates use compliant supports as a tool to augment leaping in the canopy. American Journal of Biological Anthropology. e24914. DOI: 10.1002/ajpa.24914
2021 Young J.W, Chadwell, B.A.;  Dunham, N.T.,  McNamara, A., Phelps, T., Hieronymus,T., and Shapiro, L.J. The stabilizing function of the tail during arboreal quadrupedalism. Integrative and Comparative Biology. 61: 491–505. doi: 10.1093/icb/icab096
 2020  Dunham, N.T.,  McNamara, A., Shapiro, L.J., Phelps, T., and Young J.W. Asymmetrical gait kinematics of free-ranging callitrichines in response to changes in substrate diameter and orientation. Journal of Experimental Biology. doi:10.1242/jeb.217562
2019  McNamara, A., Dunham, N.T.,  Shapiro, L.J., and Young J.W. The effects of natural substrate discontinuities on the quadrupedal gait kinematics of free-ranging Saimiri sciureus. American Journal of Primatology. 81.e23055.
 2019 Dunham, N.T., McNamara, A., Shapiro, L.J., Hieronymus,, T. and Young J.W. Effects of substrate and phylogeny on quadrupedal gait in free-ranging platyrrhines. American Journal of Physical Anthropology. 170 (4) 565-578. DOI: 10.1002/ajpa.23942
2019 Boyer, D.M. Yapuncich G.S., Dunham, N.T., McNamara, A., Shapiro, L.J. Hieronymus,T.L.,  Young J.W. My branch is your branch: Talar morphology correlates with relative substrate size in platyrrhines at Tiputini Biodiversity Station, Ecuador. Journal of Human Evolution.133:23-31. DOI: 10.1016/j.jhevol.2019.05.012
2019 Dunham, N.T., McNamara, A., Shapiro, L.J., Phelps, T., Wolfe A. and Young J.W.  Locomotor kinematics of tree squirrels (Sciurus carolinensis) in free-ranging and laboratory environments: Implications for primate locomotion and evolution. Journal of Experimental Zoology. 331:103-119.  DOI: 10.1002/jez.2242
2018  Dunham, N.T., McNamara, A., Shapiro, L.J., Hieronymus,, T. and Young J.W.  A user’s guide for the quantitative analysis of substrate characteristics and locomotor kinematics in free-ranging primates. American Journal of Physical Anthropology.167: 569-584. DOI: 10.1002/ajpa.23686

Previous Projects:

The influence of very small body size on the evolution of primate quadrupedal locomotion

(In collaboration with Jesse Young)
Supported by NSF BCS 0647402, Liza Shapiro PI

Current consensus states that primate quadrupedal features are a biomechanical complex that gave early primates exclusive access to resources available in an arboreal “fine branch niche,” by providing mechanisms for balance on small and unstable branches. Most current research on primate origins indicates that ancestral primates may have been very small, perhaps as small as 10-15g, yet few studies have considered the effects of body sizes of 100g or less on primate quadrupedalism. This project uses locomotor growth and development as a means to investigate the influence of very small body size on primate locomotor evolution. The project takes a broad comparative perspective, comparing locomotion in mouse lemurs, (Microcebus murinus), the smallest living primates,  to two similarly sized marsupials,  sugar gliders (Petaurus breviceps) and gray short-tailed opossums (Monodelphis domestica). The comparative approach provides insight on the evolution of primate quadrupedalism by directly addressing the unique means by which small primates and other mammals navigate arboreal substrates.

Publications from this project:
2016 Shapiro, L.J., Kemp, A.D., and Young, J.W. Effects of substrate size and orientation on quadrupedal gait kinematics in mouse lemurs (Microcebus murinus). Journal of Experimental Zoology. 325A:329-343.
2014 Shapiro, L.J., Young, J.W. and Vandeberg, J.L. Body size and the small branch niche: Using marsupial ontogeny to model primate locomotor evolution. Journal of Human Evolution. 68:14-31.
2012 Shapiro, L.J., and Young, J.W. Kinematics of quadrupedal locomotion in sugar gliders (Petaurus breviceps): Effects of age and substrate size. Journal of Experimental Biology. 215:480-496.
2010 Shapiro, L.J., and Young, J.W. Is primate-like quadrupedalism necessary for fine-branch locomotion? A test using sugar gliders (Petaurus breviceps). Journal of Human Evolution. 58: 309-319.

Research on quadrupedal walking in humans
2014 Shapiro, L.J., Cole, W.G., Young, J.W., Raichlen, D.A., Robinson, S.R., and Adolph, K.E. Human quadrupeds, primate quadrupedalism, and Uner Tan Syndrome. PLoS ONE 9 (7): e101758.  Shapiro et al. 2014

Since 2005, an extensive literature documents individuals from several families afflicted with “Uner Tan Syndrome (UTS),” a condition that in its most extreme form is characterized by cerebellar hypoplasia, loss of balance and coordination, impaired cognitive abilities, and habitual quadrupedal gait on hands and feet. Some researchers have interpreted habitual use of quadrupedalism by these individuals from an evolutionary perspective, suggesting that it represents an atavistic expression of our quadrupedal primate ancestry or ‘‘devolution.’’ In support of this idea, individuals with ‘‘UTS’’ are said to use diagonal sequence quadrupedalism, a type of quadrupedal gait that distinguishes primates from most other mammals. Although the use of primate-like quadrupedal gait in humans would not be sufficient to support the conclusion of evolutionary ‘‘reversal,’’no quantitative gait analyses were presented to support this claim. Using standard gait analysis of 518 quadrupedal strides from video sequences of individuals with ‘‘UTS’’, we found that these humans almost exclusively used lateral sequence–not diagonal sequence–quadrupedal gaits.  In fact, the quadrupedalism exhibited by individuals with UTS resembles that of healthy adult humans asked to walk quadrupedally in an experimental setting. We conclude that quadrupedalism in healthy adults or those with a physical disability can be using biomechanical principles rather than evolutionary assumptions.

Media coverage of this research:
Washington Post
Live Science
Pacific Standard
IFL Science
Huffington Post