2024
- B. Jin, A. Dolocan, C. Liu, Z. Cui, and A. Manthiram, “Regulating Anode-electrolyte Interphasial Reactions by Zwitterionic Binder Chemistry in Lithium-ion Batteries with High-nickel Layered Oxide Cathodes and Silicon-Graphite Anodes,” Angewandte Chemie (2024) https://doi.org/10.1002/anie.202408021
- S. Reed, K. Scanlan, and A. Manthiram, “Scalable, Low-cost Synthesis of High volumetric Capacity LiMn0.5Fe0.5PO4 Cathode for Lithium-ion Batteries,” Journal of Materials Chemistry A (2024) https://doi.org/10.1039/D4TA03438D
- M. Yi, Z. Cui, and A. Manthiram, “Impact of Electrolyte on Direct-contact Prelithiation of Silicon-Graphite Anodes in Lithium-ion Cells with High-nickel Cathodes,“ ACS Applied Materials and Interfaces (2024) https://doi.org/10.1021/acsami.4c08929
- J. Darga, and A. Manthiram, “Deconstructing the High Voltage Degradation Mechanisms in Na2/3Ni1/3Mn2/3O2 with Single Crystals and Advanced Electrolyte,” Advanced Functional Materials (2024) https://doi.org/10.1002/adfm.202408642
- H. Sul and A. Manthiram, “Bi-metallic Phosphide Electrocatalyst-integrated Li2S Cathode for High-performance Anode-free Li-S Batteries,” Advanced Functional Materials (2024) https://doi.org/10.1002/adfm.202408113
- Z. Cui, P. Zuo, Z. Guo, C. Wang and A. Manthiram, “Formation and Detriments of Residual Alkaline Compounds on High-Nickel Layered Oxide Cathodes,” Advanced Materials (2024) https://doi.org/10.1002/adma.202402420
- E. Ruoff, S. Kmiec, and A. Manthiram,“Enhanced Interfacial Conduction in Low-cost NaAlCl4 Composite Solid Electrolyte for Solid-state Sodium Batteries,” Advanced Energy Materials (2024) https://doi.org/10.1002/aenm.202402091
- M. Pai, T. Lai, and A. Manthiram, “Sodium-Sulfur Cells with a Sulfurized Polyacrylonitrile Cathode and a Localized High Concentration Electrolyte with Toluene as a Non-Fluorinated Diluent,” Advanced Functional Materials (2024) https://doi.org/10.1002/adfm.202407450
- Y. Yen, and A. Manthiram, “Anode-free Lithium-Sulfur Batteries with a Rare-Earth Triflate as a Dual-Function Electrolyte Additive,” ACS Applied Materials & Interfaces (2024) https://doi.org/10.1021/acsami.4c05414
- J. He, A. Bhargav, J. Okasinski, and A. Manthiram, “A Class of Sodium Transition-metal Sulfide Cathodes with Anion Redox,” Advanced Materials (2024) https://doi.org/10.1002/adma.202403521
- P. Vanaphuti, K. Scanlan, and A. Manthiram, “Ammonia-free Synthesis of Lithium Manganese Iron Phosphate Cathodes via a Co-precipitation Reaction,” RSC Sustainability 2, 1969 – 1978 (2024) https://doi.org/10.1039/D4SU00125G
- H. Zhang, T. Lai, J. Chen, A. Manthiram, J. M. Rondinelli, and W. Chen, “Learning Molecular Mixture Property using Chemistry-aware Graph Neural Network,” PRX Energy 3, 023006 (2024) https://doi.org/10.1103/PRXEnergy.3.023006
- M. Yi, R. Sim, and A. Manthiram, “Electrolyte-enabled High-voltage Operation of a Low-nickel, Low-cobalt Layered Oxide Cathode for High Energy Density Lithium-ion Batteries,” Small (2024) https://doi.org/10.1002/smll.202403429
- Z. Guo, Z. Cui, and A. Manthiram, “Reducing the Initial Capacity Loss in High-nickel Cathodes with a Higher Upper Cut-off Voltage Formation Cycle Protocol,” ACS Energy Letters (2024) https://doi.org/10.1021/acsenergylett.4c01027
- T. Lai, and A. Manthiram, “Phloroglucinol – 2,6-Diaminoanthraquinone as a Durable Redox Mediator for Enhancing Conversion Reaction Kinetics in Lithium-Sulfur Batteries,” Advanced Functional Materials (2024) https://doi.org/10.1002/adfm.202405814
- J. B. Adamo, and A. Manthiram, “Understanding the Effects of Al and Mn Doping on the H2 – H3 Phase Transition in High-nickel Layered Oxide Cathodes,” Chemistry of Materials (2024) https://doi.org/10.1021/acs.chemmater.4c01033
- M. Olson, S. Kmiec, N. Riley, N. Oldham, K. Krupp, A. Manthiram, and S. W. Martin, “Structure and Properties of Na2S–SiS2–P2S5–NaPO3 Glassy Solid Electrolytes,” Inorganic Chemistry 63, 9129-9144 (2024) https://doi.org/10.1021/acs.inorgchem.4c00423
- C. Trejo, K. Scanlan, and A. Manthiram, “Impact of LiAl Nucleation Kinetics on the Microstructural Evolution of Aluminum Foil Anodes in Lithium-ion Batteries,” Journal of the Electrochemical Society (2024). https://doi.org/10.1149/1945-7111/ad3ec2
- K. Sada, S. Kmiec, A. Manthiram, “Mitigating Sodium Ordering for Enhanced Solid Solution Behavior in Layered NaNiO2 Cathodes,” Angewandte Chemie (2024). https://doi.org/10.1002/anie.202403865
- W. Yao, K. Liao, T. Lai, H. Sul, and A. Manthiram, “Rechargeable Metal-sulfur Batteries: Key Materials to Mechanisms,” Chemical Reviews (2024). https://doi.org/10.1021/acs.chemrev.3c00919
- S. Lee, C. Li, and A. Manthiram, “Effects of Calcination Conditions on the Structural and Electrochemical Behaviors of High-nickel, Cobalt-free LiNi0.9Mn0.1O2 Cathode,” Advanced Energy Materials (2024). https://doi.org/10.1002/aenm.202400662
- D. Lee, A. Mesnier, and A. Manthiram, “Crack–free Single–crystalline LiNiO2 for High Energy Density All–solid–state Batteries,” Advanced Energy Materials (2024). https://doi.org/10.1002/aenm.202303490
- H. Sul, D. Lee, and A. Manthiram, “High-loading Lithium-Sulfur Batteries with Solvent-free Dry-electrode Processing” Small (2024). https://doi.org/10.1002/smll.202400728
- J. He, A. Bhargav, J. Lamb, L. Su, J. Okasinski, W. Shin, and A. Manthiram, “Tuning the Solvation Structure with Salts for Stable Sodium-metal Batteries,” Nature Energy (2024). https://doi.org/10.1038/s41560-024-01469-y
- R. M. Torres, and A. Manthiram, “Delineating the Effects of Transition-metal-ion Dissolution on Silicon Anodes in Lithium-ion Batteries” Small (2024). https://doi.org/10.1002/smll.202309350
- R. Sim, and A. Manthiram, “Factors Influencing Gas Evolution from High-nickel Layered Oxide Cathodes in Lithium-based Batteries” Advanced Energy Materials (2024). https://doi.org/10.1002/aenm.202303985
- S. Kmiec, P. Vanaphuti, and A. Manthiram, “Solid-state Sodium Batteries with P2-type Mn-based Layered Oxides by Utilizing Anionic Redox” Journal of Materials Chemistry A, 12, 3006 – 3013 (2024). https://doi.org/10.1039/D3TA05790A
- D. Lee and A. Manthiram, “Boosting Electrochemical Performance with Functionalized Dry Electrodes for Practical All-solid-state Batteries” Journal of Materials Chemistry A, 12, 3323 – 3330 (2024). https://doi.org/10.1039/D3TA05631G
- S. Su, Z. Cui, and A. Manthiram, “Impact of High-nickel Cathodes on the Coulombic Efficiency of Lithium Metal in Advanced Electrolytes” ACS Materials Letters 6, 109-114 (2024). https://doi.org/10.1021/acsmaterialslett.3c01164
2023
- R. Sim, L. Su, A. Dolocan, and A. Manthiram, “Delineating the Impact of Transition-Metal Crossover on Solid-Electrolyte Interphase Formation with Ion Mass Spectrometry,” Advanced Materials (2023). https://doi.org/10.1002/adma.202311573
- E. Ruoff, S. Kmiec, and A. Manthiram, “Polycarbonate-based Solid-polymer Electrolytes for Solid-state Sodium Batteries” Small (2023). https://doi.org/10.1002/smll.202311839
- X. Zhang, Z. Cui, and A. Manthiram, “Long-life Lithium-metal Batteries with an Ultra-high-nickel Cathode and Electrolytes with Bi-anion Activity,” Advanced Functional Materials 2309591 (2023). https://doi.org/10.1002/adfm.202309591
- C. Liu, Z. Cui, and A. Manthiram, “Tuning Dopant Distribution for Stabilizing the Surface of High-nickel Layered Oxide Cathodes for Lithium-ion Batteries,” Advanced Energy Materials 2302722 (2023). https://doi.org/10.1002/aenm.202302722
- R. Sim, Z. Cui, and A. Manthiram, “Impact of Dopants in Suppressing Gas Evolution from High-nickel Layered Oxide Cathodes” ACS Energy Letters 8, 5143-5148 (2023). https://doi.org/10.1021/acsenergylett.3c02024
- Z. Cui, Z. Guo, and A. Manthiram, “Irreparable Interphase Chemistry Degradation Induced by Temperature Pulse in Lithium-ion Batteries,” Angewandte Chemie International Edition 62, 3202313437 (2023). https://doi.org/10.1002/anie.202313437
- M. Yi, Z. Cui, H. Celio, and A. Manthiram, “Roles of Mn and Co on the Air-synthesizability of Layered Oxide Cathodes for Lithium-based Batteries,” Chemistry of Materials 35, 9352-9361 (2023). https://doi.org/10.1021/acs.chemmater.3c02177
- P. Vanaphuti, Z. Cui, and A. Manthiram, “Demarcating the Impact of Electrolytes on High-nickel Cathodes and Lithium-metal Anode,” Advanced Functional Materials 2308619 (2023). https://doi.org/10.1002/adfm.202308619
- P. Vanaphuti, L. Su, and A. Manthiram, “Effect of Electrochemical Pre-Lithiation on Layered Oxide Cathodes for Anode-free Lithium-metal Batteries,” Small Methods 2301159 (2023). https://doi.org/10.1002/smtd.202301159
- A. Mesnier and A. Manthiram, “Interplay of Molten Salt and Dopants in Tuning the Performance of Single-crystalline LiNiO2,” Journal of Power Sources 586, 233681 (2023). https://doi.org/10.1016/j.jpowsour.2023.233681
- S. Lee, L. Su, A. Mesnier, Z. Cui, and A. Manthiram, “Cracking Vs. Surface Reactivity in High-nickel Cathodes in Lithium-ion Batteries,” Joule 7, 2430-2444 (2023). https://doi.org/10.1016/j.joule.2023.09.006
- H. Park, Z. Guo, and A. Manthiram, “Effect of Oxidative Synthesis Conditions on the Performance of Single-crystalline LiMn2-xMxO4 (M = Al, Fe, and Ni) Spinel Cathodes in Lithium-ion Batteries,” Small 2303526 (2023). https://doi.org/10.1002/smll.202303526
- B. Jin, Z. Cui, and A. Manthiram, “In situ Interweaved Binder Framework Mitigating the Structural and Interphasial Degradations of High-nickel Cathodes in Lithium-ion Batteries,” Angewandte Chemistry 62, e202301241 (2023). https://doi.org/10.1002/anie.202301241
- J. He, A. Bhargav, L. Su, H. Charalambous, and A. Manthiram, “Intercalation-type Catalyst for Non-aqueous Room-temperature Sodium-sulfur Batteries,” Nature Communications 14, 6568 (2023). https://doi.org/10.1038/s41467-023-42383-3
- K. P. Scanlan, and A. Manthiram, “Revealing the Electrochemical Kinetics of Electrolytes in Nanosized LiFePO4 Electrodes,” Journal of the Electrochemical Society 170,100515 (2023). https://doi.org/10.1149/1945-7111/acfc69
- K. Liao, A. Bhargav, and A. Manthiram, “Scalable Metal Phosphides as a Dual-Function Catalyst and Lithium-Metal Stabilizer for Lithium-Sulfur Batteries,” ACS Energy Materials 6, 9585-9593 (2023). https://doi.org/10.1021/acsaem.3c01606
- K. Sada, J. Darga, and A. Manthiram, “Challenges and Prospects of Sodium-Ion and Potassium-Ion Batteries for Mass Production,” Advanced Energy Materials 13, 2302321 (2023). https://doi.org/10.1002/aenm.202302321
- B. Jin, T. Lai, and A. Manthiram,” High-Mass-Loading Anode-Free Lithium-Sulfur Batteries Enabled by a Binary Binder with Fast Lithium-Ion Transport,” ACS Energy Letters 8, 3767–3774 (2023). https://doi.org/10.1021/acsenergylett.3c01395
- D. Lee, Z. Cui, J. B. Goodenough, and A. Manthiram, “Interphase Stabilization of LiNi0.5Mn1.5O4 Cathode for 5 V−Class All-solid-state Batteries,” Advanced Functional Materials 2306053 (2023). https://doi.org/10.1002/smll.202306053
- H. Sul, J. He, and A. Manthiram, “Tellurium Nanowires for Lithium-metal Anode Stabilization in High-performance Anode-free Li-S Batteries,” Small Science 3, 2300088 (2023). https://doi.org/10.1002/smsc.202300088
- A. Mesnier and A. Manthiram, “Influence of Single-crystalline Morphology on the Electrochemical Behavior of High-nickel Layered Oxide Cathodes,” Journal of the Electrochemical Society 170, 8 (2023). https://doi.org/10.1149/1945-7111/aceca6
- Z. Guo, Z. Cui, R. Sim, and A. Manthiram, “Localized high-concentration electrolytes with low-cost diluents compatible with both cobalt-free LiNiO2 cathode and lithium-metal anode,” Advanced Energy Materials 19, 2305055 (2023). https://doi.org/10.1002/smll.202305055
- R. Torres, A. Bhargav, and A. Manthiram, “Poly(vinylferrocene) as an Ionomer and Sulfur-Confining Additive for Lithium-Sulfur Batteries,” ACS Applied Materials & Interfaces 15, 39245–39252 (2023). https://doi.org/10.1021/acsami.3c05567
- T. Lai, A. Bhargav, and A. Manthiram, “Lithium Tritelluride as an Electrolyte Additive for Stabilizing Lithium Deposition and Enhancing Sulfur Utilization in Anode-free Lithium-sulfur Batteries,” Advanced Functional Materials 33, 2304568 (2023). https://doi.org/10.1002/adfm.202304568
- L. Su, S. Zhang, A. J. H. McGaughey, B. Reeja-Jayan, and A. Manthiram, “Battery Charge Curve Prediction via Feature Extraction and Supervised Machine Learning,” Advanced Science 10, 2301737 (2023). http://doi.org/10.1002/advs.202301737
- T. Lai, A. Bhargav, and A. Manthiram, “Lithium Tritelluride as an Electrolyte Additive for Stabilizing Lithium Deposition and Enhancing Sulfur Utilization in Anode-free Lithium-sulfur Batteries,” Advanced Functional Materials (2023). https://doi.org/10.1002/adfm.202304568
- Z. Cui, and A. Manthiram, “Thermal Stability and Outgassing Behaviors of High-nickel Cathodes in Lithium-ion Batteries,” Angewandte Chemistry (2023). https://doi.org/10.1002/anie.202307243
- Y Ren, T. Lai, and A. Manthiram, “Reversible Sodium-Sulfur Batteries Enabled by a Synergistic Dual-Additive Design,” ACS Energy Letters (2023). https://doi.org/10.1021/acsenergylett.3c00833
- H. Kim, Y. Kong, W. M. Seong, and A. Manthiram, “Controlling the Microstructure of Cobalt-free, High-nickel Cathode Materials with Dopant Solubility for Lithium-ion Batteries,” ACS Applied Materials & Interfaces (2023). https://doi.org/10.1021/acsami.3c02009
- H. Park and A. Manthiram, “Ethanothermal Synthesis of Octahedral-shaped Doped Mn2O3 Single Crystals as a Precursor for LiMn2O4 Spinel Cathodes in Lithium-ion Batteries,” Journal of Physical Chemistry C (2023). https://doi.org/10.1021/acs.jpcc.3c02468
- M. Yi, L. Su, and A. Manthiram, “Tuning and Understanding the Solvent Ratios of Localized Saturated Electrolytes for Lithium-metal Batteries,” Journal of Materials Chemistry A (2023). https://doi.org/10.1039/D3TA01061A
- S. Kmiec, E. Ruoff, J. Darga, A. Bodratti and A. Manthiram, “Scalable Glass-fiber-polymer Composite Solid Electrolytes for Solid-state Sodium-metal Batteries,” ACS Applied Materials & Interfaces (in press) (2023). https://doi.org/10.1021/acsami.3c00240
- D. Lee and A. Manthiram, “Stable Cycling with Intimate Contacts Enabled by Crystallinity-controlled PTFE-based Solvent-free Cathodes in All-solid-state Batteries,” Small Methods 2201680: 1-7 (2023). https://doi.org/10.1002/smtd.202201680
- Bhargav, H. Yaghoobnejad Asl, and A. Manthiram, “Mechanistic Understanding of Lithium-anode Protection by Organosulfide-based Solid-electrolyte Interphases and its Implications,” Journal of Materials Chemistry A 11, 9772 -9783 (2023). https://doi.org/10.1039/D3TA00417A
- R. Sim, L. Su, and A. Manthiram, “A High Energy-density, Cobalt-free, Low-nickel LiNi0.7Mn0.25Al0.05O2 Cathode with a High-voltage Electrolyte for Lithium-metal Batteries,” Advanced Energy Materials 2300096: 1-12 (2023). https://doi.org/10.1002/aenm.202300096
- Y. Kim, W. Shin, H. Kim, E. Jo, and A. Manthiram, “Insights into the Microstructural Engineering of Cobalt-free, High-nickel Cathodes Based on Surface Energy for Lithium-ion Batteries,” Advanced Energy Materials 202204054: 1-8 (2023). https://doi.org/10.1002/aenm.202204054
- J. B. Adamo, L. Su, and A. Manthiram, “Operation of Layered LiCoO2 to Higher Voltages with a Localized Saturated Electrolyte” Chemistry of Materials 15, 15458-15466 (2023). https://doi.org/10.1021/acsami.2c22786
- A. Bhargav and A. Manthiram, “Li-S batteries, What’s Next?” Next Energy, https://doi.org/10.1016/j.nxener.2023.100012i (2023).
- A. Mesnier and A. Manthiram, “Heuristics for Molten-salt Synthesis of Single-Crystalline Ultrahigh-nickel Layered Oxide Cathodes,” ACS Applied Materials and Interfaces 15, 12895–12907 (2023). https://doi.org/10.1021/acsami.2c16326
- L. Su, S. Kumar, B. Reeja-Jayan, and A. Manthiram, “A Review on Application of Poly(3,4-ethylenedioxythiophene) (PEDOT) in Rechargeable Batteries,” Organic Materials 4, 292-300 (2023). http://dx.doi.org/10.1055/a-1990-3149
- L. Su, K. Jarvis, H. Charalambous, A. Dolocan, and A. Manthiram, “Stabilizing High-nickel Cathodes with High-voltage Electrolytes,” Advanced Functional Materials 33, 2213675: 1-11 (2023). https://doi.org/10.1002/adfm.202213675
- M. Yi, A. Dolocan, and A. Manthiram, “Stabilizing the Interphase in Cobalt-free, Ultrahigh-nickel Cathodes for Lithium-ion Batteries,” Advanced Functional Materials 33, 2213164: 1-14 (2023). https://doi.org/10.1002/adfm.202213164
- B. Jin, Z. Cui, and A. Manthiram, “In situ Interweaved Binder Framework Mitigating the Structural and Interphasial Degradations of High-nickel Cathodes in Lithium-ion Batteries,” Angewandte Chemie 62, e202301241: 1-11 (2023). https://doi.org/10.1002/anie.202301241
- Z. Cui, Z. Guo, and A. Manthiram “Assessing the Intrinsic Roles of Key Dopant Elements in High-nickel Layered Oxide Cathodes in Lithium-based Batteries,” Advanced Energy Materials 13, 2203853: 1-15 (2023). https://doi.org/10.1002/aenm.202203853
- R. Fang, Y. Liu, Y. Li, A. Manthiram, and J. B. Goodenough, “Achieving Stable All-solid-state Lithium-metal Batteries by Tuning the Cathode-electrolyte Interface and Ionic/electronic Transport within the Cathode,” Materials Today, (2023). https://doi.org/10.1016/j.mattod.2023.03.001
- X. Zhang, E. Jo, Z. Cui, and A. Manthiram, “Inhibition of Transition-metal Dissolution with Advanced Electrolytes in Batteries with Silicon-graphite Anodes and High-nickel Cathodes,” Energy Storage Materials 56, 562-571 (2023). https://doi.org/10.1016/j.ensm.2023.01.048
- J. B. Adamo, L. Su, and A. Manthiram, “Operation of Layered LiCoO2 to Higher Voltages with a Localized Saturated Electrolyte,” Chemistry of Materials 15,15458−15466 (2023). https://doi.org/10.1021/acsami.2c22786
- D. Guo, J. Wang, T. Lai, G. Henkelman, and A. Manthiram, “Electrolytes with Solvating Inner Sheath Engineering for Practical Na-S Batteries,” Advanced Materials, 2300841: 1-19(2023). https://doi.org/10.1002/adma.202300841
- R. Sim, J. Langdon, and A. Manthiram, “Design of an Online Electrochemical Mass Spectrometry System to Study Gas Evolution from Cells with Lean and Volatile Electrolytes,” Small Methods, 2201438: 1-12 (2023). https://doi.org/10.1002/smtd.202201438
- S. Kadulkar, Z. W. Brotherton, A L. Lynch, G. Pohlman, Z. Zhang, R. Torres, N. A. Lynd, T. M. Truskett, V. Ganesan, and A. Manthiram, “The Importance of Morphology on Ion Transport in Single-Ion, Comb-Branched Copolymer Electrolytes: Experiments and Simulations,” Macromolecules, https://doi.org/10.1021/acs.macromol.2c02500 (2023).
- Y. Kim, H. Kim, W. M. Seong, Y. Kong, and A. Manthiram, “A Kinetic Study on Cobalt-free High-nickel Layered Oxide Cathode Materials for Practical Lithium-ion Batteries,” Journal of Power Sources 558, 232633: 1-8 (2023). https://doi.org/10.1016/j.jpowsour.2023.232633
- S. Ober, A. Mesnier, and A. Manthiram, “Surface Stabilization of Cobalt-free LiNiO2 with Niobium for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 15, 1442-1451 (2023). https://doi.org/10.1021/acsami.2c20268
2022
- J. Darga and A. Manthiram, “Facile Synthesis of O3-type NaNi0.5Mn0.5O2 Single Crystals with Improved Performance in Sodium-ion Batteries,” ACS Applied Materials & Interfaces 14, 52729-52737 (2022). https://doi.org/10.1021/acsami.2c12098
- R. Fang, Y. Li, N. Wu, B. Xu, Y. Liu, A. Manthiram, and J. B. Goodenough, “Ultra-thin Single-particle-layer Sodium Beta-alumina-based Composite Polymer Electrolyte Membrane for Sodium-metal Batteries,” Advanced Functional Materials 33, 2211229: 1-7 (2022). https://doi.org/10.1002/adfm.202211229
- H. Sul, A. Bhargav, and A. Manthiram, “Sodium Trithiocarbonate Cathode for High-performance Sodium-sulfur Batteries,” Journal of Materials Chemistry A 11, 130-140 (2022). https://doi.org/10.1039/D2TA07918F
- R. Pan, E. Jo, Z. Cui, and A. Manthiram, “Degradation Pathways of Cobalt-free LiNiO2 Cathode in Lithium Batteries,” Advanced Functional Materials 33, 2211461: 1-11 (2022). https://doi.org/10.1002/adfm.202211461
- Z. Cui, N. Khosla, T. Lai, J. Narayan, and A. Manthiram, “Laser-assisted Surface Fluorine Decoration of a Cobalt-free High-voltage Spinel LiNi0.5Mn1.5O4 Cathode for Long-life Lithium-ion Batteries,” ACS Applied Materials and Interfaces 15, 1247–1255 (2022). https://doi.org/10.1021/acsami.2c18918
- L. Su and A. Manthiram, “Lithium-metal Batteries via Suppressing Li Dendrite Growth and Improving Coulombic Efficiency,” Small Structures 3, 2200114: 1-16 (2022). https://doi.org/10.1002/sstr.202200114
- Y. Ren and A. Manthiram, “A Dual-phase Electrolyte for High-energy Lithium-sulfur Batteries, Advanced Energy Materials 12, 2202566: 1-8 (2022). https://doi.org/10.1002/aenm.202202566
- J. He, H. Sul, A. Bhargav, and A. Manthiram, “Highly Efficient Organosulfur and Lithium-metal Hosts Enabled by C@Fe3N Sponge,” Angewandte Chemie 62, e202216267: 1-7 (2022). https://doi.org/10.1002/anie.202216267
- S. Lee and A. Manthiram, “Can Cobalt Be Eliminated from Lithium-Ion Batteries?” ACS Energy Letters 7, 3058–3063 (2022). https://doi.org/10.1021/acsenergylett.2c01553
- P. Crowley, K. Scanlan, and A. Manthiram, “Diffusional Lithium Trapping as a Failure Mechanism of Aluminum Foil Anodes in Lithium-ion Batteries,” Journal of Power Sources 546, 231973: 1-10 (2022). https://doi.org/10.1016/j.jpowsour.2022.231973
- H. Yaghoobnejad Asl, A. Bhargav, and A. Manthiram, “Taming Polysulfides in Sulfur-based Batteries via Electrolyte-soluble Thiomolybdate Additives,” Journal of Materials Chemistry A 10, 17572-17585 (2022). https://doi.org/10.1039/D2TA03893E
- A. Bhargav and A. Manthiram, “A Lithium-ion Conducting Polysulfide Polymer for Flexible Batteries,” ACS Materials Letters 4, 1904–1911 (2022). https://doi.org/10.1021/acsmaterialslett.2c00590
- J. Langdon and A. Manthiram, “Crossover Effects in Lithium-Metal Batteries with a Localized High Concentration Electrolyte and High-Nickel Cathodes,” Advanced Materials 34, 2205188: 1-10 (2022). https://doi.org/10.1002/adma.202205188
- J. Langdon, R. Sim, and A. Manthiram, “Gas Generation in Lithium Cells with High-Nickel Cathodes and Localized High-Concentration Electrolytes,” ACS Energy Letters 7, 2634–2640 (2022). https://doi.org/10.1021/acsenergylett.2c01444
- Z. Cui, F. Zou, H. Celio, and A. Manthiram, “Paving Pathways Towards Long-life Graphite/LiNi0.5Mn1.5O4 Full Cells: Electrochemical and Interphasial Points of View,” Advanced Functional Materials 32, 2203779: 1-11 (2022). https://doi.org/10.1002/adfm.202203779
- Y. Ren, A. Bhargav, W. Shin, and A. Manthiram, “Anode-free Lithium-sulfur Cells Enabled by Rationally Tuning Lithium Polysulfide Molecules,” Angewandte Chemie 61, e202207907: 1-10 (2022). https://doi.org/10.1002/anie.202207907
- A. Manthiram, “John Goodenough’s 100th Birthday Celebration: His Impact in Science and Humanity,” ACS Energy Letters 7, 2404–2406 (2022). https://doi.org/10.1021/acsenergylett.2c01343
- R. R. Brow, A. W. Donakowski, A. Mesnier, D. J. Pereiral, K. X. Steirer, S. Santhanagopalan, and A. Manthiram, “Mechanical Pulverization of Co-Free Nickel-Rich Cathodes for Improved High-Voltage Cycling of Lithium-Ion Batteries,” ACS Applied Energy Materials 5, 6996–7005 (2022). https://doi.org/10.1021/acsaem.2c00606
- J. Lamb and A. Manthiram, “Stable Sodium-based Batteries with Advanced Electrolytes and Layered-oxide Cathodes,” ACS Applied Materials & Interfaces 14, 28865–28872 (2022). https://doi.org/10.1021/acsami.2c05402
- A. Bhargav and A. Manthiram, “2,5-Dimercapto-1,3,4-thiadiazole (DMCT)-based Polymers for Rechargeable Metal-sulfur Batteries,” Energy & Environmental Materials, e12446: 1-8 (2022). https://doi.org/10.1002/eem2.12446
- Z. Liang, J. He, C. Hu, X. Pu, H. Khani, L. Dai, D. Fan, Z.-L. Wang, and A. Manthiram, “Next-generation Energy Harvesting and Storage Technologies for Robots Across All Scales,” Advanced Intelligent Systems, 2200045: 1-19 (2022). https://doi.org/10.1002/aisy.202200045
- L. Su, X. Zhao, M. Yi, H. Celio, Y. Liu, and A. Manthiram, “Uncovering the Solvation Structure of LiPF6-based Localized Saturated Electrolytes and Their Effect on LiNiO2-based Lithium-metal Batteries,” Advanced Energy Materials 12, 2201911: 1-13 (2022). https://doi.org/10.1002/aenm.202201911
- L. Su, E. Jo, and A. Manthiram, “Protection of Cobalt-free LiNiO2 from Degradation with Localized Saturated Electrolytes in Lithium-metal Batteries,” ACS Energy Letters 7, 2165-2172 (2022). https://doi.org/10.1021/acsenergylett.2c01081
- L. Sharma, M. Yi, E. Jo, H. Celio, and A. Manthiram, “Surface Stabilization with Fluorine of Layered Ultra-high-nickel Oxide Cathodes for Lithium-ion Batteries,” Chemistry of Materials 34, 4514–4522 (2022). https://doi.org/10.1021/acs.chemmater.2c00301
- H. Sul, A. Bhargav, and A. Manthiram, “Lithium Trithiocarbonate as a Dual-function Electrode Material for High-performance Lithium-sulfur Batteries,” Advanced Energy Materials 12, 2200680: 1-9 (2022). https://doi.org/10.1002/aenm.202200680
- D. Guo, D. B. Shinde, W. Shin, E. Abou-Hamad, A.-H. Emwas, Z. Lai, and A. Manthiram, “Foldable Solid-state Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks,” Advanced Materials 34, 2201410: 1-9 (2022). https://doi.org/10.1002/adma.202201410
- S. Kim, G. Kim, and A. Manthiram, “Dysprosium Doping Effects on Perovskite Oxides for Air and Fuel Electrodes of Solid Oxide Cells,” Journal of Power Sources 497, 229873: 1-6 (2022). https://doi.org/10.1016/j.jpowsour.2021.229873
- Y. Chen, M. Xu, Y. Huang, and A. Manthiram, “Creating a Rechargeable World,” Chem 8, 312-318 (2022). https://doi.org/10.1016/j.chempr.2022.01.011
- W. Shin, and A. Manthiram, “Fast and Simple Ag/Cu Ion Exchange on Cu Foil for Anode-Free Lithium-Metal Batteries,” ACS Applied Materials & Interfaces 14, 17454−17460 (2022). https://doi.org/10.1021/acsami.2c01980
- S. Nanda, H. Yaghoobnejad Asl, A. Bhargav, and A. Manthiram, “Thiometallate-mediated Polysulfide Chemistry and Lithium Stabilization for Stable Anode-free Lithium-sulfur Batteries,” Cell Reports Physical Science 3, 100808: 1-15 (2022). https://doi.org/10.1016/j.xcrp.2022.100808
- Y. Ren, W. Shin, and A. Manthiram, “Operating High-energy Lithium-metal Pouch Cells with Reduced Stack Pressure Through a Rational Lithium-host Design,” Advanced Energy Materials, 2200190:1-10 (2022). https://doi.org/10.1002/aenm.202200190
- A. Manthiram, J. L. Lutkenhaus, Y. Fu, P. Bai, B. G. Kim, S. W. Lee, E. Okonkwo, and R. M. Penner, “Technological Pathways toward Sustainable Batteries,” One Earth, 5, 203-206, 2022. https://doi.org/10.1016/j.oneear.2022.02.010
- R. Pan, Z. Cui, M. Yi, Q. Xie, and A. Manthiram, “Ethylene Carbonate-Free Electrolytes for Stable, Safer High-Nickel Lithium-Ion Batteries,” Advanced Energy Materials, 2103806: 1-11 (2022). https://doi.org/10.1002/aenm.202103806
- A. Manthiram, “A Fruitful Transition of John B. Goodenough from Oxford to the University of Texas at Austin,” Journal of the Electrochemical Society 169, 034520 (2022). https://iopscience.iop.org/article/10.1149/1945-7111/ac59f7
- B. Heligman, K. P. Scanlan, and A. Manthiram, “Nanostructured Composite Foils Produced via Accumulative Roll Bonding as Lithium-ion Battery Anodes,” ACS Applied Materials & Interfaces 14, 11408–11414 (2022). https://doi.org/10.1021/acsami.1c23529
- X. Zhang, Z. Cui, and A. Manthiram, “Insights into the Crossover Effects in Cells with High-nickel Layered Oxide Cathodes and Silicon/Graphite Composite Anodes,” Advanced Energy Materials 12, 2103611: 1-9 (2022). https://doi.org/10.1002/aenm.202103611
- L. Su, H. Charalambous, Z. Cui, and A. Manthiram, “High-efficiency, Anode-free Lithium-metal Batteries with a Close-packed Homogeneous Lithium Morphology,” Energy & Environmental Science 15, 843 – 854 (2022). https://doi.org/10.1039/D1EE03103A
- J. Lamb, K. Jarvis, and A. Manthiram, “Molten-Salt Synthesis of O3-type Layered Oxide Single Crystal Cathodes with Controlled Morphology for Long-life Sodium-ion Batteries,” Small 18, 2106927: 1 of 9 (2022). https://doi.org/10.1002/smll.202106927
- X. Li, R. Zhao, Y. Fu, and A. Manthiram, “Nitrate Additives for Lithium Batteries: Mechanisms, Applications, and Prospects,” eScience 1, 108-123 (2022). https://doi.org/10.1016/j.esci.2021.12.006
- J. He, A. Bhargav, and A. Manthiram, “High-performance Anode-free Li-S Batteries with an Integrated Li2S-electrocatalyst Cathode,” ACS Energy Letters 7, 583–590 (2022). https://doi.org/10.1021/acsenergylett.1c02569
- W. Shin and A. Manthiram, “A Facile Potential Hold Method for Fostering Inorganic-rich Solid-electrolyte Interphase for Anode-free Lithium-metal Batteries,” Angewandte Chemie 61, e202115909: 1-6 (2022). https://doi.org/10.1002/anie.202115909
- M. Yi, W. Li, and A. Manthiram, “Delineating the Roles of Mn, Al, and Co by Comparing Three Layered Oxide Cathodes with the Same Nickel Content of 70% for Lithium-ion Batteries,” Chemistry of Materials 34, 629-642 (2022). https://doi.org/10.1021/acs.chemmater.1c03322
- L. Sharma and A. Manthiram, “Polyanionic Insertion Hosts for Aqueous Rechargeable Batteries,” Journal of Materials Chemistry A 10, 6376-6396 (2022). https://doi.org/10.1039/D1TA11080B
- J. He, A. Bhargav, and A. Manthiram, “Covalent Organic Framework as an Efficient Protection Layer for Stable Lithium-metal Anode,” Angewandte Chemie, e202116586: 1-7 (2022). https://doi.org/10.1002/anie.202116586
2021
- B. Heligman, K. P. Scanlan, and A. Manthiram, “An In-depth Analysis of the Transformation of Tin Foil Anodes during Electrochemical Cycling in Lithium-ion Batteries,” Journal of The Electrochemical Society 168, 120544 (2021). https://iopscience.iop.org/article/10.1149/1945-7111/ac42f0
- J. He and A. Manthiram, “In-situ Grown 1T’-MoTe2 Nanosheets on Carbon Nanotubes as an Efficient Electrocatalyst and Lithium Regulator for Stable Lithium-sulfur Full Cells,” Advanced Energy Materials 12, 2103204: 1-10 (2021). https://doi.org/10.1002/aenm.202103204
- J. He, A. Bhargav, and A. Manthiram, “Stable, Dendrite-free Sodium-sulfur Batteries Enabled by a Solvated Ionic-liquid Electrolyte,” Journal of the American Chemical Society 143, 20241- 20248 (2021). https://doi.org/10.1021/jacs.1c08851
- K. P. Padmasree, K-Y Lai, and A. Manthiram, “Synthesis and Characterization of Ca3-xLaxCo4-yCuyO9+δ cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Ceramics International 48, 455-462 (2021). https://doi.org/10.1016/j.ceramint.2021.09.121
- X. Yu and A. Manthiram, “Nonaqueous Hybrid Redox Flow Energy Storage with a Sodium-TEMPO Chemistry and a Single-ion Separator,” Energy Advances 1, 21-27 (2021). https://doi.org/10.1039/D1YA00010A
- F. Zou, Z. Cui, H. C. Nallan, J. G. Ekerdt, and A. Manthiram, “Long-term Cycling of Mn-rich High-voltage Spinel Cathode by Stabilizing the Surface with a Small Dose of Iron,” ACS Applied Energy Materials 4, 13297–13306 (2021). https://doi.org/10.1021/acsaem.1c02903
- F. Zou, H. C. Nallan, A. Dolocan, Q. Xie, J. Li, B. M. Coffey, J. G. Ekerdt, A. Manthiram, “Long-life LiNi0.5Mn1.5O4/Graphite Lithium-ion Cells With an Artificial Graphite-electrolyte Interface,” Energy Storage Materials 43, 499-508 (2021). https://doi.org/10.1016/j.ensm.2021.09.033
- J. Lamb and A. Manthiram,” Surface-modified Na(Ni0.3Fe0.4Mn0.3)O2 Cathodes with Enhanced Cycle Life and Air Stability for Sodium-ion Batteries,” ACS Applied Energy Materials 4, 11735-11742 (2021). https://doi.org/10.1021/acsaem.1c02485
- Y. Ren, Z. Cui, A. Bhargav, J. He, A. Manthiram, “A Self-healable Sulfide/Polymer Composite Electrolyte for Long-life, Low-lithium-excess Lithium-metal Batteries,” Advanced Functional Materials 32, 2106680: 1-10 (2021). https://doi.org/10.1002/adfm.202106680
- Z. Cui, Q. Xie, and A. Manthiram, “A Cobalt- and Manganese-free High-nickel Layered Oxide Cathode for Long-life, Safer Lithium-ion Batteries,” Advanced Energy Materials 11, 2102421: 1-10 (2021). https://doi.org/10.1002/aenm.202102421
- S. Sharma, P. Crowley, and A. Manthiram, “Silicon-Doped Aluminum Foils as Low Cost, Environmentally Friendly Anodes for Lithium-ion Batteries,” ACS Sustainable Chemistry & Engineering 9, 14515-14524 (2021). https://doi.org/10.1021/acssuschemeng.1c05168
- J. Langdon, Z. Cui, and A. Manthiram, “Role of Electrolyte in Overcoming the Challenges of LiNiO2 Cathode in Lithium Batteries,” ACS Energy Letters 6, 3809-3816 (2021). https://doi.org/10.1021/acsenergylett.1c01714
- A. Manthiram and J. B. Goodenough, “Lithium-based Polyanion Oxide Cathodes,” Nature Energy 6, 844-845 (2021). https://doi.org/10.1038/s41560-021-00865-y
- Y. Kim, H. Park, K. Shin, G. Henkelman, J. H. Warner, and A. Manthiram, “Rational Design of Coating Ions via Advantageous Surface Reconstruction in High-nickel Layered Oxide Cathodes for Lithium-ion Batteries,” Advanced Energy Materials, 11, 2101112: 1-11 (2021). https://doi.org/10.1002/aenm.202101112
- R. Sim, S. Lee, W. Li, and A. Manthiram, “Influence of Calendering on the Electrochemical Performance of LiNi0.9Mn0.05Al0.05O2 Cathodes in Lithium-ion Cells,” ACS Applied Materials & Interfaces 13, 42898-42908 (2021). https://doi.org/10.1021/acsami.1c12543
- M. J. Park, H. Yaghoobnejad Asl, and A. Manthiram, “Understanding Zn-ion Insertion Chemistry Through Electrochemical Investigation of 2H-NbSe2,” Advanced Materials Interfaces 8, 2100878: 1-9 (2021). https://doi.org/10.1002/admi.202100878
- X. Yu and A. Manthiram, “Accessing a High-voltage Nonaqueous Hybrid Flow Battery with a Sodium – Methylphenothiazine Chemistry and a Sodium-ion Solid Electrolyte,” Energy Storage 4, 1-10 (2021). https://doi.org/10.1002/est2.281
- M. J. Park and A. Manthiram, “Understanding the Limited Electrochemical Zn-ion Insertion Into 2H-MoS2 and 2H-WS2: A Case Study of 2H-NbS2,” ACS Applied Energy Materials 4, 8849–8856 (2021). https://doi.org/10.1021/acsaem.1c00985
- S. Kim, G. Kim, and A. Manthiram, “A Review on Infiltration Techniques for Energy Conversion and Storage Devices: From Fundamentals to Applications,” Sustainable Energy & Fuels 5, 5024-5037 (2021). https://doi.org/10.1039/D1SE00878A
- S. Nanda, A. Bhargav, Z. Jiang, X. Zhao, Y. Liu, and A. Manthiram, “Implications of In-situ Chalcogen Substitutions in Polysulfides for Rechargeable Batteries,” Energy & Environmental Science 14, 5423-5432 (2021). https://doi.org/10.1039/D1EE01113H
- Q. Xie, Z. Cui, and A. Manthiram, “Unveiling the Stabilities of Nickel-based Layered Oxide Cathodes at an Identical Degree of Delithiation in Lithium-based Batteries,” Advanced Materials 33, 2100804: 1-14 (2021). https://doi.org/10.1002/adma.202100804
- B. Heligman and A. Manthiram, “Elemental Foil Anodes for Lithium-ion Batteries,” ACS Energy Letters 6, 2666–2672 (2021). https://doi.org/10.1021/acsenergylett.1c01145
- S. Lee, W. Li, A. Dolocan, H. Celio, H. Park, J. H. Warner, and A. Manthiram, “In-depth Analysis of the Degradation Mechanisms of High-Nickel, Low/No-Cobalt Layered Oxide Cathodes for Lithium-ion Batteries,” Advanced Energy Materials https://doi.org/10.1002/aenm.202100858 (2021).
- X. Yu, Y. Liu, J. B. Goodenough, and A. Manthiram, “A Rationally Designed PEGDA – LLZTO Composite Electrolyte for Solid-state Lithium Batteries,” ACS Applied Materials & Interfaces 13, 30703–30711 (2021). https://doi.org/10.1021/acsami.1c07547
- Y. Kim, H. Park, A. Dolocan, J. H. Warner, and A. Manthiram, “A Wet-CO2 Pretreatment Process for Reducing Residual Lithium in High-nickel Layered Oxides for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 13, 27096–27105 (2021). https://doi.org/10.1021/acsami.1c06277
- H. Park, A. Mesnier, S. Lee, K. Jarvis, J. H. Warner, and A. Manthiram,” Intrinsic Li Distribution in Layered Transition-Metal Oxides Using Low-Dose Scanning Transmission Electron Microscopy and Spectroscopy,” Chemistry of Materials 33, 4638–4650 (2021). https://doi.org/10.1021/acs.chemmater.1c01145
- X. Wang, S. Tang, W. Guo, Y. Fu, and A. Manthiram, “Advances in Multimetallic Alloy-based Anodes for Alkali-ion and Alkali-metal Batteries,” Materials Today 50, 259-275 (2021). https://doi.org/10.1016/j.mattod.2021.05.001
- Y. Tang, Y. Huang, L. Luo, D. Fan, Y. Lu, and A. Manthiram, “Self-supported MoO2/MoS2Nano-sheets Embedded in a Carbon Cloth as a Binder-free Substrate for High-energy Lithium-sulfur Batteries,” Electrochimica Acta 367,137482: 1-9 (2021). https://doi.org/10.1016/j.electacta.2020.137482
- J.-M. Kim, X. Zhang, J.-G. Zhang, A. Manthiram, Y. S. Meng, and W. Xu, “A Review on the Stability and Surface Modification of Layered Transition-metal Oxide Cathodes,” Materials Today 46, 155-182 (2021). https://doi.org/10.1016/j.mattod.2020.12.017
- W. Guo, W. Zhang, Y. Si, D. Wang, Y. Fu, and A. Manthiram “Artificial Dual Solid-electrolyte Interfaces Based on In Situ Organothiol Transformation in Li-S Battery,” Nature Communications 12, 3031: 1-13 (2021). https://doi.org/10.1038/s41467-021-23155-3
- X. Yu, N. S. Grundish, J. B. Goodenough, and A. Manthiram, “Ionic Liquid (IL) Laden Metal Organic Framework (IL-MOF) Electrolyte for Solid-state Sodium Batteries,” ACS Applied Materials & Interfaces 13, 24662−24669 (2021). https://doi.org/10.1021/acsami.1c02563
- A. Gupta and A. Manthiram, “Unifying the Clustering Kinetics of Lithium Polysulfides with the Nucleation Behavior of Li2S in Lithium-Sulfur Batteries,” Journal of Materials Chemistry A 9, 13242–13251(2021). https://doi.org/10.1039/D1TA02779D
- J. He, A. Bhargav, and A. Manthiram, “High-Energy-Density, Long-Life Lithium-Sulfur Batteries with Practically Necessary Parameters Enabled by Low-Cost Fe-Ni Nanoalloy Catalysts,” ACS Nano,15, 8583-8591(2021). https://doi.org/10.1021/acsnano.1c00446
- A. Gupta, A. Bhargav, and A. Manthiram, “Tailoring Lithium Polysulfide Coordination and Clustering Behavior through Cationic Electrostatic Competition,” Chemistry of Materials 33, 3457-3466 (2021). https://doi.org/10.1021/acs.chemmater.1c00893
- X. Zhang, L. Zou, Z. Cui, H. Jia, M. H. Engelhard, B. E. Matthews, X. Cao, Q. Xie, C. Wang, A. Manthiram, J.-G. Zhang, and W. Xu, “Stabilizing Ultrahigh-Nickel Layered Oxide Cathodes for High-Voltage Lithium Metal Batteries,” Materials Today 4, 16-24 (2021). https://doi.org/10.1016/j.mattod.2021.01.013
- Z. Cui, Q. Xie, and A. Manthiram, “Zinc-doped High-nickel, Low-Cobalt Layered Oxide Cathodes for High-energy-density Lithium-ion Batteries,” ACS Applied Materials & Interfaces, 13, 15324-15332 (2021). https://doi.org/10.1021/acsami.1c01824
- A. Manthiram and J. B. Goodenough, “Layered Lithium Cobalt Oxide Cathodes,” Nature Energy 6, 323 (2021). https://doi.org/10.1038/s41560-020-00764-8
- X. Yu and A. Manthiram, “Sustainable Battery Materials for Next Generation Electrical Energy Storage,” Advanced Energy & Sustainability Research 2, 2000102: 1-12 (2021). https://doi.org/10.1002/aesr.202000102
- X. Liu, X. Zhan, Z. D. Hood, W. Li, D. N. Leonard, A. Manthiram, and M. Chi, “Essential Effect of the Electrolyte on the Mechanical and Chemical Degradation of LiNi0.8Co0.15Al0.05O2 Cathodes upon Long-Term Cycling,” Journal of of Materials Chemistry A, 9, 2111–2119 (2021). https://doi.org/10.1039/D0TA07814J
- S. Nanda and A. Manthiram, “Delineating the Lithium-electrolyte Interfacial Chemistry and the Dynamics of Lithium Deposition in Lithium-sulfur Batteries,” Advanced Energy Materials, 11, 2003293: 1-13 (2021). https://doi.org/10.1002/aenm.202003293
- Y. Kim, H. Park, J. H. Warner, and A. Manthiram, “Unraveling the Intricacies of Residual Lithium in High-Ni Cathodes for Lithium-ion Batteries,” ACS Energy Letters, 6, 941-948 (2021). https://doi.org/10.1021/acsenergylett.1c00086
- J. Langdon and A. Manthiram, “A Perspective on Single-crystal Layered Oxide Cathodes for Lithium-ion Batteries,” Energy Storage Materials, 37, 143-160 (2021). https://doi.org/10.1016/j.ensm.2021.02.003
- J. Langdon and A. Manthiram, “Crossover Effects in Batteries with High-nickel Cathodes and Lithium-metal Anodes,” Advanced Functional Materials, 31, 2010267: 1-9(2021). https://doi.org/10.1002/adfm.202010267
- X. Yu, W. A. Yu, and A. Manthiram, “Advances and Prospects of High-voltage Spinel Cathodes for Lithium-based Batteries,” Small Methods 5, 2001196: 1-30 (2021). https://doi.org/10.1002/smtd.202001196
- S. Kim, G. Kim, and A. Manthiram, “A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions: Nano-Co3O4-Deposited La0.5Sr0.5MnO3 Via Infiltration,” Molecules 26, 277: 1-10 (2021). https://doi.org/10.3390/molecules26020277
2020
- H. Yaghoobnejad Asl and A. Manthiram, “Proton-induced Disproportionation of Jahn-Teller-active Transition-metal Ions in Oxides due to Electronically-driven Lattice Instability,” Journal of the American Chemical Society 142, 21122-21130 (2020). https://doi.org/10.1021/jacs.0c10044
- H. Yaghoobnejad Asl, A. Manthiram, “Toward Sustainable Batteries,” Nature Sustainability 4, 379-380 (2020). https://doi.org/10.1038/s41893-020-00664-5
- A. Gupta, A. Bhargav, and A. Manthiram, “Evoking High Donor Number-assisted and Organosulfur-mediated Conversion in Lithium-Sulfur Batteries,” ACS Energy Letters 6, 224-231 (2021). https://doi.org/10.1021/acsenergylett.0c02461
- X. Yu, L. Xue, J. B. Goodenough, and A. Manthiram, “All-solid-state Sodium Batteries with a Polyethylene Glycol Diacrylate (PEGDA) – Na3Zr2Si2PO12 Composite Electrolyte,” Advanced Energy & Sustainability Research, 2, 2000061: 1–9 (2020). https://doi.org/10.1002/aesr.202000061
- A. Mesnier and A. Manthiram, “Synthesis of LiNiO2 at Moderate Oxygen Pressure and Long-term Cyclability in Lithium-ion Full Cells,” ACS Applied Materials & Interfaces 12, 52826-52835 (2020). https://doi.org/10.1021/acsami.0c16648
- W. M. Seong, Y. Kim, and A. Manthiram, “Impact of Residual Lithium on the Adoption of High-nickel Layered Oxide Cathodes for Lithium-ion Batteries,” Chemistry of Materials 32, 9479-9489 (2020). https://doi.org/10.1021/acs.chemmater.0c02808
- F. Zou and A. Manthiram, “A Review of the Design of Advanced Binders for High-performance Batteries,” Advanced Energy Materials 10, 2002508: 1-28 (2020). https://doi.org/10.1002/aenm.202002508
- X. Yu, W. A. Yu, and A. Manthiram, “A High Energy, Single-ion Mediated Nonaqueous Zinc-TEMPO Re-dox Flow Battery,” ACS Applied Materials & Interfaces 12, 48654-48661 (2020). https://doi.org/10.1021/acsami.0c14736
- J. Darga, J. Lamb, and A. Manthiram, “Industrialization of Layered Oxide Cathodes for Lithium-ion and Sodium-ion Batteries: A Comparative Perspective,” Energy Technology 8, 200723: 1-13 (2020). https://doi.org/10.1002/ente.202000723
- G. Gnana kumar, A. Farithkhan, and A. Manthiram, “Direct Urea Fuel Cells: Recent Progress and Critical Challenges of Urea Oxidation Electrocatalysis,” Advanced Energy & Sustainability Research 1, 2000015: 1 – 17 (2020). https://doi.org/10.1002/aesr.202000015
- J. He and A. Manthiram, “3D CoSe@C Aerogel as a Host for Dendrite-free Lithium-metal Anode and Efficient Sulfur Cathode in Li–S Full Cells,” Advanced Energy Materials 10, 2002654: 1-9 (2020). https://doi.org/10.1002/aenm.202002654
- K. Zhou, Q. Xie, B. Li, and A. Manthiram, “An In-depth Understanding of the Effect of Aluminum Doping in High-nickel Cathodes for Lithium-ion Batteries,” Energy Storage Materials 34, 229-240 (2020). https://doi.org/10.1016/j.ensm.2020.09.015
- S. Sharma and A. Manthiram, “Towards More Environmentally and Socially Responsible Batteries,” Energy & Environmental Science 13, 4087-4097 (2020). https://doi.org/10.1039/D0EE02511A
- Y. Kim, W. M. Seong, and A. Manthiram, “Cobalt-free High-nickel Layered Oxide Cathodes for Lithium-ion Batteries: Progress, Challenges, and Perspectives,” Energy Storage Materials 34, 250-259 (2020). https://doi.org/10.1016/j.ensm.2020.09.020
- Yu, X. and A. Manthiram, “A Review of Composite Polymer-ceramic Electrolytes for Lithium Batteries,” Energy Storage Materials 34, 282-300 (2020). https://doi.org/10.1016/j.ensm.2020.10.006
- W. M. Seong and A. Manthiram, “Complementary Effects of Mg and Cu incorporation in Stabilizing the Cobalt-free LiNiO2 Cathode for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 12, 43653-43664 (2020). https://doi.org/10.1021/acsami.0c11413
- J. Lamb and A. Manthiram, “Synthesis Control of Layered Oxide Cathodes for Sodium-ion Batteries: A Necessary Step Towards Practicality,” Chemistry of Materials 32, 8431-8441 (2020). https://doi.org/10.1021/acs.chemmater.0c02435
- X. Yu and A. Manthiram, “Recent Advances in Lithium – Carbon Dioxide Batteries,” Small Structures 1, 2000027: 1-23 (2020). https://doi.org/10.1002/sstr.202000027
- W. Li, X. Liu, Q. Xie, Y. You, M. Chi, and A. Manthiram, “Long-term Cyclability of NCM-811 at High Voltages in Lithium-ion Batteries: An In-depth Diagnostic Study,” Chemistry of Materials 32, 7796-7804 (2020). https://doi.org/10.1021/acs.chemmater.0c02398
- J. He, A. Bhargav, and A. Manthiram, “Molybdenum Boride as an Efficient Catalyst for Polysulfide Redox to Enable High-Energy-Density Lithium-Sulfur Batteries,” Advanced Materials 32, 2004741: 1-7 (2020). https://doi.org/10.1002/adma.202004741
- X. Yu and A. Manthiram, “A Progress Report on Metal ̶ Sulfur Batteries,” Advanced Functional Materials 30, 2004084: 1-27 (2020). https://doi.org/10.1002/adfm.202004084
- Q. Xie and A. Manthiram, “Long-life, Ultrahigh-nickel Cathodes with Excellent Air-storage Stability for High-energy-density Lithium-based Batteries,” Chemistry of Materials 32, 7413–7424 (2020). https://dx.doi.org/10.1021/acs.chemmater.0c02374
- J. Lamb, L. Stokes, and A. Manthiram, “Delineating the Capacity Fading Mechanisms of Na(Ni0.3Fe0.4Mn0.3)O2at Higher Operating Voltages in Sodium-ion Cells,” Chemistry of Materials 32, 7389–7396 (2020). https://doi.org/10.1021/acs.chemmater.0c02292
- X. Yu, L. Xue, J. B. Goodenough, and A. Manthiram, “Ambient-temperature All-solid-state Sodium Batteries with a Laminated Composite Electrolyte,” Advanced Functional Materials, 11, 200244: 1-10 (2020). https://doi.org/10.1002/adfm.202002144
- S. Agarwal, X. Yu, and A. Manthiram, “A Pair of Metal Organic Framework (MOF)-derived Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER) Catalysts for Zinc-air Batteries,” Materials Today Energy 16, 100405 (2020). https://doi.org/10.1016/j.mtener.2020.100405
- C.-S. Lee, S.-H. Ahn, D.-J. Kim, J.-H. Lee, A. Manthiram, and J.-H. Kim, “Flexible, All-Solid-State 1.4 V Symmetric Supercapacitors with High Energy Density Based on Comb Polymer Electrolyte and 1D Hierarchical Carbon Nanotube Electrode,” Journal of Power Sources 474, 228477: 1-11 (2020). https://doi.org/10.1016/j.jpowsour.2020.228477
- W. Li, Y-G Cho, W. Yao, Y. Li, A. Cronk, R. Shimizu, M. A. Schroeder, Y. Fu, F. Zou, V. Battaglia, A. Manthiram, M. Zhang, and Y. S. Meng, “Enabling High Areal Capacity for Co-free High Voltage Spinel Materials in Next generation Li-ion Batteries,” Journal of Power Sources 473, 228579: 1-9 (2020). https://doi.org/10.1016/j.jpowsour.2020.228579
- D.-S. Ko, J.-H. Park, B. Y. Yu, D. Ahn, K. Kim, H. N. Han, W. S. Jeon, C. Jung, and A. Manthiram, “Degradation of High-Nickel Layered Oxide Cathodes from Surface to Bulk: A Comprehensive Structural, Chemical, and Electrical Analysis,” Advanced Energy Materials 10, 2001035:1-13 (2020). https://doi.org/10.1002/aenm.202001035
- A. Bhargav and A. Manthiram, “Xanthogen Polysulfides as a New Class of Electrode Material for Rechargeable Batteries,” Advanced Energy Materials 10, 2001658: 1-10 (2020). https://doi.org/10.1002/aenm.202001658
- A. Gupta and A. Manthiram, “Designing Advanced Lithium-based Batteries for Low-temperature Conditions,” Advanced Energy Materials 10, 2001972: 1-14 (2020). https://doi.org/10.1002/aenm.202001972
- H. Shin, M. Baek, A. Gupta, A. Manthiram, J. W. Choi, “Recent Progress in High Donor Electrolytes for Lithium-Sulfer Batteries,” Advanced Energy Materials 10, 2001456: 1-21 (2020). https://doi.org/10.1002/aenm.202001456
- R. Pipes, J. He, A. Bhargav, and A. Manthiram, “Freestanding Vanadium Nitride Nanowire Membrane as an Efficient, Carbon-Free Gas Diffusion Cathode for Li-CO2 Batteries,” Energy Storage Materials 31, 95-104 (2020). https://doi.org/10.1016/j.ensm.2020.06.009
- H. Yaghoobnejad Asl and A. Manthiram, “Reigning in Dissolved Transition Metal Ions” Science 369, 140-141 (2020). Full text: https://science.sciencemag.org/content/369/6500/140.full?ijkey=rZ5y3WUnJFeXQ&keytype=ref&siteid=sci
- M. J. Park, H. Yaghoobnejad Asl and A. Manthiram, “Multivalent-ion vs Proton Insertion into Battery Electrodes,” ACS Energy Letters 5, 2367−2375 (2020). https://doi.org/10.1021/acsenergylett.0c01021
- W. Li, S. Lee, and A. Manthiram, “High-nickel NMA: A Cobalt-free Alternative to NMC and NCA Cathodes for Lithium-ion Batteries,” Advanced Materials, 2002718: 1-6 (2020). https://doi.org/10.1002/adma.202002718
- S. Nanda and A. Manthiram, “Lithium Degradation in Lithium-Sulfur Batteries: Insights into Inventory Depletion and Interphasial Evolution with Cycling,” Energy & Environmental Science 13, 2501 -2514 (2020). https://doi.org/10.1039/D0EE01074J
- S.-H. Ahn and A. Manthiram, “Single Ni Atoms and Clusters Embedded in N-doped Carbon ‘Tubes on Fibers’ Matrix with Bi-functional Activity for Water Splitting at High Current Densities,” Small 16, 2002511: 1-14 (2020). https://doi.org/10.1002/smll.202002511
- P. Chiochan, X. Yu, M. Sawangphruk, and A. Manthiram, “A Metal Organic Framework (MOF)-derived Solid Electrolyte for Lithium-Sulfur Batteries,” Advanced Energy Materials 10, 2001285: 1-11 (2020). https://doi.org/10.1002/aenm.202001285
- L. Luo and A. Manthiram, “An Artificial Protective Coating towards Dendrite-free Lithium-metal Anodes for Lithium-sulfur Batteries,” Energy Technology 8, 2000348: 1-6 (2020). https://doi.org/10.1002/ente.202000348
- X. Yu, W. A. Yu, and A. Manthiram, “A Mediator-ion Nitrobenzene – Iodine Nonaqueous Redox Flow Battery with Asymmetric Solvents,” Energy Storage Materials 29, 266-272 (2020). https://doi.org/10.1016/j.ensm.2020.04.023
- J. He, Y. Chen, and A. Manthiram, “1T’-ReS2 Nanosheets in-situ Grown on Carbon Nanotubes as a Highly Efficient Polysulfide Electrocatalyst for Li-S Batteries,” Advanced Energy Materials 10, 2001017: 1-9 (2020). https://doi.org/10.1002/aenm.202001017
- S. Nanda, A. Bhargav, and A. Manthiram, “Anode-free, Lean-electrolyte Lithium-sulfur Batteries Enabled by Tellurium-stabilized Lithium Deposition,” Joule 4, P1121-1135 (2020). https://doi.org/10.1016/j.joule.2020.03.020
- S. Nanda, A. Gupta, and A. Manthiram, “Anode-free Full Cells: A Pathway to High-energy-density Lithium-metal Batteries,” Advanced Energy Materials 11, 2000804: 1-18 (2020). https://doi.org/10.1002/aenm.202000804
- M. J. Park and A. Manthiram, “Unveiling the Charge Storage Mechanism in Non-aqueous and Aqueous Zn/Na3V2(PO4)2F3 Batteries,” ACS Applied Energy Materials 3, 5015-5023 (2020). https://doi.org/10.1021/acsaem.0c00505
- H. Yaghoobnejad Asl, S. Sharma, and A. Manthiram, “The Critical Role of Water Content in the Electrolyte on the Reversible Electrochemical Performance of Zn-VPO4F Cell,” Journal of Materials Chemistry A 8, 8262 – 8267 (2020). https://doi.org/10.1039/D0TA01622E
- A. Manthiram, “A Reflection on Lithium-ion Battery Cathode Chemistry,” Nature Communications 11, 1550 (2020). https://doi.org/10.1038/s41467-020-15355-0.
- E. M. Erickson, W. Li, A. Dolocan and A. Manthiram, “Insights into the Cathode-electrolyte Interphases of High-energy-density Cathodes in Lithium-ion Batteries,” ACS Applied Materials & Interfaces 12, 16451-16461 (2020). https://doi.org/10.1021/acsami.0c00900.
- A. Gupta, A. Bhargav, J.-P. Jones, R.-V. Bugga, and A. Manthiram, “Influence of Lithium Polysulfide Clustering on the Kinetics of Electrochemical Conversion in Lithium-Sulfur Batteries,” Chemistry of Materials 32, 2070-2077 (2020). https://doi.org/10.1021/acs.chemmater.9b05164.
- X. Yu and A. Manthiram, “A Long-cycle-life All-solid-state Lithium Battery with a Ceramic-polymer Composite Electrolyte,” ACS Applied Energy Materials 3, 2916-2924 (2020). https://doi.org/10.1021/acsaem.9b02547.
- L. Luo, J. Li, H. Yaghoobnejad Asl, and A. Manthiram, “In-situ Assembled VS4 as a Polysulfide Mediator for High-loading Lithium-sulfur Batteries,” ACS Energy Letters 5, 1177-1185 (2020). https://doi.org/10.1021/acsenergylett.0c00292
- X. Yu, J. Li, and A. Manthiram, “Rational Design of a Laminated Copolymer/Polymer-ceramic Composite Electrolyte for High-voltage All-solid-state Lithium Batteries,” ACS Materials Letters 2, 317-324 (2020). https://doi.org/10.1021/acsmaterialslett.9b00535
- A. Bhargav, J. He, A. Gupta, and A. Manthiram, “Lithium-Sulfur Batteries: Attaining the Critical Metrics,” Joule 4, 285-291 (2020). https://doi.org/10.1016/j.joule.2020.01.001
- J. He and A. Manthiram, “Long-life, High-rate Lithium-sulfur Cells with a Carbon-free VN Host as an Efficient Polysulfide Adsorbent and Lithium Dendrite Inhibitor,” Advanced Energy Materials 10, 1903241 (2020). https://doi.org/10.1002/aenm.201903241
- W. Li, E. M. Erickson, and A. Manthiram, “High-nickel Layered Oxide Cathodes for Lithium-based Automotive Batteries,” Nature Energy 5, 26-34 (2020). https://doi.org/10.1038/s41560-019-0513-0
- J. Li, C.-H. Chang, and A. Manthiram, “Towards Long-life, Ultrahigh-nickel Layered Oxide Cathodes for Lithium-ion Batteries: Optimizing the Interphase Chemistry with a Dual-functional Polymer,” Chemistry of Materials 32, 759-768 (2020). https://doi.org/10.1021/acs.chemmater.9b04102
2019
- R. Pipes, J. He, A. Bhargav and A. Manthiram, “Efficient Li-CO2 Batteries with Molybdenum Disulfide Nanosheets on Carbon Nanotubes as a Catalyst,” ACS Applied Energy Materials 2, 8685-8694 (2019). https://doi.org/10.1021/acsaem.9b01653
- L. Yin, Z. Li, G. S. Mattei, J. Zheng, W. Zhao, F. Omenya, C. Fang, W. Li, J. Li, Q. Xie, E. M. Erickson, J.-G. Zhang, M. S. Whittingham, Y. S. Meng, A. Manthiram, and P. Khalifah, “Thermodynamics of Anti-site Defects in Layered NMC Cathodes: Systematic Insights from High-precision Powder Diffraction Studies,” Chemistry of Materials 32, 1002-1010 (2019). https://doi.org/10.1021/acs.chemmater.9b03646
- X. Yu, H. Wu, J. H. Koo, and A. Manthiram, “Tailoring the Pore Size of a Polypropylene Separator with a Polymer having Intrinsic Nanoporosity for Suppressing the Polysulfide Shuttle in Lithium-Sulfur Batteries,” Advanced Energy Materials 10, 1902872 (2019). https://doi.org/10.1002/aenm.201902872
- X. Yu, W. A. Yu., and A. Manthiram, “A Unique Single-ion Mediation Approach for Crossover-free Nonaqueous Redox Flow Batteries with a Na+-ion Solid Electrolyte,” Small Methods 4, 1900697 (2019). https://doi.org/10.1002/smtd.201900697
- J. Li and A. Manthiram, “A Comprehensive Analysis of the Interphasial and Structural Evolution over Long-term Cycling of Ultrahigh-nickel Cathodes in Lithium-ion Batteries,” Advanced Energy Materials 9, 1902731 (2019). https://doi.org/10.1002/aenm.201902731
- W. Li, A. Dolocan, J. Li, Q. Xie, and A. Manthiram, “Ethylene Carbonate-free Electrolytes for High-nickel Layered Oxide Cathodes in Lithium-ion Batteries,” Advanced Energy Materials 9, 1901152 (2019). https://doi.org/10.1002/aenm.201901152
- J. He and A. Manthiram, “A Review on the Status and Challenges of Electrocatalysts in Lithium-Sulfur Batteries,” Energy Storage Materials 20, 55-70 (2019). https://doi.org/10.1016/j.matt.2019.03.008
- X. Yu and A. Manthiram, “Sodium-sulfur (Na-S) Batteries with a Polymer-coated NASICON-type Sodium-ion Solid Electrolyte,” Matter 1, 439-451 (2019). https://doi.org/10.1016/j.matt.2019.03.008
- J. Liu, Z. Bao, Y. Cui, E. J. Dufek, P. Khalifah, J. B. Goodenough, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, and J.-G. Zhang, “Pathways for Practical High-Specific-Energy, Long Cyclability Rechargeable Lithium,” Nature Energy 4, 180-186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- B. Heligman, K. J. Kreder III, and A. Manthiram, “Zn-Sn Interdigitated Eutectic Alloy Anodes with High-Volumetric Capacity for Lithium-ion Batteries,” Joule 3, 1051-1063 (2019). https://doi.org/10.1016/j.joule.2019.01.005
- A. Manthiram, “High Sodium-storage Capacity in Metal-Organic Framework Achieved by Activating Aromatic Rings,” Joule 2, 2198-2199 (2019). https://doi.org/10.1016/j.joule.2018.10.013
- A. Bhargav and A. Manthiram, “Lithium–sulfur batteries: Less Pore Equals More,” Nature Energy 4, 908-909 (2019). https://doi.org/10.1038/s41560-019-0495-y
- Q. Xie, W. Li, A. Dolocan, and A. Manthiram, “Insights into Boron-based Polyanion-tuned High-nickel Cathodes for High-energy-density Lithium-ion Batteries,” Chemistry of Materials 31, 8886-8897 (2019). https://doi.org/10.1021/acs.chemmater.9b02916
- L. Luo, J. Li, and A. Manthiram “A Three-dimensional Lithiophilic Mo2N-modified Carbon Nanofiber Architecture for Dendrite-free Lithium-metal Anodes in a Full Cell,” Advanced Materials 31, 1904537: 1 – 9 (2019). https://doi.org/10.1002/adma.201904537
- L. Zou, J. Li, Z. Liu, G. Wang, A. Manthiram, and C. Wang, “Lattice Doping Regulated Interfacial Reactions in Cathode for Enhanced Cycling Stability,” Nature Communications 10, 3447: 1-11 (2019). https://doi.org/10.1038/s41467-019-11299-2
- S.-H. Chung, H. Yaghoobnejad Asl, Y. Chen, and A. Manthiram, “A Li2S-TiS2-Electrolyte Composite for Stable Li2S-based Lithium-Sulfur Batteries,” Advanced Energy Materials 10, 1901397: 1 – 9 (2019). https://doi.org/10.1002/aenm.201901397
- X. Yu, L. Xue, J. B. Goodenough, and A. Manthiram, “A High-Performance All-solid-state Sodium-ion Battery with a Poly(ethylene oxide) – Na3Zr2Si2PO12 Composite Electrolyte,” ACS Materials Letters 1, 132-138 (2019). https://doi.org/10.1021/acsmaterialslett.9b00103
- J. He, A. Bhargav, and A. Manthiram, “Three-Dimensional Fe3O4/N-Graphene Sponge as an Efficient Organosulfide Host for High-Performance Lithium-Organosulfur Batteries,” Energy Storage Materials 23, 88-94 (2019). https://doi.org/10.1016/j.ensm.2019.05.027
- Y. You, B. Song, K. Jarvis, A. Huq, and A. Manthiram, “Insights into the Improved Chemical Stability against Water of LiF-incorporated Layered Oxide Cathodes for Sodium-ion Batteries,” ACS Materials Letters 1, 89-95 (2019). https://doi.org/10.1021/acsmaterialslett.9b00080
- S.-H. Chung and A. Manthiram, “Current Status and Future Prospects of Metal-Sulfur Batteries,” Advanced Materials 31, 1901125 (2019). https://doi.org/10.1002/adma.201901125
- P. Han, S.-H. Chung, C.-H. Chang, and A. Manthiram, “A Bifunctional Binder with Nucleophilic Lithium Polysulfide Immobilization Ability for High-loading, High-thickness Cathodes in Lithium-sulfur Batteries,” ACS Applied Materials & Interfaces 11, 17393-17399 (2019). https://doi.org/10.1021/acsami.9b02399
- M. Gross and A. Manthiram “Long–Life Polysulfide–Polyhalide Batteries with a Mediator-ion Solid Electrolyte,” ACS Applied Energy Materials 2 5, 3445-3451 (2019). https://doi.org/10.1021/acsaem.9b00253
- J. He, Y. Chen, and A. Manthiram, “Metal Sulfide-decorated Carbon Sponge as a Highly Efficient Electrocatalyst and Absorbant for Polysulfide in High-loading Li2S Batteries,” Advanced Energy Materials 9, 1900584 (2019). https://doi.org/10.1002/aenm.201900584
- R. M. Pipes, A. Bhargav, and A. Manthiram, “Phenyl Disulfide Additive for Solution-mediated Carbon Dioxide Utilization in Li-CO2 Batteries,” Advanced Energy Materials 9, 1900453 (2019). https://doi.org/10.1002/aenm.201900453
- W. Li, H. Yaghoobnejad Asl, Q. Xie, and A. Manthiram, “Collapse of LiNi1-x-yCoxMnyO2 Lattice at Deep Charge Irrespective of Nickel Content in Lithium-ion Batteries,” Journal of the American Chemical Society 141, 13 5097-5101 (2019). https://doi.org/10.1021/jacs.8b13798
- H. Yaghoobnejad Asl and A. Manthiram, “Mass Transfer of Divalent Ions in an Oxide Host: Comparison of Mg2+ and Zn2+ Diffusion in Hexagonal KxW3O9 Bronze,” Chemistry of Materials 7, 2296-2307 (2019). https://doi.org/10.1021/acs.chemmater.8b03756
- K.-Y. Lai and A. Manthiram, “CO2-tolerant (Y, Tb)Ba(Co, Ga)4O7 Cathodes with Low Thermal Expansion for Solid Oxide Fuel Cells,” Journal of Materials Chemistry A 7, 8540-8549 (2019). https://doi.org/10.1039/C9TA01338E
- X. Yu, M. Boyer, G. Hwang, and A. Manthiram, “Toward a Reversible Calcium-Sulfur Battery with a Lithium-ion Mediation Approach,” Advanced Energy Materials 9, 1803794 (2019). https://doi.org/10.1002/aenm.201803238
- X. Yu, M. Boyer, G. S. Hwang, and A. Manthiram, “Toward a Reversible Calcium-Sulfur Battery with a Lithium-ion Mediation Approach,” Advanced Energy Materials 9, 1803794 (2019). https://doi.org/10.1002/aenm.201803794
- F. Li, Z. Wei, A. Manthiram, Y. Feng, J. Ma, and L. Mai, “Sodium-based Batteries: From Critical Materials to Battery Systems,” Journal of Materials Chemistry 7, 9406-9431 (2019). https://doi.org/10.1039/C8TA11999F
- M. Gross and A. Manthiram, “Development of Low-cost Sodium-Aqueous Polysulfide Hybrid Batteries,” Energy Storage Materials 19, 346-351 (2019). https://doi.org/10.1016/j.ensm.2019.03.026
- S.-H. Ahn and A. Manthiram, “Hierarchical Tri-functional Electrocatalysts Derived from Bimetallic-imidazolate Framework for Overall Water Splitting and Rechargeable Zinc-air Batteries,” Journal of Materials Chemistry A 7, 8641-8652 (2019). https://doi.org/10.1039/C9TA01340G
- P. Han, S.-H. Chung, and A. Manthiram, “Pyrrolic-type Nitrogen-doped Hierarchical Macro/Mesoporous Carbon as a Bifunctional Host for High-performance Thick Cathodes for Lithium-sulfur Batteries,” Small 15, 1900690 (2019). https://doi.org/10.1002/smll.201900690
- R. Yu, S.-H. Chung, C.-H. Chen, and A. Manthiram, “An Ant-nest-like Cathode Substrate for Lithium-sulfur Batteries with Practical Cell Fabrication Parameters,” Energy Storage Materials 18, 491-499 (2019). https://doi.org/10.1016/j.ensm.2018.12.025
- M. J. Park, H. Yaghoobnejad Asl, S. Therese, and A. Manthiram, “Structural Impact of Zn-insertion into Monoclinic V2(PO4)3: Implications for Zn-ion Batteries,” Journal of Materials Chemistry A 7, 7159 – 7167 (2019). https://doi.org/10.1039/C9TA00716D
- Q. Xie, W. Li, and A. Manthiram, “A Mg-doped High-nickel Layered Oxide Cathode Enabling Safer, High-energy-density Li-ion Batteries,” Chemistry of Materials 31, 938 – 946 (2019). https://doi.org/10.1021/acs.chemmater.8b03900
- A. Bhargav, C.-H. Chang, Y. Fu, and A. Manthiram, “A Rationally Designed High Sulfur Content Polymeric Cathode Material for Lithium-Sulfur Batteries,” ACS Applied Materials & Interfaces 11, 6136 – 6142 (2019). https://doi.org/10.1021/acsami.8b21395
2018
- A. Gupta, A. Bhargav, and A. Manthiram, “Highly Solvating Electrolytes for Lithium-Sulfur Batteries,” Advanced Energy Materials 9, 1803096 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- Y. You, A. Dolocan, W. Li, and A. Manthiram, “Understanding the Air-exposure Degradation Chemistry of High-Nickel Oxide Cathodes during Air Exposure for Sodium-ion Batteries,” Nano Letters 19, 182 – 188 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- M. Gross and A. Manthiram, “An Aqueous Polysulfide-Air Battery with a Mediator-ion Solid Electrolyte and a Copper Sulfide Catalyst for Polysulfide Redox,” ACS Applied Energy Materials 1, 7230 – 7236 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- S.-H. Chung and A. Manthiram, “Designing Lithium-sulfur Batteries with High-loading Cathodes at a Lean Electrolyte condition,” ACS Applied Materials & Interfaces 10, 43749 – 43759 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- R. Yu, S.-H. Chung, C.-H. Chen, and A. Manthiram, “A Core-shell Cathode Substrate for Developing High-loading, High-performance Lithium-sulfur Batteries,” Journal of Materials Chemistry A 6, 24841 – 24847 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- X. Yu and A. Manthiram, “Enhanced Interfacial Stability of Hybrid-Electrolyte Lithium-Sulfur Batteries with a Thin Layer of Multifunctional Polymer with Intrinsic Nanoporosity,” Advanced Functional Materials 29, 1805996 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- P. Han, S.-H. Chung, and A. Manthiram, “Designing a High-Loading Sulfur Cathode with a Mixed Ionic-electronic Conducting Polymer for Electrochemically Stable Lithium-sulfur Batteries,” Energy Storage Materials 17, 317 – 324 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- S.-H. Chung, K.-Y. Lai, and A. Manthiram, “A Facile, Low-cost Hot-pressing Process for Fabricating Lithium-sulfur Cells with Stable Dynamic and Static Electrochemistry,” Advanced Materials 30, 1805571 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- L. Yin, G. S. Mattei, Z. Li, J. Zheng, W. Zhao, F. Omenya, C. Fang, W. Li, J. Li, Q. Xie, J. G. Zhang, M. S. Whittingham, Y. S. Meng, P. Khalifah, and A. Manthiram,“Extending the Limits of Powder Diffraction Analysis: Diffraction Parameter Space, Occupancy Defects, and Atomic Form Factors,” Review of Scientific Instruments 89, 093002 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- J. Li, W. Li, Y. You, and A. Manthiram, “Extending the Service Life of High-Ni Layered Oxides by Tuning the Electrode-Electrolyte Interphase,” Advanced Energy Materials 8, 1801597 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- L. Luo, S.-H. Chung, H. Yaghoobnejad Asl, and A. Manthiram, “Long-life Lithium-sulfur Batteries with a Bifunctional Cathode Substrate Configured with Boron Carbide Nanowires,” Advanced Materials 30, 1804149 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- S. Nanda, A. Gupta, and A. Manthiram, “A Lithium-sulfur Cell Based on Reversible Lithium Deposition from a Li2S Cathode Host onto a Hostless-anode Substrate,” Advanced Energy Materials 8, 1801556 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- H. Wang, Y. Jiang, and A. Manthiram, “N-doped Fe3C@C as an Efficient Polyselenide Reservoir for High-performance Sodium-selenium Batteries,” Energy Storage Materials 16, 374 – 382 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- L. Luo, S.-H. Cheng, and A. Manthiram, “Rational Design of a Dual-function Hybrid Cathode Substrate for Lithium-sulfur Batteries,” Advanced Energy Materials 8, 1801014 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- X. Yu and A. Manthiram, “A Reversible Nonaqueous Room-temperature Potassium-sulfur Chemistry for Electrochemical Energy Storage,” Energy Storage Materials 15, 368 – 373 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- H. Xu, S. Wang, and A. Manthiram, “Hybrid Lithium–sulfur Batteries with an Advanced Gel Cathode and Stabilized Lithium-metal Anode,” Advanced Energy Materials 8, 1800813 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- S-H. Chung, C.-H. Chang, and A. Manthiram, “Progress on the Critical Parameters for Lithium-sulfur Batteries to be Practically Viable,” Advanced Functional Materials 28, 1801188 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- X. Yu, L. Cheng, Y. Liu, A. Manthiram, “A Membraneless Direct Isopropanol Fuel Cell (DIPAFC) Operated with a Catalyst-selective Principle,” Journal of Physical Chemistry 122, 13558 – 13563 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- J. He, G. Hartmann, M. Lee, G. S. Hwang, Y. Chen, and A. Manthiram, “Freestanding 1T MoS2/Graphene Heterostructure as a Highly Efficient Electrocatalyst for Lithium Polysulfides in Li-S Batteries,” Energy & Environmental Science 12, 344 – 350 (2019). dx.doi.org/10.1021/acsenergylett.8b01061
- K. P. Padmasree, K.-Y. Lai, A. Fuentes, and A. Manthiram, “Electrochemical Properties of Sr2.7-xCaxLn0.3Fe2-yCoyO7-δ Cathode for Intermediate-temperature Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy 44, 1896-1904 (2019). dx.doi.org/10.1021/acsenergylett.8b01061
- G. He, W.H. Kan, and A. Manthiram, “Delithiation/Lithiation Behaviors of Three Polymorphs of LiVOPO4,” Chemical Communications 54, 13224 – 13227 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- M. Ranjani, G. Gnana kumar, and A. Manthiram, “3D Flower-like Hierarchical NiCo2O4 Architectures on Carbon Cloth Fibers as an Anode Catalyst for High-performance, Durable Direct Urea Fuel Cells,” Journal of Materials Chemistry A 6, 23019 – 23027 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- R. Pipes, A. Bhargav, and A. Manthiram, “Nanostructured Anatase Titania as a Cathode Catalyst for Li-CO2 Batteries,” ACS Applied Materials & Interfaces 10, 37119-37124 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- C. Dillard, S.-H. Chung, A. Manthiram, and V. Kalra, “Binder-free, Freestanding Cathodes Fabricated with an Ultra-rapid Diffusion of Sulfur into Carbon Nanofibers Mat for Lithium-sulfur Batteries,” Materials Today Energy 9, 336-344 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- Y. You, S. Xin, H. Yaghoobnejad Asl, W. Li, P.-F. Wang, Y.-G. Guo, and A. Manthiram, “Insights into the Improved High-voltage Performance of Li-incorporated Layered Oxide Cathodes for Sodium-ion Batteries,” Chem 4, 2124-2139 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- X. Yu and A. Manthiram, “Towards Reversible Room-temperature Calcium-ion Batteries,” Chem 4, 1200-1202 (2018). https://doi.org/10.1016/j.chempr.2018.05.009
- J. He, Y. Chen, and A. Manthiram, “MOF-derived Cobalt Sulfide Grown on 3D Graphene Foam as an Efficient Sulfur Host for Long-life Lithium-Sulfur Batteries,” iScience 4, 36-43 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- J. He, Y. Chen, and A. Manthiram, “Vertical Co9S8 Hollow Nanowall Arrays Grown on Celgard Separator as a Multifunctional Polysulfide Barrier for High-performance Li-S Batteries,” Energy & Environmental Science 11, 2560-2568 (2018). dx.doi.org/10.1039/C8EE00893K
- K-Y. Lai and A. Manthiram, “Effect of Trivalent Dopants on the Phase Stability and Catalytic Activity of YBaCo4O7-based Cathodes in Solid Oxide Fuel Cells,” Journal of Materials Chemistry A 6, 16412-16420 (2018). dx.doi.org/10.1039/C8TA01230J
- Z. Zhao-Karger, R. Liu, W. Dai, Z. Li, T. Diemant, B. P. Vinayan, C.B. Minella, X. Yu, A. Manthiram, R. Jurgen Behm, M. Ruben, and M. Fichtner, “Towards highly reversible magnesium-sulfur batteries with efficient and practical Mg[B(hfip)4]2 electrolyte,” ACS Energy Letters 3, 2005-2013 (2018). dx.doi.org/10.1021/acsenergylett.8b01061
- X. Yu and A. Manthiram, “Electrochemical Energy Storage with an Aqueous Quinone-Air Chemistry,” ACS Applied Energy Materials 1, 2424-2428 (2018). dx.doi.org/10.1021/acsaem.8b00536
- G. Gnana kumar, S.-H. Chung, T. Raj kumar, and A. Manthiram, “A 3D Graphene-CNT-Ni Hierarchical Architecture as a Polysulfide trap for Lithium-Sulfur Batteries,” ACS Applied Materials & Interfaces 10, 20627-20634 (2018). dx.doi.org/10.1021/acsami.8b06054
- P. Han, S-H. Chung, and A. Manthiram, “Thin-Layered Molybdenum Disulfide Nanoparticles as an Effective Polysulfide Mediator in Lithium-Sulfur Batteries,” ACS Applied Materials & Interfaces 10, 23122-23130 (2018). dx.doi.org/10.1021/acsami.8b05397.
- X. Yu and A. Manthiram, “A Strategically Managed Rechargeable Battery System with a Neutral Methyl Viologen Anolyte and an Acidic Air-Cathode Enabled by a Mediator-ion Solid Electrolyte,” Sustainable Energy & Fuel 2, 1452-1457 (2018). dx.doi.org/10.1039/C8SE00227D
- W. Li, X. Liu, H. Celio, P. Smith, A. Dolocan, M. Chi, and A.Manthiram, “Mn vs. Al in layered oxide cathodes in lithium-ion batteries: a comprehensive evaluation on long-term cyclability,” Advanced Energy Materials 8, 1703154:1-11 (2018). dx.doi.org/10.1002/aenm.201703154
- You, H. Celio, A. Dolocan, J. Li, and A. Manthiram, “Stable Surface Chemistry Against Ambient Air of Modified High-nickel Cathodes for Lithium-ion Batteries,” Angewandte Chemie 57, 6480-6485 (2018). dx.doi.org/10.1002/anie.201801533
- K.-Y. Lai and A. Manthiram, “Self-regenerating Co-Fe Nanoparticles on Perovskite Oxides as a Hydrocarbon Fuel Oxidation Catalyst in Solid Oxide Fuel Cells,” Chemistry of Materials 30, 2515-2525 (2018). dx.doi.org/10.1021/acs.chemmater.7b04569
- K.-Y. Lai and A. Manthiram, “Evolution of Exsolved Nanoparticles on a Perovskite Oxide Surface during a Redox Process,” Chemistry of Materials 30, 2838-2847 (2018). dx.doi.org/10.1021/acs.chemmater.8b01029
- J. Li, W. Li, S. Wang, K. Jarvis, J. Yang, and A. Manthiram, “Facilitating the Operation of Lithium-ion Cells with High-nickel Layered Oxide Cathodes with a Small Dose of Aluminum,” Chemistry of Materials 30, 3101-3109 (2018). dx.doi.org/10.1021/acs.chemmater.8b01077
- X. Yu and A. Manthiram, “Scalable Membraneless Direct Liquid Fuel Cells Based on a Catalyst-Selective Strategy,” Energy & Environmental Materials 1, 13-19 (2018). https://doi.org/10.1002/eem2.12000
- X. Yu and A. Manthiram, “Electrochemical Energy Storage with an Aqueous Zinc-Quinone Chemistry Enabled by a Mediator-ion Solid Electrolyte,” ACS Applied Energy Materials 1, 273-277(2018). dx.doi.org/10.1021/acsaem.7b00089
- H. Li, J. Janek, and A. Manthiram, “From Liquid towards All Solid: Fundamental and Key Materials,” Solid State Ionics 318, 1-1, (2018). dx.doi.org/10.1016/j.ssi.2017.12.025
- L. Luo, S.-H. Chung, and A. Manthiram, “Three-dimensional Self-assembled SnS2-Nano- dots@Graphene Hybrid Aerogel as an Efficient Polysulfide Reservoir for High-performance Lithium-sulfur Batteries,” Journal of Materials Chemistry 6, 7659-7667 (2018). dx.doi.org/10.1039/C8TA01089G
- M. Gross and A. Manthiram, “A Rechargeable Zinc-Aqueous Polysulfide Battery with a Mediator-ion Solid Electrolyte,” ACS Applied Materials & Interfaces 10, 10612-10617 (2018). dx.doi.org/10.1021/acsami.8b00981
- S. -H. Chung, L. Luo and A. Manthiram, “TiS2-Polysulfide Hybrid Cathode with High Sulfur Loading and Low Electrolyte Consumption for Lithium-sulfur Batteries,” ACS Energy Letters 3, 568-573 (2018). dx.doi.org/10.1021/acsenergylett.7b01321
- X. Yu and A. Manthiram, “Electrode-Electrolyte Interfaces in Lithium-based Batteries,” Energy & Environmental Science 11, 527-543 (2018). dx.doi.org/10.1039/C7EE02555F
- J. Zhang, H. Huang, J. Bae, S.-H. Chung, W. Zhang, A. Manthiram, and G. Yu, “Nanostructured host materials for trapping sulfur in rechargeable Li−S batteries: structure design and interfacial chemistry,” Small Methods 2, 1799279 (2018). dx.doi.org/10.1002/smtd.201700279
- S.-H. Chung and A. Manthiram, “Designing Lithium-Sulfur Batteries with Practically Necessary Parameters,” Joule 2, 1-15 (2018). dx.doi.org/10.1016/j.joule.2018.01.002
- X. Yu, S. Feng, M. Boyer, M. Lee, R. Ferrier, N. Lynd, G. S.Hwang, G. Wang, S. Swinnea, and A. Manthiram, “Controlling the Polysulfide Diffusion in Lithium-Sulfur Batteries with a Polymer Membrane with Intrinsic Nanoporosity,” Materials Today Energy 7, 98-104 (2018). dx.doi.org/10.1016/j.mtener.2018.01.002
- S. Wang, H. Xu, W. Li, A. Dolocan, and A. Manthiram, “Interfacial Chemistry in Solid-state Batteries: Formation of Interphase and Its Consequences,” Journal of the American Chemical Society 140, 250-257 (2018). dx.doi.org/10.1021/jacs.7b09531
- X. Yu, M. Broyer, G. S. Hwang, and A. Manthiram, “Room-temperature Aluminium-sulfur Batteries with a Lithium-ion-mediated Ionic Liquid Electrolyte,” Chem 4, 586-598 (2018). dx.doi.org/10.1016/j.chempr.2017.12.029
- K. P. Padmasree, K.-Y. Lai, W. Kaveevivitchai, and A. Manthiram, “Effect of Ca substitution on the electrochemical properties of the Ruddlesden-Popper oxides Sr3.2-xCaxLn0.8Fe1.5Co1.5O10-δ,” Journal of Power Sources 374, 249-256 (2018). dx.doi.org/10.1016/j.jpowsour.2017.11.047
- C.-H. Chang and A. Manthiram, “Covalently-grafted Polysulfur-graphene Nanocomposites for Ultrahigh Sulfur-loading Lithium-polysulfur Batteries,” ACS Energy Letters 3, 72-77 (2018). dx.doi/10.1021/acsenergylett.7b01031
- S.-H. Chung and A. Manthiram, “Rational design of statically and dynamically stable lithium-sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio,” Advanced Materials 30, 1705951: 1-9 (2018). dx.doi.org/10.1002/adma.201705951
- H. Wang, Y. Jiang, and A. Manthiram, “Long cycle life, low self-discharge sodium-selenium batteries with high selenium loading and suppressed polyselenide shuttling,” Advanced Energy Materials 8, 1701953 (1-8) (2018). dx.doi/10.1002/aenm.201701953
- N. Senthilkumar, G. Gnana Kumar, and A. Manthiram, “Three-dimensional Hierarchical Core-Shell Nanostructured Arrays on Carbon Fibers as Catalysts for Direct Urea Fuel Cells,” Advanced Energy Materials 8, 1702207 (1-11) (2018). dx.doi.org/10.1002/aenm.201702207
2017
- X. Yu and A. Manthiram, “Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes,” Accounts of Chemical Research 50, 2653-2660 (2017). dx.doi.org/10.1021/acs.accounts.7b00460
- X. Yu and A. Manthiram, “Electrochemical Energy Storage with Mediator-ion Solid Electrolytes,” Joule 1, 453-462 (2017). dx.doi.org/10.1016/j.joule.2017.10.011
- P. Han and A. Manthiram, “Boron- and Nitrogen-doped Reduced Graphene Oxide Coated Separators for High-performance Li-S Batteries,” Journal of Power Sources 369, 87-94 (2017). dx.doi.org/10.1016/j.jpowsour.2017.10.005
- K. J. Kreder III, B. Heligman, and A. Manthiram, “Interdigitated Eutectic Alloy Foil Anodes for Rechargeable Batteries,” ACS Energy Letters 2, 2422-2423 (2017). dx.doi/10.1021/acsenergylett.7b00844
- H.-H. Sun and A. Manthiram, “Impact of Microcrack Generation and Surface Degradation on Nickel-rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-ion Batteries,” Chemistry of Materials 5, 20497-20504 (2017). dx.doi/10.1039/C7TA06258C
- G. Gnana kumar and A. Manthiram, “Sulfonated polyether ether ketone/strontium zirconite@TiO2 nanocomposite membranes for direct methanol fuel cells,” Journal of Materials Chemistry A 5, 20497–20504 (2017). dx.doi/10.1039/C7TA06258C
- C.-H. Chang, S.-H. Chung, S. Nanda, and A. Manthiram, “A Rationally Designed Polysulfide-trapping Interface on the Polymeric Separator for High-energy Li-S Batteries,” Materials Today Energy 6, 72-78 (2017). dx.doi/110.1021/acsenergylett.7b00697
- L. Luo and A. Manthiram, “Rational Design of High-loading Sulfur Cathodes with a Poached-egg-shaped Architecture for Long-cycle Lithium-sulfur Batteries,” ACS Energy Letters 2, 2205-2211 (2017). dx.doi/10.1016/j.mtener.2017.09.001
- A. Manthiram, “An Outlook on Lithium Ion Battery Technology,” ACS Central Science 3, 1063-1069 (2017). dx.doi/10.1021/acscentsci.7b00288
- Y. You and A Manthiram, “Progress in High-voltage Cathode Materials for Rechargeable Sodium-ion Batteries,” Advanced Energy Materials 8, 1701785: 1-11 (2017). dx.doi/10.1002/aenm.201701785
- J. Oliva, C.R. Garcia, E. Verduzco, A. I. Martinez, A. Manthiram, and K. P. Padmasree, “Enhancing the Photocatalytic Activity of the Perovskite-based Intergrowth Oxide Sr3.2La0.8Fe1.5Co1.5O10-δ with Ca Substitution,” Ceramics International 43, 14074-14081 (2017). dx.doi/10.1016/j.ceramint.2017.07.143
- K. Jarvis, C.-C. Wang, M. Varela, R. R. Unocic, A. Manthiram, and P. Ferreira, “Surface Reconstruction in Li-rich Layered Oxides of Li-ion Batteries,” Chemistry of Materials 29, 7668–7674 (2017). dx.doi/10.1021/acs.chemmater.7b00120
- H. Xu, S. Wang, H. Wilson, F. Zhao, and A. Manthiram, “Y-doped NASICON-type LiZr2(PO4)3 Solid Electrolytes for Solid-state Batteries,” Chemistry of Materials 29, 7206-7212 (2017). dx.doi.org/10.1021/acs.chemmater.7b01463
- S.-H. Ahn, and A. Manthiram, “Cobalt Phosphide Coupled with Heteroatom-doped Nanocarbon Hybrid Electroctalysts for Efficient, Long-life Rechargeable Zinc-air Batteries,” Small 13, 1702068: 1-11 (2017). dx.doi/10.1002/smll.201702068
- S. Feng, J. Pang, X. Yu, G. Wang, and A. Manthiram, “A High-Performance Semicrystalline Poly(Ether Ketone)-based Proton Exchange Membrane,” ACS Applied Materials & Interfaces 9, 24527-24537 (2017). dx.doi.org/10.1021/acsami.7b03720
- X. Yu and A. Manthiram, “Ambient-temperature Energy Storage with Polyvalent Metal-Sulfur Chemistries,” Small Methods 1, 1700217: 1-11 (2017). dx.doi.org/10.1002/smtd.201700217
- X. Yu and A. Manthiram, “A Zinc-Cerium Cell for Energy Storage Using a Sodium-ion Exchange Membrane,” Advanced Sustainable Systems 1, 1700082: 1-6 (2017). dx.doi/10.1002/adsu.201700082
- C.-H. Chang, S.-H. Chung, P. Han, and A. Manthiram, “Oligoanilines as a Suppressor of Polysulfide Shuttling in Lithium-Sulfur Batteries,” Materials Horizons 4, 908-914 (2017). dx.doi/10.1039/c7mh00510e
- M. J. Klein, G. Veith, and A. Manthiram, “Chemistry of sputter-deposited lithium sulfide films,” Journal of the American Chemical Society 139, 10669–10676 (2017). dx.doi/10.1021/jacs.7b03379
- L. Luo, S.-H. Chung, C.-H. Chang, and A. Manthiram, “A Nickel-foam@carbon-shell with a Pie-like Architecture as an Efficient Polysulfide Trap for High-energy Li-S Batteries,” Journal of Materials Chemistry 5, 15002 – 15007 (2017). dx.doi/10.1039/c7ta05277d
- M. J. Klein, G. Veith, and A. Manthiram, “Rational design of lithium-sulfur battery cathodes based on experimentally determined maximum active material thickness,” Journal of the American Chemical Society 139, 9229-9237 (2017). dx.doi/10.1021/jacs.7b03380
- J. He, L. Luo, Y. Chen and A. Manthiram, “Yolk-Shelled C@Fe3O4 Nanoboxes as Efficient Sulfur Hosts for High-Performance Lithium–Sulfur Batteries,” Advanced Materials 29, 1702707: 1-5 (2017). dx.doi/10.1002/adma.201702707
- W. Kaveevivitchai, A. Huq, S. Wang, M. J. Park, and A. Manthiram, “Rechargeable Aluminum-ion Batteries Based on an Open Tunnel Framework,” Small 13, 1701296:1-10 (2017). dx.doi/10.1002/smll.201701296
- M. J. Klein, A. Dolocan, C. Zu, and A. Manthiram, “An Effective Lithium Sulfide Encapsulation Strategy for Stable Lithium-sulfur Batteries,” Advanced Energy Materials 7, 1701122: 1-9 (2017). dx.doi.org/10.1002/aenm.201500408
- S.-H. Chung, P. Han, and A. Manthiram, “Quantitative Analysis of Electrochemical and Electrode Stability with Low Self-discharge Lithium-sulfur Batteries,” ACS Applied Materials & Interfaces 9, 20318-20323 (2017). dx.doi.org/10.1021/acsami.7b05602
- W. Li, U.-H. Kim, A. Dolocan, Y.-K. Sun, and A. Manthiram, “Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover,” ACS Nano 11, 5853-5863 (2017). dx.doi/10.1021/acsnano.7b01494
- L. Wang, Y.-G. Sun, L.-L. Hu, J.-Y. Piao, J. Guo, A. Manthiram, J. Ma, and A.-M. Cao, “Copper-Substituted Na0.67Ni0.3-xCuxMn0.7O2 Cathode Materials for Sodium-Ion Batteries with Suppressed P2-O2 Phase Transition,” Journal of Materials Chemistry 5, 8752-8761 (2017). dx.doi/10.1039/c7ta00880e
- S.-H. Chung, P. Han, and A. Manthiram, “Lithium-sulfur batteries with the lowest self-discharge and the longest shelf-life,” ACS Energy Letters 2, 1056–1061 (2017). dx.doi/10.1021/acsenergylett.7b00245
- X. Yu and A. Manthiram, “A Voltage-enhanced, Low-cost Aqueous Iron-air Battery Enabled with a Mediator-ion Solid Electrolyte,” ACS Energy Letters 2, 1050–1055 (2017). dx.doi/10.1021/acsenergylett.7b00168
- X. Yu and A. Manthiram, “Electrochemical Energy Storage with a Reversible Nonaqueous Room-temperature Aluminum-sulfur Chemistry,” Advanced Energy Materials 7, 1700561: 1-9 (2017). dx.doi/10.1002/aenm.201700561
- S.-H. Chung, P. Han, C.-H. Chang, and A. Manthiram, “A Shell-shaped Carbon Architecture with High-loading Capability for Lithium Sulfide Cathodes,” Advanced Energy Materials 7, 1700537: 1-7 (2017). dx.doi/0.1002/aenm.201700537
- S.-O. Kim and A. Manthiram, “Phosphorus-rich CuP2 Embedded in Carbon Matrix as a High-performance Anode for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 9, 16221-16227 (2017). dx.doi/10.1021/acsami.7b02826
- W. Li, B. Song, and A. Manthiram, “High-voltage Positive Electrode Materials for Lithium-ion Batteries,” Chemical Society Reviews 46, 3006-3059 (2017). dx.doi/0.1039/C6CS00875E
- S.-H. Ahn, X. Yu, and A. Manthiram, “Wiring” Fe-Nx-embedded Porous Carbon Frameworks onto One-dimensional Nanotubes for Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media,” Advanced Materials 29, 1606534: 1-10 (2017). dx.doi/10.1002/adma.201606534
- C.-H. Chang, S.-H. Chung, and A. Manthiram, “Transforming Waste Newspapers into Nitrogen-doped Conducting Interlayers for Advanced Li-S Batteries,” Sustainable Energy & Fuels 1, 444-449 (2017). dx.doi/10.1039/C7SE00014F
- B. Song, W. Li, S.-M. Oh, and A. Manthiram, “Long-life Nickel-rich Layered Oxide Cathodes with a Uniform Li2ZrO3 Surface Coating for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 9, 9718-9725 (2017). dx.doi/10.1021/acsami.7b00070
- L. Xue, Y. Li, H. Gao, W. Zhou, X. Lü, W. Kaveevivitchai, A. Manthiram, and J. B. Goodenough, “Low-cost High-energy Potassium Cathode,” Journal of the American Chemical Society 139, 2164-2167 (2017). dx.doi/10.1021/jacs.6b12598
- W. Li, A. Dolocan, P. Oh, H. Celio, S. Park, J. Cho, and A. Manthiram, “Dynamic Behaviour of Interphases and Its Implication on High-energy-density Cathode Materials in Lithium-ion Batteries,” Nature Communications 8, 14589: 1-10 (2017). dx.doi/10.1038/ncomms14589
- S.-H. Ahn and A. Manthiram, “Direct Growth of Ternary Ni–Fe–P Porous Nanorods onto Nickel Foam as a Highly Active, Robust Bi-functional Electrocatalyst for Overall Water Splitting,” Journal of Materials Chemistry A 5, 2496-2503 (2017). dx.doi/10.1039/C6TA10509B
- J.-S. Lee, J. Jun, J. Jang, and A. Manthiram, “Sulfur-Immobilized, Activated Porous Carbon Nanotube Composite Based Cathodes for Lithium-sulfur Batteries,” Small 13, 1602984: 1-7 (2017). dx.doi/10.1002/smll.201602984
- J.-S. Lee and A. Manthiram, “Hydroxylated N-doped Carbon Nanotube-sulfur Composites as Cathodes for High-performance Lithium-sulfur Batteries,” Journal of Power Sources 343, 54-59(2017). dx.doi/10.1016/j.jpowsour.2017.01.049
- C.-H. Chang, S.-H. Chung, and A. Manthiram, “Dendrite-free Lithium Anode via a Homogenous Li-ion Distribution Enabled by a Kimwipe Paper,” Advanced Sustainable Systems 1, 1600034: 1-5(2017). dx.doi/10.1002/adsu.201600034
- H. Xu and A. Manthiram, “Hollow Cobalt Sulfide Polyhedra-enabled Long-life, High Areal-capacity Lithium-Sulfur Batteries,” Nano Energy 33, 124-129 (2017). dx.doi/10.1016/j.nanoen.2017.01.007
- C.-H. Chang, S.-H. Chung, and A. Manthiram, “Highly Flexible, Freestanding Tandem Sulfur Cathodes for Foldable Li–S Batteries with a High Areal Capacity,” Materials Horizons 4, 249-258 (2017). dx.doi/10.1039/C6MH00426A
- A. Manthiram, X. Yu, and S. Wang, “Lithium Battery Chemistries Enabled by Solid-state Electrolytes,” Nature Reviews Materials 2, 16103: 1-16 (2017). dx.doi/10.1038/natrevmats.2016.103
- W. Kaveevivitchai, A. Huq, and A. Manthiram, “Microwave-assisted Chemical Insertion: A Rapid Technique for Screening Cathodes for Mg-ion Batteries,” Journal of Materials Chemistry A 5, 2309-2318 (2017). dx.doi/10.1039/C6TA09497J
- S.-M. Oh, P. Oh, S.-O. Kim, and A. Manthiram, “A High-performance Sodium-ion Full Cell with a Layered Oxide Cathode and a Phosphorous-based Composite Anode,” Journal of Electrochemical Society 164, A321-A326 (2017). dx.doi/10.1149/2.0931702jes
- K. J. Kreder III and A. Manthiram, “Metal Nanofoams via a Facile Microwave-assisted Solvothermal Process,” Chemical Communications 53, 865-868 (2017). dx.doi/10.1039/c6cc08322f
- K. J. Kreder III and A. Manthiram, “Vanadium-substituted LiCoPO4 core with a monolithic LiFePO4 shell for high-voltage lithium-ion batteries,” ACS Energy Letters 2, 64-69 (2017). dx.doi/10.1021/acsenergylett.6b00496
- C. A. Milroy, S. Jang, T. Fujimori, A. Dodabalapur, and A. Manthiram, “Inkjet-printed Lithium-Sulfur Microcathodes for All-Printed, Integrated Nanomanufacturing,” Small 13, 1603786: 1-11 (2017). dx.doi/10.1002/smll.201603786
- S.-H. Ahn and A. Manthiram, “Self-templated Synthesis of Co- and N-doped Carbon Microtubes Composed of Hollow Nanospheres and Nanotubes for Efficient Oxygen Reduction Reaction,” Small 13, 1603437: 1-8(2017). dx.doi/10.1002/smll.201603437
- X. Yu, M. M. Gross, S. Wang, and A. Manthiram, “Aqueous Electrochemical Energy Storage with a Mediator-ion Solid Electrolyte,” Advanced Energy Materials 1602454: 1-8 (2017). dx.doi/10.1002/aenm.201602454
- Y. Li, B. Xu, H. Xu, H. Duan, X. Lü, S. Xin, W. Zhou, L. Xue, G. Fu, A. Manthiram, and J. B. Goodenough, “Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries,” Angewandte Chemie 56, 753-756(2017). dx.doi.org/10.1002/anie.201608924
- S.-H. Ahn, M. J. Klein, and A. Manthiram, “1D Co- and N-doped Hierarchically Porous Carbon Nanotubes Derived from Bimetallic Metal Organic Framework for Efficient Oxygen and Tri-iodide Reduction Reactions,” Advanced Energy Materials 7, 1601979: 1-9 (2017). dx.doi/10.1002/aenm.201601979
- Y. You, S.-O. Kim, and A. Manthiram, “A Honeycomb Layered Oxide Cathode for Sodium-Ion Batteries with Suppressed P3-O1 Phase Transition,” Advanced Energy Materials 7, 1601698: 1-7(2017). dx.doi.org/10.1002/aenm.201601698
- J.-S. Lee, W. Kim, J. Jang, and A. Manthiram, “Sulfur-Embedded Activated Multichannel Carbon Nanofiber Composites for Long-life, High-rate Lithium-sulfur Batteries,” Advanced Energy Materials 7, 1-8 (2017). dx.doi.org/10.1002/aenm.201601943
- A. Manthiram, B. Song, and W. Li, “A Perspective on Nickel-rich Layered Oxide Cathodes for Lithium-ion Batteries,” Energy Storage Materials 6, 125-139 (2017). dx.doi/10.1016/j.ensm.2016.10.007
2016
- W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, and J. B. Goodenough, “Plating a Dendrite-free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte,” Journal of the American Chemical Society 138, 9385-9388 (2016). dx.doi/10.1021/jacs.6b05341
- K.-Y. Lai and A. Manthiram, “Phase Stability, Oxygen-storage Capability, and Electrocatalytic Activity in Solid Oxide Fuel Cells of (Y, In, Ca)BaCo4-yGayO7+d,” Chemistry of Materials (2016). dx.doi/10.1021/acs.chemmater.6b04122
- W. Kaveevivitchai and A. Manthiram, “High-capacity Zinc-ion Storage in an Open-tunnel Oxide for Aqueous and Nonaqueous Zn-ion Batteries,” Journal of Materials Chemistry A 4, 18737-18741 (2016). dx.doi/10.1039/C6TA07747A
- S. Wang, Y. Ding, G. Zhou, G. Yu, and A. Manthiram, “Durability of the Li1+xTi2-xAlx(PO4)3 Solid Electrolyte in Lithium-sulfur Batteries,” ACS Energy Letters 1, 1080-1085 (2016). dx.doi.org/10.1021/acsenergylett.6b00481
- S.-H. Chung, C.-H. Chang, and A. Manthiram, “A Carbon-cotton Cathode with Ultrahigh-loading Capability for Statically and Dynamically Stable Lithium-sulfur Batteries,” ACS Nano 10, 10462-10470 (2016). dx.doi.org/10.1021/acsnano.6b06369
- L. Luo, S.-H. Chung, and A. Manthiram, “Trifunctional Multi-walled Carbon Nanotubes/Polyethylene Glycol (MWCNT/PEG)-coated Separator through a Layer-by-layer Coating Strategy for High-energy Li-S Batteries,” Journal of Materials Chemistry A 4, 16805-16811 (2016). dx.doi.org/10.1039/c6ta07709a
- S.-H. Chung, C.-H. Chang, and A. Manthiram, “Hierarchical sulfur electrodes as a test platform for understanding the high-loading capability of Li-S batteries,” Journal of Power Sources 334, 179-190 (2016). dx.doi.org/10.1016/j.jpowsour.2016.10.023
- G.-P. Kim, H.-H. Sun, and A. Manthiram, “Design of a Sectionalized MnO2-Co3O4 Electrode via Selective Electrodeposition of Metal Ions in Hydrogel for Enhanced Electrocatalytic Activity in Metal-air Batteries,” Nano Energy 30, 130-137 (2016). dx.doi.org/10.1016/j.nanoen.2016.10.003
- J. Liu, A. Huq, Z. Moorhead-Rosenberg, A. Manthiram, and K. Page, “Nanoscale Ni/Mn Ordering in the High Voltage Spinel Cathode LiNi0.5 Mn1.5O4,” Chemistry of Materials 28, 6817-6821 (2016). dx.doi.org/10.1021/acs.chemmater.6b02946
- S.-O. Kim and A. Manthiram, “Low-cost Carbon-coated Si-Cu3Si-Al2O3 Nanocomposite Anodes for High-performance Lithium-ion Batteries,” Journal of Power Sources 332, 222-229 (2016). dx.doi.org/10.1016/j.jpowsour.2016.09.089
- X. Yu, E. J. Pascual, J. C. Wauson, and A. Manthiram, “A Membraneless Alkaline Direct Liquid Fuel Cell (DLFC) Platform Developed with a Catalyst-Selective Strategy,” Journal of Power Sources 331, 340-347 (2016). dx.doi.org/10.1016/j.jpowsour.2016.09.077
- C. A. Milroy and A. Manthiram, “Bioelectronic Energy Storage: A Pseudocapacitive Hydrogel Composed of Endogenous Biomolecules,” ACS Energy Letters 1, 672-677 (2016). dx.doi.org/10.1021/acsenergylett.6b00334
- A. Manthiram, “Electrical Energy Storage: Materials Challenges and Prospects,” MRS Bulletin 41, 624-630 (2016). dx.doi.org/10.1557/mrs.2016.167
- J.-Y. Liao, S.-M. Oh, and A. Manthiram, “A Core/double-shell Type Gradient Ni-rich LiNi0.76Co0.10Mn0.14O2 with High Capacity and Long Cycle Life for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 8, 24543-24549 (2016). dx.doi.org/10.1021/acsami.6b06172
- C. A. Milroy and A. Manthiram, “An Elastic, Conductive, Electroactive Nanocomposite Binder for Flexible Sulfur Cathodes in Lithium-sulfur Batteries,” Advanced Materials 28, 9744-9751 (2016). dx.doi.org/10.1002/adma.201601665
- T.-T. Shan, S. Xin, Y. You, H.-P. Cong, S.-H. Yu, and A. Manthiram, “Combining Nitrogen-doped Graphene Sheets and MoS2: A Unique “Film-foam-film” Structure for Enhanced Lithium Storage,” Angewandte Chemie 55, 12783-12788 (2016). dx.doi.org/10.1002/anie.201606870
- S.-H. Chung, C.-H. Chang, and A. Manthiram, “A Core-shell Electrode for Dynamically and Statically Stable Li-S Battery Chemistry,” Energy & Environmental Science 9, 3188-3200 (2016). dx.doi.org/10.1039/C6EE01280A
- L. Qie and A. Manthiram, “Uniform Li2S Precipitation on N, O-Codoped Porous Hollow Carbon Fibers for High-energy-density Lithium-sulfur Batteries with Superior Stability,” Chemical Communications 52, 10964-10967 (2016). dx.doi.org/10.1039/C6CC06340C
- X. Yu, Z. Bi, F. Zhao, and A. Manthiram, “Polysulfide-Shuttle Control in Lithium-sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON-type Solid Electrolyte,” Advanced Energy Materials 6, 1601392: 1-8 (2016). dx.doi.org/10.1002/aenm.201601392
- X. Yu and A. Manthiram, “Performance Enhancement and Mechanistic Studies of Magnesium-Sulfur (Mg-S) Cells with an Advanced Cathode Structure,” ACS Energy Letters 1, 431-437 (2016). dx.doi.org/10.1021/acsenergylett.6b00213
- S.-O. Kim and A. Manthiram, “High-performance Red P-based P-TiP2-C Nanocomposite Anode for Lithium-ion and Sodium-ion Storage,” Chemistry of Materials 28, 5935-5942 (2016). dx.doi.org/10.1021/acs.chemmater.6b02482
- M. J. Klein, K. Goossens, C. W. Bielawski, and A. Manthiram, “Elucidating the Electrochemical Activity of Electrolyte-insoluble Polysulfide Species in Lithium-sulfur Batteries,” Journal of the Electrochemical Society 163, A2109-A2116 (2016). dx.doi/org/10.1149/2.0051610jes
- B. Song, W. Li, P. Yan, S.-M. Oh, C.-M. Wang, and A. Manthiram, “A Facile Cathode Design Combining Ni-rich Layered Oxides with Li-rich Layered Oxides for Lithium-ion Batteries,” Journal of Power Sources 325, 620-629 (2016). dx.doi.org/10.1016/j.jpowsour.2016.06.056
- P. Oh, S.-M. Oh, W. Li, S. Myeong, J. Cho, and A. Manthiram, “High-performance Heterostructured Cathodes for Lithium-ion Batteries with a Ni-rich Layered Oxide Core and a Li-rich Layered Oxide Shell,” Advanced Science 3, 1600184: 1-8 (2016). dx.doi.org/10.1002/advs.201600184
- H. M. Kim, H.-H. Sun, I. Belharouak, A. Manthiram, and Y.-K. Sun, “An Alternative Approach to Enhance the Performance of High Sulfur-loading Electrodes for Li-S Batteries,” ACS Energy Letters 1, 136-141 (2016). dx.doi.org/10.1021/acsenergylett.6b00104
- H. Xu, L. Qie, and A. Manthiram, “An Integrally-designed, Flexible Polysulfide Host for High-performance Lithium-sulfur Batteries with Stabilized Lithium-metal Anode,” Nano Energy 26, 224-232 (2016). dx.doi.org/10.1016/j.nanoen.2016.05.028
- Z. Cui, C. Zu, W. Zhou, A. Manthiram, and J. B. Goodenough, “Mesoporous Titanium Nitride-enabled Highly Stable Lithium-Sulfur Batteries,” Advanced Materials 28, 6926-6931 (2016). dx.doi.org/10.1002/adma.201601382
- L. Qie and A. Manthiram, “High-energy-density Lithium-sulfur Batteries Based on a Blade-cast Pure Sulfur Electrodes,” ACS Energy Letters 1, 46-51 (2016). dx.doi.org/10.1021/acsenergylett.6b00033
- Z. Jiang, Z.-J. Jiang, T. Maiyalagan, and A. Manthiram, “Cobalt Oxide-coated N- and B-doped Graphene Hollow Spheres as a Bifunctional Electrocayalyst for Oxygen Reduction and Oxygen Evolution Reactions,” Journal of Materials Chemistry A 4, 5877-5889 (2016). dx.doi.org/10.1039/C6TA01349J
- C. Lai, J. Chen, J. C. Knight, A. Manthiram, and A. Navrotsky, “Thermodynamic Stability of Transition Metal Substituted LiMn2-xMxO4 (M = Cr, Fe, Co, and Ni) Spinels,” ChemPhysChem 17, 1973-1978 (2016). dx.doi.org/10.1002/cphc.201600120
- C. Zu, L. Li, J. Guo, S. Wang, D. Fan, and A. Manthiram, “Understanding the Redox Obstacles in High Sulfur-loading Li-S Batteries and Design of an Advanced Gel Cathode, ” Journal of Physical Chemistry Letters 7, 1392-1399 (2016). dx.doi.org/10.1021/acs.jpclett.6b00429
- Y. Li, M. P. Paranthaman, K. Akato, A. K. Naskar, A. M. Levine, R. J. Lee, S. O. Kim, J. Zhang, S. Dai, and A. Manthiram, “Tire-derived Carbon Composite Anodes for Sodium-ion Batteries,” Journal of Power Sources 316, 232-238 (2016). dx.doi.org/10.1016/j.jpowsour.2016.03.071
- P. Oh, B. Song, W. Li, and A. Manthiram, “Overcoming the Chemical Instability on Exposure to Air of Ni-rich Layered Oxide Cathodes by Coating with Spinel LiMn1.9Al0.1O4,” Journal of Materials Chemistry A 4, 5839-5841 (2016). dx.doi.org/10.1039/C6TA01061J
- X. Yu, J. Joseph, and A. Manthiram, “Suppression of the Polysulfide-shuttle Behavior in Li-S Batteries through the Development of a Facile Functional Group on the Polypropylene Separator,” Materials Horizons 3, 314-319 (2016). dx.doi.org/10.1039/C6MH00043F
- K. J. Kreder III, G. Assat, and A. Manthiram, “Aliovalent Substitution of V3+ for Co2+ in LiCoPO4 by a Low-temperature Microwave-assisted Solvothermal Process,” Chemistry of Materials 28, 1847-1853 (2016). dx.doi.org/10.1021/acs.chemmater.5b05042
- W. H. Kan, A. Huq, and A. Manthiram, “Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li-Ni-Mn-Co-O System,” Chemistry of Materials 28, 1832-1837 (2016). dx.doi.org/10.1021/acs.chemmater.5b04994
- S. O. Kim and A. Manthiram, “Facile Synthesis and Enhanced Sodium-storage Performance of Chemically Bonded CuP2/C Hybrid Anode,” Chemical Communications 52, 4337-4340 (2016). dx.doi.org/10.1039/C5CC10585D
- K. A. Jarvis, C.-C. Wang, J. C. Knight, L. Rabenberg, A. Manthiram, and P. J. Ferreira, “Formation and Effect of Orientation Domains in Layered Oxide Cathodes of Lithium-ion Batteries,” Acta Materialia 108, 264-270 (2016). dx.doi.org/10.1016/j.actamat.2016.02.034
- G. He, A. Huq, W. H. Kan, and A. Manthiram, “β-NaVOPO4 Obtained by a Low-temperature Synthesis Process: A New 3.3 V Cathode for Sodium-ion Batteries,” Chemistry of Materials 28, 1503-1512 (2016). dx.doi.org/10.1021/acs.chemmater.5b04992
- S.-H. Chung, P. Han, and A. Manthiram, “A Polysulfide-trapping Interface for Electrochemically Stable Sulfur Cathode Development,” ACS Applied Materials & Interfaces 8, 4709-4717 (2016). dx.doi.org/10.1021/acsami.5b12012
- C. A. Milroy and A. Manthiram, “Printed Microelectrodes for Scalable, High-areal-capacity Lithium-sulfur Batteries,” Chemical Communications 52, 4282-4285 (2016). dx.doi.org/10.1039/C5CC10503J
- X. Yu and A. Manthiram, “Performance Enhancement and Mechanistic Studies of Room-temperature Sodium-sulfur Batteries with a Carbon-coated Functional Nafion Separator and a Na2S/Activated Carbon Nanofiber Cathode,” Chemistry of Materials 28, 896-905 (2016). dx.doi.org/10.1021/acs.chemmater.5b04588
- W. H. Kan, K.-Y. Lai, A. Huq, and A. Manthiram, “Unravelling the Low Thermal Expansion Coefficient of Cation-substituted YBaCo4O7+δ,” Journal of Power Sources 307, 454-461 (2016). dx.doi.org/10.1016/j.jpowsour.2016.01.017
- J. Zheng, P. Yan, W. H. Kan, C. Wang, and A. Manthiram, “A Spinel-integrated P2-type Layered Composite: High-rate Cathode for Sodium-ion Batteries,” Journal of the Electrochemical Society 163, A584-A591 (2016). dx.doi.org/10.1149/2.0041605jes
- L. Qie, C. Zu, and A. Manthiram, “A High Energy Lithium-sulfur Battery with Ultrahigh-loading Lithium Polysulfide Cathode and Its Failure Mechanism,” Advanced Energy Materials 6 (2016). dx.doi.org/10.1002/aenm.201502459
- G. He, W. H. Kan, and A. Manthiram, “A 3.4 V Layered VOPO4 Cathode for Na-ion Batteries,” Chemistry of Materials 28, 682-688 (2016). dx.doi.org/10.1021/acs.chemmater.5b04605
- H. M. Kim, J. -Y. Hwang, A. Manthiram, Y.-K. Sun, “High-performance Lithium-sulfur Batteries with a Self-assembled MWCNT Interlayer and a Robust Electrode-electrolyte Interface,” ACS Applied Materials & Interfaces 8, 983-987 (2016). dx.doi.org/10.1021/acsami.5b10812
- J.-Y. Liao, B. De Luna, and A. Manthiram, “TiO2-B Nanowire Arrays Coated with Layered MoS2 Nanosheets for Lithium and Sodium Storage,” Journal of Materials Chemistry A 4, 801-806 (2016). dx.doi.org/10.1039/C5TA07064C
- S. Liu, L. Li, N. A. Patterson, and A. Manthiram, “Morphological Transformations during In-situ Electrochemical Generation of 2-Dimensional Co3O4 Hexagonal Nanoplates,” Journal of the Electrochemical Society 163, A150-A155 (2016). dx.doi.org/10.1149/2.0331602jes
- C.-H. Chang, S.-H. Chung, and A. Manthiram, “Effective Stabilization of High-loading Sulfur Cathode and Lithium-metal Anode in Li-S Batteries,” Small 12, 174-179 (2016). dx.doi.org/10.1002/smll.201502505
- G. Zhou, E. Paek, G. S. Hwang, and A. Manthiram, “High-performance Lithium-sulfur Batteries with a Self-supported, 3-dimensional Li2S-doped Graphene Aerogel Cathodes,” Advanced Energy Materials 6, 1501355: 1-9 (2016). dx.doi.org/10.1002/aenm.201501355
- Y. Li, M. P. Paranthaman, L. W. Gill, E. W. Hagaman, Y. Wang, A. P. Sokolov, S. Dai, C. Ma, M. Chi, G. M. Veith, A. Manthiram, and J. B. Goodnough, “Conduction below 100 °C in Nominal Li6ZnNb4O14,” Journal of Materials Science 51, 854-860 (2016). dx.doi.org/10.1007/s10853-015-9408-z
- J.-Y. Hwang, H. M. Kim, S.-K. Lee, J.-H. Lee, A. Abouimrane, M. A. Khaleel, I. Belharouak, A. Manthiram, and Y.-K. Sun, “High-energy, High-rate Lithium-sulfur Batteries: Synergetic Effect of Hollow TiO2-webbed Carbon Nanotubes and a Dual Functional Carbon-paper Interlayer,” Advanced Energy Materials 6, 1501480: 1-7 (2016). dx.doi.org/10.1002/aenm.201501480
2015
- A. Manthiram, S.-H. Chung, and C.-H. Chang, “Strategies for the Viability of Rechargeable Lithium-sulfur Batteries,” International Scientific Journal 75, 70-81 (2015).
- L. Li and A. Manthiram, “Long-life, High-voltage Acidic Zn-air Batteries,” Advanced Energy Materials 6, 1502054: 1-7 (2015). dx.doi.org/10.1002/aenm.201502054
- S.-H. Chung, C.-H. Chang, and A. Manthiram, “Robust, Ultra-tough Flexible Cathodes for High-energy Li-S Batteries,” Small 12, 939-950 (2015). dx.doi.org/10.1002/smll.201503167
- C. Zu, A. Dolocan, P. Xiao, S. Stauffer, G. Henkelman, and A. Manthiram, “Breaking Down the Crystallinity: The Path for Advanced Lithium Batteries,” Advanced Energy Materials 6, 1501933: 1-9 (2015). dx.doi.org/10.1002/aenm.20150193
- W. H. Kan, A. Huq, and A. Manthiram, “Low-temperature Synthesis, Structural Characterization, and Electrochemistry of Ni-rich Spinel-like LiNi2-yMnyO4 (0.4 ≤ y ≤ 1),” Chemistry of Materials 27, 7729-7733 (2015). dx.doi.org/10.1021/acs.chemmater.5b03360
- S. -H. Ahn and A. Manthiram, “Edge-oriented Tungsten Disulfide Catalyst Produced from Mesoporous WO3 for Highly Efficient Dye-sensitized Solar Cells,” Advanced Energy Materials 6, 1501814: 1-7 (2015). dx.doi.org/10.1002/aenm.201501814
- J.-H. Kim and A. Manthiram, “Layered LnBaCo2O5+δ Perovskite Cathodes for Solid Oxide Fuel Cells: An Overview and Perspective,” Journal of Materials Chemistry A 3, 24195-24210 (2015). dx.doi.org/10.1039/C5TA06212H
- Z. Moorhead-Rosenberg, A. Huq, J. B. Goodenough, and A. Manthiram, “Electronic and Electrochemical Properties of Li1-xMn1.5Ni0.5O4 Spinel Cathodes as a Function of Lithium Content and Cation Ordering,” Chemistry of Materials 27, 6934-6945 (2015). dx.doi.org/10.1021/acs.chemmater.5b01356
- N. P. W. Pieczonka, V. Borgel, B. Ziv, N. Leifer, V. Dargel, D. Aurbach, J.-H. Kim, Z. Liu, X. Huang, S. A. Krachkovskiy, G. R. Goward, I. Halalay, B. R. Powell, and A. Manthiram, “Lithium Polyacrylate (LiPAA) as an Advanced Binder and a Passivating Agent for High-voltage Li-ion Batteries,” Advanced Energy Materials 5, 1501008: 1-10 (2015). dx.doi.org/10.1002/aenm.201501008
- J. C. Knight, S. Therese, and A. Manthiram, “On the Utility of Spinel Oxide Hosts for Magnesium-ion Batteries,” ACS Applied Materials & Interfaces 7, 22953-22961 (2015). dx.doi.org/10.1021/acsami.5b06179
- G. Assat and A. Manthiram, “Rapid Microwave-assisted Solvothermal Synthesis of Non-olivine Cmcm Polymorphs of LiMPO4 (M = Mn, Fe, Co, and Ni) at Low Temperature and Pressure,” Inorganic Chemistry 54, 10015-10022 (2015). dx.doi.org/10.1021/acs.inorgchem.5b01787
- J. C. Knight and A. Manthiram, “Effect of Nickel Oxidation State on the Structural and Electrochemical Characteristics of Lithium-rich Layered Oxide Cathodes,” Journal of Materials Chemistry A 3, 22199-22207 (2015). dx.doi.org/10.1039/C5TA05703E
- E. Allcorn, S.-O. Kim, and A. Manthiram, “Lithium Diffusivity in Antimony-based Intermetallic and FeSb-TiC Composite Anodes as Measured by GITT,” Physical Chemistry Chemical Physics 17, 28837-28843 (2015). dx.doi.org/10.1039/C5CP04023J
- J.-Y. Liao and A. Manthiram, “High-performance Na2Ti2O5 Nanowire Arrays Coated with VS2 Nanosheets for Sodium-ion Storage,” Nano Energy 18, 20-27 (2015). dx.doi.org/10.1016/j.nanoen.2015.09.014
- A. Manthiram, J. C. Knight, S.-T. Myung, S.-M. Oh, and Y.-K. Sun, “Nickel-rich and Lithium-rich Layered Oxide Cathodes: Progress and Perspectives,” Advanced Energy Materials 6, 1501010: 1-23 (2015). dx.doi.org/10.1002/aenm.201501010
- L. Li, C.-L. Wang, J.-Y. Liao, and A. Manthiram, “Dual-template Synthesis of N-doped Macro/Mesoporous Carbon with an Open-pore Structure as a Metal-free Catalyst for Dye-sensitized Solar Cells,” Journal of Power Sources 300, 254-260 (2015). dx.doi.org/10.1016/j.jpowsour.2015.09.076
- D. Yoon and A. Manthiram, “Ni-M (M = Sn and Sb) Intermetallic-based Catalytic Functional Layer as a Built-in Safeguard for Hydrocarbon-fueled Solid Oxide Fuel Cells,” Journal of Materials Chemistry A 3, 21824-21831 (2015). dx.doi.org/10.1039/C5TA05498B
- J. C. Knight, S. Therese, and A. Manthiram, “Chemical Extraction of Zn from ZnMn2O4-based Spinels,” Journal of Materials Chemistry A 5, 21077-21082 (2015). dx.doi.org/10.1039/C5TA06482A
- G. He, C. A. Bridges, and A. Manthiram, “Crystal Chemistry of Electrochemically and Chemically Lithiated Layered αI-LiVOPO4,” Chemistry of Materials 27, 6699-6707 (2015). dx.doi.org/10.1021/acs.chemmater.5b02609
- V. Augustyn and A. Manthiram, “Effects of Chemical versus Electrochemical Delithiation on the Oxygen Evolution Reaction Activity of Nickel-rich Layered LiMO2,” Journal of Physical Chemistry Letters 6, 3787-3791 (2015). dx.doi.org/10.1021/acs.jpclett.5b01538
- L. Li, C. Liu, G. He, D. Fan, and A. Manthiram, “Hierarchical Pore-in-pore and Wire-in-wire Catalysts for Rechargeable Zn- and Li-air Batteries with Ultra-long Cycle Life and High Cell Efficiency,” Energy & Environmental Science 8, 3274-3282 (2015). dx.doi.org/10.1039/C5EE02616D
- E. Allcorn, S. O. Kim, and A. Manthiram, “Thermal Stability of Active/Inactive Nanocomposite Anodes based on Cu2Sb in Lithium-ion Batteries,” Journal of Power Sources 299, 501-508 (2015). dx.doi.org/10.1016/j.jpowsour.2015.09.020
- Y. Zhao and A. Manthiram, “Bi0.94Sb1.06S3 Nanorod Cluster Anodes for Sodium-ion Batteries: Enhanced Reversibility by the Synergistic Effect of the Bi2S3–Sb2S3 Solid Solution,” Chemistry of Materials 27, 6139-6145 (2015). dx.doi.org/10.1021/acs.chemmater.5b02833
- C.-H. Chang, S.-H. Chung, and A. Manthiram, “Ultra-lightweight PANiNF/MWCNT-functionalized Separators with Synergistic Suppression of Polysulfide Migration for Li-S Batteries with Pure Sulfur Cathodes,” Journal of Materials Chemistry A 3, 18829-18834 (2015). dx.doi.org/10.1039/C5TA05053G
- K. J. Kreder III, G. Assat, and A. Manthiram, “Microwave-assisted Solvothermal Synthesis of Three Polymorphs of LiCoPO4 and Their Electrochemical Properties,” Chemistry of Materials 27, 5543-5549 (2015). dx.doi.org/10.1021/acs.chemmater.5b01670
- V. Augustyn, S. Therese, T. C. Turner, and A. Manthiram, “Nickel-Rich Layered LiNi1-xMxO2 (M = Mn, Fe, and Co) Electrocatalysts with High Oxygen Evolution Reaction Activity,” Journal of Materials Chemistry 3, 16604-16612 (2015). dx.doi.org/10.1039/C5TA04637H
- X. Yu, Z. Bi, F. Zhao, and A. Manthiram, “Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte,” ACS Applied Materials & Interfaces 7, 16625-16631 (2015). dx.doi.org/10.1021/acsami.5b04209
- Y. Zhao and A. Manthiram, “Amorphous Sb2S3 Embedded in Graphite: A High-rate, Long-life Anode Material for Sodium-ion Batteries,” Chemical Communications 51, 13205-13208 (2015). dx.doi.org/10.1039/C5CC03825A
- J. Leibowitz, E. Allcorn, and A. Manthiram, “FeSn2-TiC Nanocomposite Alloy Anodes for Lithium Ion Batteries,” Journal of Power Sources 295, 125-130 (2015). dx.doi.org/10.1016/j.jpowsour.2015.06.144
- X. Yu, J. Joseph, and A. Manthiram, “Polymer Lithium-Sulfur Batteries with a Nafion Membrane and an Advanced Sulfur Electrode,” Journal of Materials Chemistry A 3, 15683-15691 (2015). dx.doi.org/10.1039/C5TA04289E
- S.-O. Kim and A. Manthiram, “High-performance Zn–TiC–C Nanocomposite Alloy Anode with Exceptional Cycle Life for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 7, 14801-14807 (2015). dx.doi.org/10.1021/acsami.5b03110
- G. He, L. Li, and A. Manthiram, “VO2/rGO Nanorods as a Potential Anode for Sodium- and Lithium-ion Batteries,” Journal of Materials Chemistry A 3, 14750-14758 (2015). dx.doi.org/10.1039/C5TA03188E
- C. Zu, N. Azimi, Z. Zhang, and A. Manthiram, “Insight into Lithium-metal Anode in Lithium-Sulfur Batteries with a Fluorinated Ether Electrolyte,” Journal of Materials Chemistry A 3, 14864-14870 (2015). dx.doi.org/10.1039/C5TA03195H
- G. Zhou, E. Paek, G. S. Hwang, and A. Manthiram, “Long-life Li/polysulphide Batteries with High Sulphur Loading Enabled by Lightweight Three-dimensional Nitrogen and Sulphur Co-doped Graphene Sponge,” Nature Communications 6, 7760: 1-11 (2015). dx.doi.org/10.1038/ncomms8760
- S.-H. Chung, P. Han, R. Singhal, V. Kalra, and A. Manthiram, “Electrochemically Stable Rechargeable Lithium-Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide,” Advanced Energy Materials 5 (2015). dx.doi.org/10.1002/aenm.201500738
- E. Allcorn and A. Manthiram, “Thermal Stability of Sb and Cu2Sb Anodes in Lithium-Ion Batteries,” Journal of the Electrochemical Society 162, A1778-A1786 (2015). dx.doi.org/10.1149/2.0331509jes
- X. Xiang, J. C. Knight, W. Li, and A. Manthiram, “Sensitivity and Intricacy of Cationic Substitutions on the First Charge/Discharge Cycle of Lithium-rich Layered Oxide Cathodes,” Journal of the Electrochemical Society 162, A1662-A1666 (2015). dx.doi.org/10.1149/2.1061508jes
- S.-H. Chung, R. Singhal, V. Kalra, and A. Manthiram, “A Porous Carbon Mat as an Electrochemical Testing Platform for Investigating the Polysulfide Retention of Various Cathode Configurations in Li-S Cells,” Journal of Physical Chemistry Letters 6, 2163-2169 (2015). dx.doi.org/10.1021/acs.jpclett.5b00927
- Z. Cui, L. Li, A. Manthiram, and J. B. Goodenough, “Enhanced Cycling Stability of Hybrid Li-Air Batteries Enabled by Ordered Pd3Fe Intermetallic Electrocatalyst,” Journal of the American Chemical Society 137, 7278-7281 (2015). dx.doi.org/10.1021/jacs.5b03865
- W. H. Kan, A. Huq, and A. Manthiram, “First Fe-based Na+-ion Cathode with Two Distinct Types of Polyanions: Fe3P5SiO19,” Chemical Communications 51, 10447-10450 (2015). dx.doi.org/10.1039/C5CC03070F
- S. Liu, L. Li, H. S. Ahn, and A. Manthiram, “Delineating the Roles of Co3O4 and N-doped Carbon Nanoweb (CNW) in Bifunctional Co3O4/CNW Catalysts for Oxygen Reduction and Oxygen Evolution Reactions,” Journal of Materials Chemistry A 3, 11615-11623 (2015). dx.doi.org/10.1039/C5TA00661A
- M. Prabu, P. Ramakrishnan, A. Manthiram, and S. Shanmugam, “LaTi0.65Fe0.35O3-δ Nanoparticle-decorated Carbon Nanorods as an Advanced Hierarchical Air Electrode for Rechargeable Metal-Air Batteries,” Nano Energy 15, 92-103 (2015). dx.doi.org/10.1016/j.nanoen.2015.04.005
- Y. Zhao and A. Manthiram, “High-capacity, High-rate Bi-Sb Alloy Anodes for Lithium-ion and Sodium-ion Batteries,” Chemistry of Materials 27, 3096-3101 (2015). dx.doi.org/10.1021/acs.chemmater.5b00616
- X. Yu and A. Manthiram, “Ambient-temperature Sodium-Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber-Activated Carbon Composite Electrode,” Advanced Energy Materials 5, 1500350: 1-6 (2015). dx.doi.org/10.1002/aenm.201500350
- B. Reeja-Jayan, K. A. Koen, R. J. Ono, D. A. Vanden Bout, C. W. Bielawski, and A. Manthiram, “Oligomeric Interface Modifiers in Hybrid Polymer Solar Cell Prototypes Investigated by Fluorescence Voltage Spectroscopy,” Physical Chemistry Chemical Physics 17, 10640-10647 (2015). dx.doi.org/10.1039/C5CP00012B
- J. Zheng, W. H. Kan, and A. Manthiram, “Role of Mn Content on the Electrochemical Properties of Nickel-rich Layered LiNi0.8-xCo0.1Mn0.1+xO2 (0.1 ≤ x ≤ 0.18) Cathodes for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 7, 6926-6934 (2015). dx.doi.org/10.1021/acsami.5b00788
- C. Zu, L. Li, L. Qie, and A. Manthiram, “Expandable-graphite-derived Graphene for Next-generation Battery Chemistries,” Journal of Power Sources 284, 60-67 (2015). dx.doi.org/10.1016/j.jpowsour.2015.03.009
- X. Yu and A. Manthiram, “MnNiCoO4/N-MWCNT Nanocomposite Catalysts with High Selectivity in Membraneless Direct Formate Fuel Cells and Bifunctional Activity for Rechargeable Metal-air Batteries,” Catalysis Science & Technology 5, 2072-2075 (2015). dx.doi.org/10.1039/C4CY01702A
- J.-Y. Liao and A. Manthiram, “Surface-modified Concentration-gradient Ni-rich Layered Oxide Cathodes for High-energy Lithium-ion Batteries,” Journal of Power Sources 282, 429-436 (2015). dx.doi.org/10.1016/j.jpowsour.2015.02.078
- I.-T. Kim, E. Allcorn, and A. Manthiram, “Cu6Sn5-TiC-C Nanocomposite Anodes for High-performance Sodium-ion Batteries,” Journal of Power Sources 281, 11-17 (2015). dx.doi.org/10.1016/j.jpowsour.2015.01.163
- M. West and A. Manthiram, “Synthesis of 3-Dimensional Silver Networks and their Application in Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy 40, 4234-4240 (2015). dx.doi.org/10.1016/j.ijhydene.2015.01.125
- G. Zhou, Y. Zhao, and A. Manthiram, “Dual-confined Flexible Sulfur Cathodes Encapsulated in Nitrogen-doped Double-shelled Hollow Carbon Spheres and Wrapped with Graphene for Li-S Batteries,” Advanced Energy Materials 5, 1402263: 1-10 (2015). dx.doi.org/10.1002/aenm.201402263
- N. Colligan, V. Augustyn, and A. Manthiram, “Evidence of Localized Lithium Removal in Layered and Lithiated Spinel Li1-xCoO2 (0 ≤ x ≤ 0.9) under Oxygen Evolution Reaction Conditions,” Journal of Physical Chemistry C 119, 2335-2340 (2015). dx.doi.org/10.1021/jp511176j
- R. Singhal, S.-H. Chung, A. Manthiram, and V. Kalra, “Free-standing Carbon Nanofiber Interlayer for High-performance Lithium-Sulfur Batteries,” Journal of Materials Chemistry A 3, 4530-4538 (2015). dx.doi.org/10.1039/C4TA06511E
- A. Manthiram, S.-H. Chung, and C. Zu, “Lithium-sulfur Batteries: Progress and Prospective,” Advanced Materials 27, 1980-2006 (2015). dx.doi.org/10.1002/adma.201405115
- J. Leibowitz, E. Allcorn, and A. Manthiram, “SnSb-TiC-C Nanocomposite Alloy Anodes for Lithium-ion Batteries,” Journal of Power Sources 279, 549-545 (2015). dx.doi.org/10.1016/j.jpowsour.2015.01.055
- E. Allcorn and A. Manthiram, “High-rate, High-density FeSb-TiC-C Nanocomposite Anodes for Lithium-ion Batteries,” Journal of Materials Chemistry A 3, 3891-3900 (2015). dx.doi.org/10/1039/C4TA06869F
- C.-L. Wang, J.-Y. Liao, Y. Zhao, and A. Manthiram, “Template-free TiO2 Hollow Submicrospheres Embedded with SnO2 Nanobeans as a Versatile Scattering Layer for Dye-sensitized Solar Cells,” Chemical Communications 51, 2848-2850 (2015). dx.doi.org/10.1039/C4CC07700H
- L. Qie and A. Manthiram, “A Facile Layer-by-Layer Approach for High-Areal-Capacity Sulfur Cathodes,” Advanced Materials 27, 1694-1700 (2015). dx.doi.org/10.1002adma.201405698
- G. Zhou, Y. Zhao, C. Zu, and A. Manthiram, “Free-Standing TiO2 Nanowire-Embedded Graphene Hybrid Membrane for Advanced Li/Dissolved Polysulfide Batteries,” Nano Energy 12, 240-249 (2015). dx.doi.org/10/1016/j.nanoen.2014.12.029
- X. Yu and A. Manthiram, “Na2S-Carbon Nanotube Fabric Electrodes for Room Temperature Sodium-Sulfur Batteries,” Chemistry – A European Journal 21, 4233-4237 (2015). dx.doi.org/10.1002/chem.201405344
- J. C. Knight, S. Therese, and A. Manthiram, “Delithiation Mechanisms in Acid of Spinel LiMn2-xMxO4,” Journal of the Electrochemical Society 162, A426-A431 (2015). dx.doi.org/10.1149/2.0661503jes
- A. Manthiram and X. Yu, “Ambient-temperature Sodium-Sulfur Batteries,” Small 11, 2108-2114 (2015). dx.doi.org/10/1002/smll.201403257
- S.-O. Kim and A. Manthiram, “A Facile, Low-cost Synthesis of High-performance Silicon-based Composite Anodes with High Tap Density for Lithium-Ion Batteries,” Journal of Materials Chemistry A 3, 2399-2406 (2015). dx.doi.org/10.1039/C4TA06113F
- J. C. Knight, P. Nandakumar, W. H. Kan, and A. Manthiram, “Effect of Ru Substitution on the First Charge-Discharge Cycle of Lithium-rich Layered Oxides,” Journal of Materials Chemistry A 3, 2006-2011 (2015). dx.doi.org/10.1039/C4TA05178E
- X. Yu and A. Manthiram, “A Class of Polysulfide Catholytes for Lithium-Sulfur Batteries: Energy Density, Cyclability, and Voltage Enhancement,” Physical Chemistry Chemical Physics 17, 2127-2136 (2015). dx.doi.org/10.1039/C4CP04895D
- M. West, C. Ortiz, and A. Manthiram, “High-performance Y0.9In0.1BaCo3(Zn,Fe)O7+δ Swedenborgite-type Oxide Cathodes for Reduced Temperature Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy 40, 1186-1194 (2015). dx.doi.org/10.1016/j.ijhydene.2014.11.027
- A. Manthiram and L. Li, “Hybrid and Aqueous Lithium-air Batteries,” Advanced Energy Materials 5, 1401302: 1-17 (2015). dx.doi.org/10.1002/aenm.201401302
- L. Li, S. Liu, and A. Manthiram, “Co3O4 Nanocrystals Coupled with O- and N-doped Carbon Nanoweb as a Synergistic Catalyst for Hybrid Li-air Batteries,” Nano Energy 12, 852-860 (2015). dx.doi.org/10.1016/j.nanoen.2014.10.036
- C.-L. Wang, J.-Y. Liao, S.-H. Chung, and A. Manthiram, “Carbonized Eggshell Membranes as a Natural and Abundant Counter Electrode for Efficient Dye-sensitized Solar Cells,” Advanced Energy Materials 5, 1401524: 1-4 (2015). dx.doi.org/10.1002/aenm.201401524
- V. Augustyn and A. Manthiram, “Characterization of Layered LiMO2 Oxides for the Oxygen Evolution Reaction in Metal-air Batteries,” ChemPlusChem 80, 422-427 (2015). dx.doi.org/10.1002/cplu.201402107R1
2014
- J. B. Goodenough and A. Manthiram, “A Perspective on Electrical Energy Storage,” MRS Communications 4, 135-142 (2014). dx.doi.org/10.1557/mrc.2014.36
- C. Zu, M. Klein, and A. Manthiram, “Activated Li2S as a High-performance Cathode for Rechargeable Lithium-sulfur Batteries,” Journal of Physical Chemistry Letters 5, 3986-3991 (2014). dx.doi.org/10.1021/jz5021108
- Z. Moorhead-Rosenberg, E. Allcorn, and A. Manthiram, “In-situ Mitigation of First-cycle Anode Irreversibility in a New Spinel / FeSb Lithium-Ion Cell Enabled via a Microwave-assisted Chemical Lithiation Process,” Chemistry of Materials 26, 5905-5913 (2014). dx.doi.org/10.1021/cm5024426
- X. Yu and A. Manthiram, “Catalyst-selective, Scalable Membraneless Alkaline Direct Formate Fuel Cells,” Applied Catalysis B: Environmental 165, 63-67 (2014). dx.doi.org/10.1016/j.apcatb.2014.09.069
- X. Xiang, J. C. Knight, W. Li, and A. Manthiram, “Understanding the Influence of Composition and Synthesis Temperature on Oxygen Loss, Reversible Capacity, and Electrochemical Behavior of xLi2MnO3-(1-x)LiCoO2 Cathodes in the First Cycle,” Journal of Physical Chemistry C 118, 23553-23558 (2014). dx.doi.org/10.1021/jp507687h
- M. West and A. Manthiram, “Improved Phase Stability and Electrochemical Performance of (Y,In,Ca)BaCo3ZnO7+δ Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy 39, 19722-19730 (2014). dx.doi.org/10.1016/j.ijhydene.2014.09.091
- X. Yu and A. Manthiram, “Room-Temperature Sodium-Sulfur Batteries with Liquid-Phase Sodium Polysulfide Catholytes and Binder-Free Multi-wall Carbon Nanotube (MWCNT) Fabric Electrodes,” Journal of Physical Chemistry C 118, 22952-22959 (2014). dx.doi.org/10.1021/jp507655u
- S.-H. Chung and A. Manthiram, “Eggshell-membrane-derived Polysulfide Absorbents for Highly Stable and Reversible Lithium-Sulfur Cells,” ACS Sustainable Chemistry & Engineering 2, 2248-2252 (2014). dx.doi.org/10.1021/sc500452j
- X. Xiang, J. C. Knight, W. Li, and A. Manthiram, “Understanding the Effect of Co3+ Substitution on the Electrochemical Properties of Lithium-Rich Layered Oxide Cathodes for Lithium-Ion Batteries,” Journal of Physical Chemistry C 118, 21826-21833 (2014). dx.doi.org/10.1021/jp506731v
- D. Yoon and A. Manthiram, “Hydrocarbon-fueled Solid Oxide Fuel Cells with Surface-modified, Hydroxylated Sn/Ni-Ce0.8Gd0.2O1.9 Heterogeneous Catalyst Anode,” Journal of Materials Chemistry A 2, 17041-17046 (2014). dx.doi.org/10.1039/C4TA02662D
- S.-H. Chung and A. Manthiram, “A Polyethylene Glycol-Wrapped Microporous Carbon Coating as a Polysulfide Trap for Utilizing Pure Sulfur Cathodes in Lithium-Sulfur Batteries,” Advanced Materials 26, 7352-7357 (2014). dx.doi.org/10.1002/adma.201402893
- M. West, S.-J. Sher, and A. Manthiram, “Effects of In Substitution in Y1-xInxBaCo3ZnO7+δ (0 ≤ x ≤ 0.5) Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Power Sources 271, 252-261 (2014). dx.doi.org/10.1016/j.jpowsour.2014.08.006
- I.-T. Kim, S.-O. Kim, and A. Manthiram, “Effect of TiC Addition on SnSb-C Composite Anodes for Sodium-ion Batteries,” Journal of Power Sources 269, 848-854 (2014). dx.doi.org/10.1016/j.jpowsour.2014.07.081
- D. Yoon and A. Manthiram, “Hydrogen Tungsten Bronze as a Decoking Agent for Long-Life, Natural Gas-fueled Solid Oxide Fuel Cells,” Energy & Environmental Science 7, 3069-3076 (2014). dx.doi.org/10.1039/C4EE01455C
- L. Li, Y.-Z. Fu, and A. Manthiram, “Imidazole-buffered Acidic Catholytes for Hybrid Li-air Batteries with High Practical Energy Density,” Electrochemistry Communications 47, 67-70 (2014). dx.doi.org/10.1016/j.elecom.2014.07.027
- A. Gutierrez and A. Manthiram, “Microwave-assisted Solvothermal Synthesis of Spinel AV2O4 (M = Mg, Mn, Fe, and Co),” Inorganic Chemistry 53, 8570-8576 (2014). dx.doi.org/10.1021/ic5011506
- Y.-S. Su and A. Manthiram, “Sulfur/Lithium-insertion Compound Composite Cathodes for Li-S Batteries,” Journal of Power Sources 270, 101-105 (2014). dx.doi.org/10.1016/j.jpowsour.2014.07.099
- C. Zu and A. Manthiram, “Stabilized Lithium-metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries,” Journal of Physical Chemistry Letters 5, 2522-2527 (2014). dx.doi.org/10.1021/jz501352e
- C. Zu and A. Manthiram, “High-performance Li/dissolved Polysulfide Batteries with an Advanced Cathode Structure Containing High Sulfur Loading,” Advanced Energy Materials 4, 1400897: 1-6 (2014). dx.doi.org/10.1002/aenm.201400897
- L. Li and A. Manthiram, “Decoupled Bifunctional Air Electrodes for High-performance Hybrid Lithium-air Batteries,” Nano Energy 9, 94-100 (2014). dx.doi.org/10.1016/j.nanoen.2014.07.002
- J.-H. Kim, A. Huq, M. Chi, N. P. W. Pieczonka, E. Lee, C. A. Bridges, M. Tessema, A. Manthiram, K. A. Persson, and B. R. Powell, “Integrated Nano-Domains of Disordered and Ordered Spinel Phases in LiNi0.5Mn1.5O4 for Li-Ion Batteries,” Chemistry of Materials 26, 4377-4386 (2014). dx.doi.org/10.1021/cm501203r
- A. Manthiram, Y.-Z. Fu, S.-H. Chung, C. Zu, and Y.-S. Su, “Rechargeable Lithium-Sulfur Batteries,” Chemical Reviews 114, 11751-11787 (2014). dx.doi.org/10.1021/cr500062v
- L. Li, S.-H. Chai, S. Dai, and A. Manthiram, “Advanced Hybrid Li-air Batteries with High-performance Mesoporous Nanocatalysts,” Energy & Environmental Science 7, 2630-2636 (2014). dx.doi.org/10.1039/C4EE00814F
- X. Yu and A. Manthiram, “Capacity Enhancement and Discharge Mechanisms of Room-temperature Sodium-Sulfur Batteries,” ChemElectroChem 1, 1275-1280 (2014). dx.doi.org/10.1002/celc.201402112
- S.-H. Chung and A. Manthiram, “High-performance Li-S Batteries with an Ultra-lightweight MWCNT-coated Separator,” Journal of Physical Chemistry Letters 5, 1978-1983 (2014). dx.doi.org/10.1021/jz5006913
- K. L. Harrison, C. A. Bridges, C. U. Segre, C. D. Varnado Jr., D. Applestone, C. W. Bielawski, M. P. Paranthaman, and A. Manthiram, “Chemical and Electrochemical Lithiation of LiVOPO4 Cathodes for Lithium-ion Batteries,” Chemistry of Materials 26, 3489-3861 (2014). dx.doi.org/10.1021/cm501588j
- X. Yu and A. Manthiram, “Highly Reversible Room-temperature Sulfur/Long-chain Sodium Polysulfide Batteries,” Journal of Physical Chemistry Letters 5, 1943-1947 (2014). dx.doi.org/10.1021/jz500848x
- I.-T. Kim, E. Allcorn, and A. Manthiram, “High-performance FeSb-TiC-C Nanocomposite Anodes for Sodium-ion Batteries,” Physical Chemistry Chemical Physics 16, 12884-12889 (2014). dx.doi.org/10.1039/C4CP01240B
- J.-Y. Liao and A. Manthiram, “Mesoporous TiO2-Sn/C Core-shell Nanowire Arrays as High-performance 3D Anodes for Li-ion Batteries,” Advanced Energy Materials 4, 1400403: 1-8 (2014). dx.doi.org/10.1002/aenm.201400403
- A. Gutierrez, R. Qiao, L. Wang, W. Yang, F. Wang, and A. Manthiram, “High-capacity, Aliovalently Doped Olivine LiMn1-3x/2Vx☐x/2PO4 Cathodes without Carbon Coating,” Chemistry of Materials 26, 3018-3026 (2014). dx.doi.org/10.1021/cm500924n
- S.-H. Chung and A. Manthiram, “Bifunctional Separator with a Light-weight Carbon-coating for Dynamically and Statically Stable Lithium-Sulfur Batteries,” Advanced Functional Materials 24, 5299-5306 (2014). dx.doi.org/10.1002/adfm.201400845
- T. Maiyalagan, K. A. Jarvis, S. Therese, P. J. Ferreira, A. Manthiram, “Spinel-type Lithium Cobalt Oxide as a Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions,” Nature Communications 5, 3949: 1-8 (2014). dx.doi.org/10.1038/ncomms4949
- F. R. Beck, Y. Q. Cheng, Z. Bi, M. Feygenson, C. A. Bridges, Z. Moorhead-Rosenberg, A. Manthiram, J. B. Goodenough, M. P. Paranthaman, and A. Manivannan, “Neutron Diffraction and Electrochemical Studies of Na0.79CoO2 and Na0.79Co0.7Mn0.3O2 Cathodes for Sodium-Ion Batteries,” Journal of the Electrochemical Society 161, A1-A8 (2014). dx.doi.org/10.1149/2.025406jes
- G. He and A. Manthiram, “Nanostructured Li2MnSiO4/C Cathodes with Hierarchical Macro/Meso Porosity for Lithium-ion Batteries,” Advanced Functional Materials 24, 5277-5283 (2014). dx.doi.org/10.1002/adfm.201400610
- I.-T. Kim, J. C. Knight, H. Celio, and A. Manthiram, “Enhanced Electrochemical Performances of Li-rich Layered Oxides by Surface Modification with Reduced Graphene Oxide/AlPO4 Hybrid Coating,” Journal of Materials Chemistry A 2, 8696-8704 (2014). dx.doi.org/10.1039/C4TA00898G
- E. Allcorn and A. Manthiram, “FeSb2-Al2O3 Nanocomposite Anodes for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 6, 10886-10891 (2014). dx.doi.org/10.1021/am500448f
- S.-H. Chung and A. Manthiram, “A Hierarchical Carbonized Paper with Controllable Thickness as a Modulable Interlayer System for High Performance Li-S Batteries,” Chemical Communications 50, 4184-4187 (2014). dx.doi.org/10.1039/C4CC00850B
- S.-H. Chung and A. Manthiram, “A Natural Carbonized Leaf as a Polysulfide Inhibitor for High-performance Lithium-Sulfur Cells,” ChemSusChem 7, 1665-1661 (2014). dx.doi.org/10.1002/cssc.201301287
- L. Li and A. Manthiram, “O- and N-doped Carbon Nanoweb as Metal-Free Catalysts for Hybrid Li-Air Batteries,” Advanced Energy Materials 4, 1301795: 1-7 (2014). dx.doi.org/10.1002/aenm.201301795
- Q. Su, W. Gong, D. Yoon, C. Jacob, Q. Jia, A. Manthiram, A. J. Jacobson, and H. Wang, “Interlayer Effects on Oxygen Reduction Kinetics in Porous Electrodes of La0.5Sr0.5CoO3-δ,” Journal of the Electrochemical Society 161, F1-F8 (2014). dx.doi.org/10.1149/2.026404jes
- C.-L.Wang and A. Manthiram, “Low-cost CZTSSe Solar Cells Fabricated with Low Band Gap CZTSe Nanocrystals, Environmentally Friendly Binder, and Nonvacuum Processes,” ACS Sustainable Chemistry & Engineering 2, 561-568 (2014). dx.doi.org/10.1021/sc400465m
- E.-S. Lee and A. Manthiram, “Smart Design of Lithium-rich Layered Oxide Cathode Compositions with Suppressed Voltage Decay,” Journal of Materials Chemistry A 2, 3932-3939 (2014). dx.doi.org/10.1039/c3ta14975g
- E. Allcorn and A. Manthiram, “NiSb-Al2O3-C Nanocomposite Anodes with Long Cycle Life for Li-ion Batteries,” Journal of Physical Chemistry C 118, 811-822 (2014). dx.doi.org/10.1021/jp409223c
- T. Maiyalagan, K.R. Chemelewski, and A. Manthiram, “Role of the Morphology and Surface Planes on the Catalytic Activity of Spinel LiMn1.5Ni0.5O4 for Oxygen Evolution Reaction,” ACS Catalysis 4, 421-425 (2014). dx.doi.org/10.1021/cs400981d
- A. Manthiram, K. Chemelewski, and E.-S. Lee, “A Perspective on the High-voltage LiMn1.5Ni0.5O4 Spinel Cathode for Lithium-ion Batteries,” Energy & Environmental Science 7, 1339-1350 (2014). dx.doi.org/10.1039/c3ee42981d
- W. Li, X. Zhao, and A. Manthiram, “Room-temperature Synthesis of Pd/C Cathode Catalysts with Superior Performance for Direct Methanol Fuel Cells,” Journal of Materials Chemistry A 2, 3468-3476 (2014). dx.doi.org/10.1039/c3ta14193d
- T. Maiyalagan, X. Wang, and A. Manthiram, “Highly Active Pd and Pd-Au Nanoparticles Supported on Functionalized Graphene Nanoplatelets for Enhanced Formic Acid Oxidation,” RSC Advances 4, 4028-4033 (2014). dx.doi.org/10.1039/C3RA45262J
- K. A. Jarvis, C.-C. Wang, A. Manthiram, and P. J. Ferreira, “The Role of Composition on the Atomic Structure, Oxygen Loss, and Capacity of Layered Li−Mn−Ni Oxide Cathodes,” Journal of Materials Chemistry A 2, 1353-1362 (2014). dx.doi.org/10.1039/C3TA12440A
- S.-H. Chung and A. Manthiram, “Low-Cost, Porous Carbon Current Collector with High Sulfur Loading for Lithium-sulfur Batteries,” Electrochemistry Communications 38, 91-95 (2014). dx.doi.org/10.1016/j.elecom.2013.11.008
- C. D. Varnado Jr., X. Zhao, M. Ortiz, Z. Zuo, Z. Jiang, A. Manthiram, and C. W. Bielawski, “Pyridine- and Pyrimidine-Functionalized Poly(sulfone)s: Performance-Enhancing Crosslinkers for Acid/Base Blend Proton Exchange Membranes Used in Direct Methanol Fuel Cells,” RSC Advances 4, 2167-2176 (2014). dx.doi.org/10.1039/C3RA44851G
- Y.-Z. Fu, Y.-S. Su, and A. Manthiram, “Li2S-Carbon Sandwiched Electrodes with Superior Performance for Lithium-Sulfur Batteries,” Advanced Energy Materials 4, 1-5 (2014). dx.doi.org/10.1002/aenm.201300655
- S.-H. Chung and A. Manthiram, “Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Li-S Batteries,” Advanced Materials 26, 1360-1365 (2014). dx.doi.org/10.1002/adma.201304365
- C. Liao, K. S. Han, L. Baggetto, D. A. Hilleshim, R. Custelcean, E.-S. Lee, B. Guo, Z. Bi, D.-E. Jiang, G. M. Veith, E. W. Hagaman, G. M. Brown, C. A. Bridges, M. P. Paranthaman, A. Manthiram, S. Dai, and X.-G. Sun, “Synthesis and Characterization of Lithium Bis(fluoromalonato)borate for Lithium-Ion Battery Applications,” Advanced Energy Materials 4, 1301368: 1-12 (2014). dx.doi.org/10.1002/aenm.201301368
2013
- J.-H. Kim, Y. N. Kim, Z. Bi, A. Manthiram, M. P. Paranthaman, and A. Huq, “Overcoming Phase Instability of RBaCo2O5+δ (R = Y and Ho) by Sr Substitution for Application as Cathodes in Solid Oxide Fuel Cells,” Solid State Ionics 253, 81-87 (2013). dx.doi.org/10.1016/j.ssi.2013.09.001
- J. Wu, G. K. P. Dathar, C. Sun, M. G. Theivanayagam, D. Applestone, A. G. Dylla, A. Manthiram, G. Henkelman, J. B. Goodenough, and K. J. Stevenson, “In situ Raman Spectroscopy of LiFePO4: Size and Morphology Dependence during Charge and Self-discharge,” Nanotechnology 24, 424009: 1-9 (2013). dx.doi.org/10.1088/0957-4484/24/42/424009
- J.-G. Cheng, K. E. Kweon, J.-S. Zhou, J. A. Alonso, P.-P. Kong, Y. Liu, C. Jin, J. Wu, J.-F. Lin, S.A. Larregola, W. Yang, G. Shen, A. H. MacDonald, A. Manthiram, G. S. Hwang, and J.B. Goodenough, “Anomalous Perovskite PbRuO3 Stabilized under High Pressure,” Proceedings of the National Academy of Sciences 110, 20003-20007 (2013). dx.doi.org/10.1073/pnas.1318494110
- Y.-S. Su, Y.-Z. Fu, T.Cochell, and A. Manthiram, “A Strategic Approach to Recharging Lithium-sulphur Batteries for Long Cycle Life,” Nature Communications 4, 2985: 1-8 (2013). dx.doi.org/10.1038/ncomms3985
- Y.-Z. Fu, C. Zu, and A. Manthiram, “In Situ-formed Li2S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries,” Journal of the American Chemical Society 135, 18044-18047 (2013) dx.doi.org/10.1021/ja409705u
- K. R. Chemelewski, W. Li, A. Gutierrez, and A. Manthiram, “High-voltage Spinel Cathodes for Lithium-ion Batteries: Controlling the Growth of Preferred Crystallographic Planes through Cation Doping,” Journal of Materials Chemistry A 1, 15334-15341 (2013). dx.doi.org/10.1039/C3TA13265J
- Z. Moorhead-Rosenberg, T. Turner, K. L. Harrison, and A. Manthiram, “A Rapid Microwave-assisted Solvothermal Approach to Lower-valent Transition-metal Oxides,”Inorganic Chemistry 52, 13087-13093 (2013). dx.doi.org/10.1021/ic401943r
- Q. Su, D. Yoon, Z. Sisman, F. Khatkhatay, Q. Jia, A. Manthiram, and H. Wang, “Vertically Aligned Nanocomposite La0.8Sr0.2MnO3-δ/Zr0.92Y0.08O1.96 Thin Films as Electrode/Electrolyte Interfacial Layer for Solid Oxide Reversible Fuel Cells,” International Journal of Hydrogen Energy 38, 16320-16327 (2013). dx.doi.org/10.1016/j.ijhydene.2013.09.128
- N. P. W. Pieczonka, L. Yang, M. P. Balogh, B. Powell, K. Chemelewski, A. Manthiram, A. Krachkovskiy, G. R. Goward, M. Liu, and J.-H. Kim, “Impact of Lithium Bis-Oxalate Borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries,”Journal of Physical Chemistry C 117, 22603-22612 (2013). dx.doi.org/10.1021/jp408717x
- A. Gutierrez, N. A. Benedek, and A. Manthiram, “A Crystal-chemical Guide for Understanding Redox Energy Variations of the M2+/3+ Couples in Polyanion Cathodes for Lithium-ion batteries,” Chemistry of Materials 25, 4010-4016 (2013). dx.doi.org/10.1021/cm401949n
- Y.-Z. Fu and A. Manthiram, “Silicon Nanoparticles Supported on Graphitic Carbon Paper as a Hybrid Anode for Li-ion Batteries,” Nano Energy 2, 1107-1112 (2013). dx.doi.org/10.1016/j.nanoen.2013.09.004
- Z. Zuo, Z. Jiang, and A. Manthiram, “Porous B-doped Graphene Inspired by Fried-ice for Supercapacitors and Metal-free Catalysts,” Journal of Materials Chemistry A 1, 13476-13483 (2013). dx.doi.org/ 10.1039/C3TA13049E
- C.-L. Wang, C.-C. Wang, B. Reeja-Jayan, and A. Manthiram, “Low-cost, Mo(S,Se)2-free Superstrate-type Solar Cells Fabricated with Tunable Band Gap Cu2ZnSn(S1-xSex)4 Nanocrystal-based Inks and the Effect of Sulfurization,” RSC Advances 3, 19946-19951(2013). dx.doi.org/10.1039/C3RA42624F
- L. Baggetto, E. Allcorn, R. R. Unocic, A. Manthiram, and G. M. Veith, “Mo3Sb7 as a Very Fast Anode Material for Lithium-ion and Sodium-ion Batteries,” Journal of Materials Chemistry A 1, 11163-11169 (2013). dx.doi.org/10.1039/C3TA12040F
- F. Cheng, J. Chen, H. Zhou, and A. Manthiram, “Structural and Electrochemical Characterization of (NH4)2HPO4-treated Lithium-rich Layered Li1.2Ni0.2Mn0.6O2 Cathodes for Lithium-ion Batteries,” Journal of the Electrochemical Society 160, A1661-A1667 (2013). dx.doi.org/10.1149/2.023310jes
- C. A. Bridges, K. L. Harrison, R. R. Unocic, J. Idrobo, M. P. Paranthaman, and A. Manthiram, “Defect Chemistry of Phospho-olivine Nanoparticles Synthesized by a Microwave-assisted Solvothermal Process,” Journal of Solid State Chemistry 205, 197-204 (2013). dx.doi.org/10.1016/j.jssc.2013.07.011
- Y.-Z. Fu and and A. Manthiram, “Electrochemical Properties of Cu2S with Ether-based Electrolyte in Li-ion Batteries,” Electrochimica Acta 109, 716-719 (2013). dx.doi.org/10.1016/j.electacta.2013.07.160
- Z. Moorhead-Rosenberg, K. R. Chemelewski, J. B. Goodenough, and A. Manthiram, “Magnetic Measurements as a Viable Tool to Assess the Relative Degrees of Cation Ordering and Mn3+ Content in Doped LiMn1.5Ni0.5O4 Spinel Cathodes,” Journal of Materials Chemistry A 1, 10745-10752 (2013). dx.doi.org/10.1039/C3TA12021J
- C.-C. Wang, K. A. Jarvis, P. J. Ferreira, and A. Manthiram, “Effect of Synthesis Conditions on the First Charge and Reversible Capacity of Lithium-rich Layered Oxide Cathodes,” Chemistry of Materials 25, 3267-3275 (2013). dx.doi.org/10.1021/cm402181f
- D. Yoon, Q. Su, H. Wang, and A. Manthiram, “Superior Power Density Solid Oxide Fuel Cells by Enlarging the Three-Phase Boundary Region of aNiO-Ce0.8Gd0.2O1.9 Composite Anode through Optimized Surface Structure,”Physical Chemistry Chemical Physics 15, 14966-14972 (2013). dx.doi.org/10.1039/C3CP52679H
- C. Zu, Y.-Z. Fu, and A. Manthiram, “Highly Reversible Li/dissolved Polysulfide Batteries with Binder-free Carbon Nanofiber Electrodes,” Journal of Materials Chemistry A 1, 10362-10367 (2013). dx.doi.org/10.1039/C3TA11958K
- S.-H. Chung and A. Manthiram, “Nano-cellular Carbon Current Collectors with Stable Cyclability for Li-S Batteries,”Journal of Materials Chemistry A 1, 9590-9596 (2013). dx.doi.org/10.1039/C3TA11819C
- K. R. Chemelewski, E.-S. Lee, W. Li, and A. Manthiram, “Factors Influencing the Electrochemical Properties of High-voltage Spinel Cathodes: Relative Impact of Morphology and Cation Ordering,” Chemistry of Materials 25, 2890-2897 (2013). dx.doi.org/10.1021/cm401496k
- C.-C. Wang and A. Manthiram, “Influence of Cationic Substitutions on the First Charge and Reversible Capacities of Lithium-rich Layered Oxide Cathodes,” Journal of Materials Chemistry A 1, 10209-10217 (2013). dx.doi.org/10.1039/C3TA11703K
- Z. Zuo, W. Li, and A. Manthiram, “N-Heterocycles Tethered Graphene as Efficient Metal-Free Catalysts for Oxygen Reduction Reaction in Fuel Cells,” Journal of Materials Chemistry A 1, 10166-10172 (2013). dx.doi.org/10.1039/C3TA11794D
- S.-H. Chung and A. Manthiram, “Lithium-sulfur Batteries with Superior Cycle Stability by Employing Porous Current Collectors,” Electrochimica Acta 107, 569-576 (2013). dx.doi.org/10.1016/j.electacta.2013.06.034
- I.-T. Kim, E. Allcorn, and A. Manthiram, “High-performance MxSb-Al2O3-C (M = Fe, Ni, and Cu) Nanocomposite Alloy Anodes for Sodium-ion Batteries,” Energy Technology 1, 319-326 (2013). dx.doi.org/10.1002/ente.201300023
- Q. Su, D. Yoon, A. Chen, F. Khatkhatay, A. Manthiram, and H. Wang, “Vertically Aligned Nanocomposite Electrolytes with Superior Out-of-plane Ionic Conductivity for Solid Oxide Fuel Cells,” Journal of Power Sources 242, 455-463 (2013). dx.doi.org/10.1016/j.jpowsour.2013.05.137
- K. R. Chemelewski and A. Manthiram, “Origin of Site Disorder and Oxygen Non-stoichiometry in LiMn1.5Ni0.5-xMxO4 (M = Cu and Zn) Cathodes with Divalent Dopant Ions,” Journal of Physical Chemistry C 117, 12465-12471 (2013). dx.doi.org/10.1021/jp404496j
- J. Pan, Y. Sun, W. Li, J. Knight, and A. Manthiram, “A Green Lead Hydrometallurgical Process Based on a Hydrogen-lead Oxide Fuel Cell,” Nature Communications 4, 2178: 1-6 (2013). dx.doi.org/10.1038/ncomms3178
- Z. Jiang, B. Pei, and A. Manthiram, “Randomly Stacked Holey Graphene Anodes for Lithium Ion Batteries with Enhanced Electrochemical Performance,” Journal of Materials Chemistry A 1, 7775-7781 (2013). dx.doi.org/10.1039/C3TA10457E
- B. Reeja-Jayan, N. Folse, and A. Manthiram, “Development of Scalable, Low-cost Polymer Solar Cell Test Platform,” Journal of Solar Energy Engineering 135, 041004: 1-8 (2013). dx.doi.org/10.1115/1.4024246
- K.-S. Lee, H.-Y. Park, H. C. Ham, S. J. Yoo, H.-J. Kim, E. Cho, A. Manthiram, and J. H. Jang, “Reversible Surface Segregation of Pt in Pt3Au/C Catalyst and its Effect on the Oxygen Reduction Reaction,” Journal of Physical Chemistry 117, 9164-9170 (2013). dx.doi.org/10.1021/jp403135k
- Y.-Z. Fu, Y.-S. Su, and A. Manthiram, “Highly Reversible Lithium/Dissolved Polysulfide Batteries with Carbon Nanotube Electrodes,” Angewandte Chemie 52, 6930-6935 (2013). dx.doi.org/10.1002/anie.201301250
- C. Zu and A. Manthiram, “Hydroxylated Graphene-sulfur Nanocomposites for High-rate Lithium-sulfur Batteries,” Advanced Energy Materials 3, 1008 – 1012 (2013). dx.doi.org/10.1002/aenm.201201080
- Y.-S. Su, Y. Fu, B. Guo, S. Dai, and A. Manthiram, “Fast, Reversible Lithium Storage with Sulfur/Long-Chain Polysulfide Redox Couple,” Chemistry – A European Journal 19, 8621-8626 (2013). dx.doi.org/10.1002/chem.201300886
- X. Zhao, W. Li, A. Murthy, Z. Jiang, Z. Zuo, and A. Manthiram, “A DMFC Stack Operating with Hydrocarbon Blend Membranes and Pt-Ru-Sn-Ce/C and Pd-Co/C Electrocatalysts,” International Journal of HydrogenEnergy 38, 7448-7457 (2013). dx.doi.org/10.1016/j.ijhydene.2013.04.013
- A. Gutierrez and A. Manthiram, “Understanding the Effects of Cationic and Anionic Substitutions in Spinel Cathodes of Lithium-ion Batteries,” Journal of the Electrochemical Society 160, A901-A905 (2013). dx.doi.org/10.1149/2.117306jes
- E.-S. Lee, A. Huq, and A. Manthiram, “Understanding the Effect of Synthesis Temperature on the Structural and Electrochemical Characteristics of Layered-Spinel Composite Cathodes for Lithium-ion Batteries,” Journal of Power Sources 240, 193-203 (2013). dx.doi.org/10.1016/j.jpowsour.2013.04.010
- B. Pei, Z. Jiang, W. Zhang, Z. Yang, and A. Manthiram, “Nanostructured Li3V2(PO4)3 Cathode Supported on Reduced Graphene Oxide for Lithium-ion Batteries,” Journal of Power Sources 239, 475-482 (2013). dx.doi.org/10.1016/j.jpowsour.2013.03.171
- X. Zhao, Y.-Z. Fu, W. Li, and A. Manthiram, “Effect of Non-Active Area on the Performance of Subgasketed MEAs in Fuel Cells,” International Journal of Hydrogen Energy 38, 7400-7406 (2013). dx.doi.org/10.1016/j.ijhydene.2013.03.160
- A. Manthiram, Y.-Z. Fu, and Y.-S. Su, “In Charge of the World: Electrochemical Energy Storage,” Journal of Physical Chemistry Letters 4, 1295-1297 (2013). dx.doi.org/10.1021/jz4006652
- K. L. Harrison and A. Manthiram, “Microwave-assisted Solvothermal Synthesis and Characterization of Various Polymorphs of LiVOPO4,” Chemistry of Materials 25, 1751-1760 (2013). dx.doi.org/10.1021/cm400227j
- Z. Zuo, X. Zhao, and A. Manthiram, “High-Performance Blend Membranes Composed of An Amphoteric Copolymer Containing Supramolecular Nanosieves for Direct Methanol Fuel Cells,” RSC Advances 3, 6759-6762 (2013). dx.doi.org/10.1039/C3RA23229H
- Z. Jiang, X. Zhao, and A. Manthiram, “Sulfonated Poly(ether ether ketone) Membranes with Sulfonated Graphene Oxide Fillers for Direct Methanol Fuel Cells,” International Journal of Hydrogen Energy38, 5875-5884 (2013). dx.doi.org/10.1016/j.ijhydene.2013.02.129
- L. Li and A. Manthiram, “Dual-electrolyte Lithium-air Batteries: Influence of Catalyst, Temperature, and Solid-electrolyte Conductivity on the Efficiency and Power Density,” Journal of Materials Chemistry A 1, 5121-5127 (2013). dx.doi.org/10.1039/C3TA01241G
- K. L. Harrison, C. Bridges, M. P. Paranthaman, C. U. Segre, J. Katsoudas, V. A. Maroni, J. C. Idrobo, J. B. Goodenough, and A. Manthiram, “Temperature Dependence of Aliovalent-vanadium Doping in LiFePO4 Cathodes,” Chemistry of Materials 25, 768-781 (2013). dx.doi.org/10.1021/cm303932m
- B. Reeja-Jayan and A. Manthiram, “Effects of Bifunctional Metal Sulfide Interlayers on Photovoltaic Properties of Organic-inorganic Hybrid Solar Cells,” RSC Advances 3, 5412-5421 (2013). dx.doi.org/10.1039/C3RA23055D
- B. Reeja-Jayan, T. Adachi, R .J. Ono, D. A. Vanden Bout, C. W. Bielawski, and A. Manthiram, “Effect of Interfacial Dipoles on Charge Traps in Organic-Inorganic Hybrid Solar Cells,” Journal of Materials Chemistry 1, 3258-3262 (2013). dx.doi.org/10.1039/C3TA01509B
- J. Cheng, W. Tian, J. Zhou, V. M. Lynch, H. Steinfink, A. Manthiram, A. F. May, V. O. Garlea, J. C. Neuefeind, and J. Yan, “Crystal and Magnetic Structures and Physical Properties of a New Pyroxene NaMnGe2O6 Synthesized under High Pressure,” Journal of the American Chemical Society 135, 2776-2786 (2013). dx.doi.org/10.1021/ja312038g
- W. Li, T. Cochell, and A. Manthiram, “Activation of Aluminum as an Effective Reducing Agent by Pitting Corrosion for Wet-chemical Synthesis,” Scientific Reports 3, 1229: 1-7 (2013). dx.doi.org/10.1038/srep01229
- T. Cochell, W. Li, and A. Manthiram, “Effects of Pt Coverage in Pt@PdCu5/C Core-Shell Electrocatalysts on the Oxygen Reduction Reaction and Methanol Tolerance,”Journal of Physical Chemistry C 117, 3865-3873 (2013). dx.doi.org/10.1021/jp3126522
- K. Chemelewski, D. W. Shin, W. Li, and A. Manthiram, “Octahedral and Truncated High-voltage Spinel Cathodes: Role of Morphology and Surface Planes on Electrochemical Properties,” Journal of Materials Chemistry 1, 3347-3354 (2013). dx.doi.org/10.1039/C3TA00682D
- E.-S. Lee and A. Manthiram, “Influence of Doping on the Cation Ordering and Charge-Discharge Behavior of LiMn1.5Ni0.5-xMxO4 (M = Cr, Fe, Co, and Ga) Spinels between 5.0 and 2.0 V,” Journal of Materials Chemistry A 1, 3118-3126 (2013). dx.doi.org/10.1039/C2TA01171A
- M. West and A. Manthiram, “Layered LnBa1-xSrxCoCuO5+δ (Ln = Nd and Gd) Perovskite Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy 38, 3364-3372 (2013). dx.doi.org/10.1016/j.ijhydene.2012.12.133
- S. Wang and A. Manthiram, “Graphene Ribbon-supported Pd Nanoparticles as Highly Durable, Efficient Electrocatalysts for Formic Acid Oxidation,” Electrochimica Acta 88, 565-570 (2013). dx.doi.org/10.1016/j.electacta.2012.10.125
- W. Li, X. Zhao, T. Cochell, and A. Manthiram, “Liquid-solid heterogeneous synthesis of highly dispersed and PdPt surface enriched PdPtCu/C as methanol tolerant oxygen reduction reaction catalysts,” Applied Catalysis B: Environmental 129, 426-436 (2013). dx.doi.org/10.1016/j.apcatb.2012.09.044
- C. Zu, Y.-S. Su, Y.-Z. Fu, and A. Manthiram, “Improved Lithium-Sulfur Cells with a Treated Carbon Paper Interlayer,” Physical Chemistry Chemical Physics 15, 2291-2297 (2013). dx.doi.org/10.1039/C2CP43394J
- A. Manthiram, Y.-Z. Fu, and Y.-S. Su, “Challenges and Prospects of Lithium-Sulfur Batteries,” Accounts of Chemical Research 46, 1125-1134 (2013). dx.doi.org/10.1021/ar30017
2012
- B. Reeja-Jayan, K. L. Harrison, K. Yang, C.-L. Wang, A. E. Yilmaz, and A. Manthiram, “Microwave-assisted Low-temperature Growth of Thin Films in Solution,” Scientific Reports 2, 1003: 1-8 (2012). dx.doi.org/10.1038/srep01003
- L. Baggetto, E. Allcorn, A. Manthiram, and G. M. Veith, “Cu2Sb Thin Films as Anode for Na-ion Batteries,” Electrochemistry Communications 27, 168–171 (2012). dx.doi.org/10.1016/j.elecom.2012.11.030
- Y.-Z. Fu, Y.-S. Su, and A. Manthiram, “Sulfur-Carbon Nanocomposite Cathodes Improved by an Amphiphilic Block Copolymer for High Rate Lithium-Sulfur Batteries,” ACS Applied Materials & Interfaces 4, 6046–6052 (2012). dx.doi.org/10.1021/am301688h
- P. Xiao, Z. Q. Deng, A. Manthiram, and G. Henkelman, “Calculations of Oxygen Stability in Lithium-rich Layered Cathodes,”Journal of Physical Chemistry 116, 23201–23204 (2012). dx.doi.org/10.1021/jp3058788
- Z. Jiang, X. Zhao, Y.-Z. Fu, and A. Manthiram, “Composite Membranes Based on Sulfonated Poly(ether ether ketone) and SDBS-adsorbed Graphene Oxide for Direct Methanol Fuel Cells,” Journal of Materials Chemistry 22, 24862-24869 (2012). dx.doi.org/10.1039/C2JM35571J
- Y.-S. Su, and A. Manthiram, “Lithium–Sulphur Batteries with a Microporous Carbon Paper as a Bi-functional Interlayer,” Nature Communications 3, 1166: 1-6 (2012). dx.doi.org/10.1038/ncomms2163
- Z. Zuo, Y.-Z. Fu, and A. Manthiram, “Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells,” Polymers 4, 1627-1644 (2012). dx.doi.org/10.3390/polym4041627
- Y.-S. Su, Y.-Z. Fu, and A. Manthiram, “Self-Weaving Sulfur–Carbon Composite Cathodes for High Rate Lithium–Sulfur Batteries,” Physical Chemistry and Chemical Physics 14, 14495-14499 (2012). dx.doi.org/10.1039/C2CP42796F
- D. W. Shin, C. A. Bridges, A. Huq, M. P. Paranthaman, and A. Manthiram, “Role of Cation Ordering and Surface-segregation in High-voltage Spinel LiMn1.5Ni0.5−xMxO4 (M = Cr, Fe, and Ga) Cathodes for Lithium-Ion Batteries,” Chemistry of Materials 24, 3720-3731 (2012). dx.doi.org/10.1021/cm301844w
- E.-S. Lee, K.-W. Nam, E. Hu, and A. Manthiram, “Influence of Cation Ordering and Lattice Distortion on the Charge-Discharge Behavior of LiMn1.5Ni0.5O4 Spinel between 5.0 and 2.0 V,”Chemistry of Materials 24, 3610-3620 (2012). dx.doi.org/10.1021/cm3020836
- S. Wang, T. Cochell, and A. Manthiram, “Boron-doped Carbon Nanotube-supported Pt Nanoparticles with Improved CO Tolerance for Methanol Electro-oxidation,” Physical Chemistry and Chemical Physics 14, 13910-13913 (2012). dx.doi.org/10.1039/C2CP42414B
- S. Wang, X. Zhao, T. Cochell, and A. Manthiram, “Nitrogen-doped Carbon Nanotube/Graphite Felt as Advanced Electrode Materials for Vanadium Redox Flow Batteries,” Journal of Physical Chemistry Letters 3, 2164-2167 (2012). dx.doi.org/10.1021/jz3008744
- L. Li, X. Zhao, Y.-Z. Fu, and A. Manthiram, “Polyprotic Acid Catholyte for High Capacity Dual-Electrolyte Li-air Batteries,” Physical Chemistry and Chemical Physics 14, 12737-12740 (2012). dx.doi.org/10.1039/C2CP42250F
- Y.-Z. Fu and A. Manthiram, “Enhanced Cyclability of Lithium-Sulfur Batteries by a Polymer Acid-Doped Polypyrrole Mixed Ionic-Electronic Conductor,” Chemistry of Materials 24, 3081-3087 (2012). dx.doi.org/10.1021/cm301661y
- J. Song, D. W. Shin, Y. Lu, C. D. Amos, A. Manthiram, and J. B. Goodenough, “Role of Oxygen Vacancies on the Performance of Li[Ni0.5-xMn1.5+x]O4 (x = 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries,” Chemistry of Materials 24, 3101-3109 (2012). dx.doi.org/10.1021/cm301825h
- Y.-S. Su and A. Manthiram, “A New Approach to Improve Cycle Performance of Rechargeable Lithium-Sulfur Batteries by Inserting a Free-Standing MWCNT Interlayer,” Chemical Communications 48, 8817-8819 (2012). dx.doi.org/10.1039/C2CC33945E
- Q. Su, D. Yoon, Y. N. Kim, W. Gong, A. Chen, S. Cho, A. Manthiram, A. J. Jacobson, and H. Wang, “Effect of Interlayer Thickness on the Electrochemical Properties of Bi-layer Cathodes for Solid Oxide Fuel Cells,” Journal of Power Sources 218, 261-267 (2012). dx.doi.org/10.1016/j.jpowsour.2012.06.094
- Y.-Z. Fu, Y.-S. Su, and A. Manthiram, “Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries,” Journal of the Electrochemical Society 159, A1420-A1424 (2012). dx.doi.org/10.1149/2.027209jes
- Y.-S. Su and A. Manthiram, “A Facile In Situ Sulfur Deposition Route to Obtain Carbon-wrapped Sulfur Composite Cathodes for Lithium-Sulfur Batteries,” Electrochimica Acta 77, 272-278 (2012). dx.doi.org/10.1016/j.electacta.2012.06.002
- D. Applestone and A. Manthiram, “Symmetric Cell Evaluation of the Effects of Electrolyte Additives on Cu2Sb-Al2O3-C Nanocomposite Anodes,” Journal of Power Sources 217, 1-5 (2012). dx.doi.org/10.1016/j.jpowsour.2012.05.119
- Y.-Z. Fu and A. Manthiram, “Core-shell Structured Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries,” RSC Advances 2, 5927-5929 (2012). dx.doi.org/10.1039/C2RA20393F
- Z. Moorhead-Rosenberg, D. W. Shin, K. R. Chemelewski, J. B. Goodenough, and A. Manthiram, “Quantitative Determination of Mn3+ Content in LiMn1.5Ni0.5O4 Spinel Cathodes by Magnetic Measurements,” Applied Physics Letters 100, 213909: 1-5 (2012). dx.doi.org/10.1063/1.4722927
- X. Zhao, Y.-Z. Fu, W. Li, and A. Manthiram, “Hydrocarbon Blend Membranes with Suppressed Chemical Crossover for Redox Flow Batteries,” RSC Advances 2, 5554-5556 (2012). dx.doi.org/10.1039/C2RA20668D
- Y.-Z. Fu and A. Manthiram, “Orthorhombic Bipyramidal Sulfur Coated with Polypyrrole Nanolayers as Cathode Material for Lithium-Sulfur Batteries,” Journal of Physical Chemistry C 116, 8910-8915 (2012). dx.doi.org/10.1021/jp300950m
- Y. N. Kim, J.-H. Kim, A. Huq, M. P. Paranthaman, and A. Manthiram, “(Y0.5In0.5)Ba(Co,Zn)4O7 Cathodes with Superior High-temperature Phase Stability for Solid Oxide Fuel Cells,” Journal of Power Sources 214 7-14 (2012). dx.doi.org/10.1016/j.jpowsour.2012.03.050
- X. Zhao, W. Li, Y.-Z. Fu, and A. Manthiram, “Influence of Ionomer Content on the Proton Conduction and Oxygen Transport in the Carbon-supported Catalyst Layers in DMFC,” International Journal of Hydrogen Energy 37, 9845-9852 (2012). dx.doi.org/10.1016/j.ijhydene.2012.03.107
- K. Jarvis, Z. Deng, L. Allard, A. Manthiram, and P. Ferreira, “Understanding Structural Defects in Lithium-rich Layered Oxide Cathodes,” Journal of Materials Chemistry 22, 11550-11555 (2012). dx.doi.org/10.1039/C2JM30575E
- A. Murthy, E. Lee, and A. Manthiram, “Electrooxidation of Methanol on Highly Active and Stable Pt-Sn-Ce/C Catalyst for Direct Methanol Fuel Cells,” Applied Catalysis B: Environmental 121-122, 154-161 (2012). dx.doi.org/10.1016/j.apcatb.2012.03.030
- Y. N. Kim and A. Manthiram, “La1.85Sr1.15Cu2-xCoxO6+δ Intergrowth Oxides as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Electrochimica Acta 70, 375-381 (2012). dx.doi.org/10.1016/j.electacta.2012.03.087
- D. Applestone and A. Manthiram, “Cu6Sn5-TiC-C Nanocomposite Alloy Anodes with High Volumetric Capacity for Lithium-Ion Batteries,” RSC Advances 2, 5411-5417 (2012). dx.doi.org/10.1039/C2RA20325A
- D. A. Slanac, L. Li, A. Mayoral, M. José Yacaman, A. Manthiram, K. J. Stevenson, and K. P. Johnston, “Atomic Resolution Structural Insights into PdPt Nanoparticle-carbon Interactions for the Design of Highly Active and Stable Electrocatalysts,” Electrochimica Acta 64, 35-46 (2012). dx.doi.org/10.1016/j.electacta.2011.12.062
- A. Cao and A. Manthiram, “Shape-controlled Synthesis of High Tap Density Cathode Oxides for Lithium-Ion Batteries,” Physical Chemistry and Chemical Physics 14, 6724-6728 (2012). dx.doi.org/10.1039/C2CP40209B
- S. Yoon, E. Lee, and A. Manthiram, “Microwave-solvothermal Synthesis of Various Polymorphs of Nanostructured TiO2 in Different Alcohol Media and Their Lithium-Ion Storage Properties,” Inorganic Chemistry 51, 3505-3512 (2012). dx.doi.org/10.1021/ic202239n
- J. Ma and A. Manthiram, “Precursor-directed Formation of Hollow Co3O4 Nanospheres Exhibiting Superior Lithium Storage Properties,” RSC Advances 2, 3187-3189 (2012). dx.doi.org/ 10.1039/C2RA20092A
- A. Murthy and A. Manthiram, “Application of Derivative Voltammetry in the Analysis of Methanol Oxidation Reaction,” Journal of Physical Chemistry 116, 3827-3832 (2012). dx.doi.org/10.1021/jp2092829
- T. Cochell and A. Manthiram, “Pt@PdxCuy/C Core-Shell Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Langmuir 28, 1579-1587 (2012). dx.doi.org/10.1021/la202610z
- E.-S. Lee, A. Huq, H.-Y. Chang, and A. Manthiram, “High-voltage, High-energy Layered-Spinel Composite Cathodes with Superior Cycle Life for Lithium-Ion Batteries,” Chemistry of Materials 24, 600-612 (2012). dx.doi.org/10.1021/cm2034992
- D. Applestone, S. Yoon, and A. Manthiram, “Cu2Sb-Al2O3-C Nanocomposite Alloy Anodes with Exceptional Cycle Life for Lithium-Ion Batteries,” Journal of Materials Chemistry 22, 3242-3248 (2012). dx.doi.org/10.1039/C2JM13479A
- L. Li, X. Zhao, and A. Manthiram,“A Dual-electrolyte Rechargeable Li-Air Battery with Phosphate Buffer Catholyte,” Electrochemistry Communications 14, 78-81 (2012). dx.doi.org/10.1016/j.elecom.2011.11.007
- X. Zhao, W. Li, and A. Manthiram, “Comparison of the Membrane-Electrode Assembly Conditioning Procedures for Direct Methanol Fuel Cells,” Journal of Power Sources 201, 37-42 (2012). dx.doi.org/10.1016/j.jpowsour.2011.10.098
- S. Cho, Y. N. Kim, J. H. Lee, A. Manthiram, and H. Wang, “Microstructure and Electrochemical Properties of PrBaCo2O5+δ/Ce0.9Gd0.1O1.95 Vertically Aligned Nanocomposite Thin Film as Interlayer for Thin Film Solid Oxide Fuel Cells,” Electrochemica Acta 62, 147-152 (2012). dx.doi.org/10.1016/j.electacta.2011.12.008
2011
- K. A. Jarvis, Z. Deng, L. Allard, A. Manthiram, and P. Ferreira, “Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution,” Chemistry of Materials 23, 3614-3621 (2011). dx.doi.org/10.1021/cm200831c
- Y. S. Jung, A. S. Cavanagh, Y. Yan, S. M. George, and A. Manthiram, “Effects of Atomic Layer Deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 Cathode for Lithium-Ion Batteries,” Journal of the Electrochemical Society 158, A1298-A1302 (2011). dx.doi.org/10.1149/2.030112jes
- Y. Li, Y. N. Kim, J. Cheng, J. A. Alonso, Z. Hu, Y.-Y. Chin, T. Takami, M. T. Fernandez-Diaz, H.-J. Lin, C.-T. Chen, L. H. Tjeng, A. Manthiram, and J. Goodenough, “Oxygen-Deficient Perovskite Sr0.7Y0.3CoO2.65-δ as a Cathode for Intermediate-Temperature Solid Oxide Fuel Cells,” Chemistry of Materials 23, 5037-5044 (2011). dx.doi.org/10.1021/cm202542q
- Y. N. Kim, J.-H. Kim, and A. Manthiram, “Characterization of (Y1-xCax)BaCo4-yZnyO7 as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy 36, 15295-15303 (2011). dx.doi.org/10.1016/j.ijhydene.2011.08.089
- D. Applestone, S. Yoon, and A. Manthiram, “Mo3Sb7-C Composite Anodes for Lithium-Ion Batteries,” The Journal of Physical Chemistry 115, 18909-18915. dx.doi.org/10.1021/jp206012v
- D. W. Shin and A. Manthiram, “Surface-segregated, High-voltage Spinel LiMn1.5Ni0.42Ga0.08O4 Cathodes with Superior High-temperature Cyclability for Lithium-Ion Batteries,” Electrochemistry Communications 13, 1213-1216 (2011). dx.doi.org/10.1016/j.elecom.2011.08.041
- Z. Q. Deng and A. Manthiram, “Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-rich Layered Oxide Cathodes,” The Journal of Physical Chemistry C 115, 7097-7103 (2011). dx.doi.org/10.1021/jp200375d
- Y. Zhu, S. Zieren, and A. Manthiram, “Novel Crosslinked Membranes Based on Sulfonated Poly(ether ether ketone) for Direct Methanol Fuel Cells,” Chemical Communications 47, 7410-7412 (2011). dx.doi.org/10.1039/C1CC11474C
- A. Murthy and A. Manthiram, “Highly Water-dispersible, Mixed Ionic-electronic Conducting, Polymer Acid-doped Polyanilines as Ionomers for Direct Methanol Fuel Cells,” Chemical Communications 47, 6882-6884 (2011). dx.doi.org/10.1039/C1CC11473E
- J.-H. Kim, Y. N. Kim, Z. Bi, A. Manthiram, M. P. Paranthaman, and A. Huq, “High Temperature Phase Stabilities and Electrochemical Properties of InBaCo4-xZnxO7 Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Electrochimica Acta 56, 5740-5745 (2011). dx.doi.org/10.1016/j.electacta.2011.04.047
- Y. N. Kim and A. Manthiram, “Electrochemical Properties of Ln(Sr,Ca)3(Fe,Co)3O10 + Gd0.2Ce0.8O1.9 Composite Cathodes for Solid Oxide Fuel Cells,” Journal of the Electrochemical Society 158, B1206-B1210 (2011). dx.doi.org/10.1149/1.3621718
- W. C. West, J. Soler, M. C. Smart, B. V. Ratnakumar, S. Firdosy, V. Ravi, M. S. Anderson, J. Hrbacek, E.-S. Lee, and A. Manthiram, “Electrochemical Behavior of Layered Solid Solution Li2MnO3-LiMO2 (M=Ni, Mn, Co)Li-Ion Cathodes with and without Alumina Coatings,” Journal of The Electrochemical Society 158, A883-A889 (2011). dx.doi.org/10.1149/1.3597319
- B. Reeja Jayan and A. Manthiram, “Understanding the Improved Stability of Hybrid Polymer Solar Cells Fabricated with Copper Electrodes,” ACS Applied Materials & Interfaces 3, 1492-1501 (2011). dx.doi.org/10.1021/am200067d
- A. Manthiram, J.-H. Kim, Y. N. Kim, and K.-T. Lee, “Crystal Chemistry and Properties of Mixed Ionic-Electronic Conductors,” Journal of Electroceramics 27, 93-107 (2011). dx.doi.org/10.1007/s10832-011-9635-x
- S. Yoon and A. Manthiram, “Microwave-hydrothermal Synthesis of W0.4Mo0.6O3 and Carbon-decorated WOx-MoO2 Nanorod Anodes for Lithium-Ion Batteries,” Journal of Materials Chemistry 21, 4082-4085 (2011). dx.doi.org/10.1039/C0JM04571C
- Y. Zhu and A. Manthiram, “Synthesis and Characterization of Polysulfone-containing Sulfonated Side Chains for Direct Methanol Fuel Cells,” Journal of Power Sources 196, 7481-7487 (2011). dx.doi.org/10.1016/j.jpowsour.2011.05.019
- K. L. Harrison and A. Manthiram, “Microwave-assisted Solvothermal Synthesis and Characterization of Metastable LiFe1-x(VO)xPO4 Cathodes,” Inorganic Chemistry 50, 3613-3620 (2011). dx.doi.org/10.1021/ic1025747
- K. R. Stroukoff and A. Manthiram, “Thermal Stability of Spinel Li1.1Mn1.9-yMyO4-zFz (M = Ni, Al, and Li, 0 ≤ y ≤ 0.3, and 0 ≤ z ≤ 0.2) Cathodes for Lithium-Ion Batteries,” Journal of Materials Chemistry 21, 10165-10170 (2011). dx.doi.org/10.1039/C0JM04228E
- S. Cho, Y. N. Kim, J.-H. Kim, A. Manthiram, and H. Wang, “High Power Density Thin Film SOFCs with YSZ/GDC Bilayer Electrolyte,” Electrochimica Acta 56, 5472-5477 (2011). dx.doi.org/10.1016/j.electacta.2011.03.039
- A. Manthiram, “Materials Challenges and Opportunities of Lithium-Ion Batteries,” Journal of Physical Chemistry Letters 2, 176-184 (2011). dx.doi.org/10.1021/jz1015422
- Y. N. Kim and A. Manthiram, “Layered LnBaCo2-xCuxO5+δ (0 ≤ x ≤ 1.0) Perovskite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells,” Journal of the Electrochemical Society 158, B276-B282 (2011). dx.doi.org/10.1149/1.3527006
- S. Yoon and A. Manthiram, “Nanostructured Sn-Ti-C Composite Anodes for Lithium-Ion Batteries,” Electrochimica Acta 56, 3029-3035 (2011). dx.doi.org/10.1016/j.electacta.2010.12.100
- J.-H. Kim, K.-T. Lee, Y. N. Kim, and A. Manthiram, “Crystal Chemistry and Electrochemical Properties of Ln(Sr,Ca)3(Fe,Co)3O10 Intergrowth Oxide Cathodes for Solid Oxide Fuel Cells,” Journal of Materials Chemistry 21, 2482-2488 (2011). dx.doi.org/10.1039/C0JM03230A
- J. Zhao, K. Jarvis, P. J. Ferreira, and A. Manthiram, “Performance and Stability of Pd–Pt–Ni Nanoalloy Electrocatalysts in Proton Exchange Membrane Fuel Cells,” Journal of Power Sources 196, 4515-4523 (2011). dx.doi.org/10.1016/j.jpowsour.2011.01.026
- S. Yoon and A. Manthiram, “Hollow Core-Shell Mesoporous TiO2 Spheres for Lithium-Ion Storage,” Journal of Physical Chemistry C 115, 9410-9416 (2011). dx.doi.org/10.1021/jp1123184
- E. Lee, A. Murthy, and A. Manthiram, “Carbon-supported Pt Nanoparticles Prepared by a Modified Borohydride Reduction Method: Effect on the Particle Morphology and Catalytic Activity for COad and Methanol Electro-oxidation,” Electrochemistry Communications 13, 480-483 (2011). dx.doi.org/10.1016/j.elecom.2011.02.026
- A. Murthy and A. Manthiram, “Direct Kinetic Evidence for the Electronic Effect of Ruthenium in PtRu on the Dissociative Adsorption of Methanol,” Electrochemistry Communications 13, 310-313 (2011). dx.doi.org/10.1016/j.elecom.2011.01.010
- J. Zhao and A. Manthiram, “Preleached Pd-Pt-Ni and Binary Pd-Pt Electrocatalysts for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells,” Applied Catalysis B: Environmental 101, 660-668 (2011). dx.doi.org/10.1016/j.apcatb.2010.11.007
- J. Zhao and A. Manthiram, “In situ Electrochemical Characterization of Proton Exchange Membrane Fuel Cells Fabricated with Pd-Pt-Ni Cathode Catalysts,” Journal of the Electrochemical Society 158, B208-B214 (2011). dx.doi.org/10.1149/1.3519246
- E. Lee, A. Murthy, and A. Manthiram, “Comparison of the Activities and Stabilities of Pt/C, Pt-Ru/C, and Pt3-Sn/C Electrocatalysts Synthesized by a Polyol Method for Methanol Electro-oxidation Reaction,” Journal of Electroanalytical Chemistry 659, 168-175 (2011). dx.doi.org/10.1016/j.jelechem.2011.05.022
- F. Prado, J.-H. Kim, and A. Manthiram, “Effects of Ga Substitution on the High Temperature Properties of the n = 3 Ruddlesden Popper System LaSr3Fe1.5-x/2Co1.5-x/2GaxO10-δ (0 ≤ x ≤ 0.8),” Solid State Ionics 192, 241-244 (2011). dx.doi.org/10.1016/j.ssi.2010.05.056
- S. Cho, J. Yoon, J.-H. Kim, X. Zhang, A. Manthiram, and H. Wang, “Microstructural and Electrical Properties of Ce0.9Gd 0.1O1.95 (GDC) Thin-film Electrolyte in Solid-oxide Fuel Cells,” Journal of Materials Research 26, 854-859 (2011). dx.doi.org/10.1557/jmr.2010.72
- E. Lee and A. Manthiram, “One-Step Reverse Microemulsion Synthesis of Pt-CeO2/C Catalysts with Improved Nanomorphology and Their Effect on Methanol Electrooxidation Reaction,” Journal of Physical Chemistry C 114, 21833-21839 (2011). dx.doi.org/10.1021/jp107639u
- E. S. Lee and A. Manthiram, “High Capacity Li[Li0.2Mn0.54 Ni0.13Co0.13]O2 – VO2(B) Composite Cathodes with Controlled Irreversible Capacity Loss for Lithium-Ion Batteries,” Journal of the Electrochemical Society 158, A47-A0 (2011). dx.doi.org/10.1149/1.3515900
- A. Murthy and A. Manthiram, “Electrocatalytic Oxidation of Methanol to Soluble Products on Polycrystalline Platinum: Application of Convolution Potential Sweep Voltammetry in the Estimation of Kinetic Parameters,” Electrochimica Acta 56, 6078-6083 (2011). dx.doi.org/10.1016/j.electacta.2011.04.078
- E. Lee, A. Murthy, and A. Manthiram, “Effect of Mo Addition on the Electrocatalytic Activity of Pt-Sn-Mo/C for Direct Ethanol Fuel Cells,” Electrochimica Acta 56, 1611-1618 (2011). dx.doi.org/10.1016/j.electacta.2010.10.086
2010
- T. Muraliganth, K.R. Stroukoff, and A. Manthiram, “Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries,” Chemistry of Materials 22, 5754-5761 (2010). dx.doi.org/10.1021/cm102058n
- B. C. Norris, W. Li, E. Lee, A. Manthiram, and C. W. Bielawski, “‘Click’-Functionalization of Poly(sulfone)s and a Study of Their Utilities as Proton Conductive Membranes in Direct Methanol Fuel Cells,” Polymer 51, 5352-5358 (2010). dx.doi.org/10.1016/j.polymer.2010.09.041
- T. Muraliganth and A. Manthiram, “Understanding the Shifts in the Redox Potentials of Olivine LiM1-yMyPO4 (M = Fe, Mn, Co, and Mg) Solid Solution Cathodes,” Journal of Physical Chemistry C 114, 15530-15540 (2010). dx.doi.org/10.1021/jp1055107
- I.-S. Park, W. Li, and A. Manthiram, “Fabrication of Catalyst-coated Membrane-electrode Assemblies by Doctor Blade Method and Their Performance in Fuel Cells,” Journal of Power Sources 195, 7078-7082 (2010). dx.doi.org/10.1016/j.jpowsour.2010.05.004
- J. Liu, B. Reeja Jayan, and A. Manthiram, “Conductive Surface Modification with Aluminum of High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathodes,” Journal of Physical Chemistry C 114, 9528-9533 (2010). dx.doi.org/10.1021/jp102050s
- J. Liu, Q. Wang, B. Reeja Jayan, and A. Manthiram, “Carbon-Coated High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode,” Electrochemistry Communications 12, 750-753 (2010). dx.doi.org/10.1016/j.elecom.2010.03.024
- J.-H. Kim, Y. N. Kim, S. Cho, H. Wang, and A. Manthiram, “Electrochemical Characterization of YBaCo3ZnO7 + Gd0.2Ce0.8O1.9 Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Electrochimica Acta 55, 5312-5317 (2010). dx.doi.org/10.1016/j.electacta.2010.04.058
- W. Li, A. Manthiram, M. D. Guiver, and B. Liu, “High Performance Direct Methanol Fuel Cells Based on Acid-Base Blend Membranes Containing Benzotriazole,” Electrochemistry Communications 12, 607-610 (2010). dx.doi.org/10.1016/j.elecom.2010.02.011
- W. Li, A. Manthiram, and M. D. Guiver, “Acid-base Blend Membranes Consisting of Sulfonated Poly(ether ether ketone) and 5-amino-benzotriazole Tethered Polysulfone for DMFC,” Journal of Membrane Science 362, 289-297 (2010). dx.doi.org/10.1016/j.memsci.2010.06.059
- Y. N. Kim, J.-H. Kim, and A. Manthiram, “Effect of Fe Substitution on the Structure and Properties of LnBaCo2-xFexO5+δ (Ln = Nd and Gd) Cathodes,” Journal of Power Sources 195, 6411-6419 (2010). dx.doi.org/10.1016/j.jpowsour.2010.03.100
- B. Reeja Jayan and A. Manthiram, “Influence of Polymer-metal Interface on the Photovoltaic Properties and Long-term Stability of nc-TiO2-P3HT Hybrid Solar Cells,” Solar Energy Materials and Solar Cells 94, 907-914 (2010). dx.doi.org/10.1016/j.solmat.2010.01.021
- J. Liu and A. Manthiram, “Functional Surface Modifications of High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode,” Journal of Materials Chemistry 20, 3961-3967 (2010). dx.doi.org/10.1039/B925711J
- A. Sarkar and A. Manthiram, “Synthesis of Pt@Cu Core-Shell Nanoparticles by Galvanic Displacement of Cu by Pt4+ Ions and Their Application as Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Journal of Physical Chemistry C 114, 4725-4732 (2010). dx.doi.org/10.1021/jp908933r
- J. Liu, W. Li, and A. Manthiram, “Dense Core-shell Structured SnO2/C Composites as High Performance Anodes for Lithium-Ion Batteries,” Chemical Communications 46, 1437-1439 (2010). dx.doi.org/10.1039/B918501A
- E. Lee, I.-S. Park, and A. Manthiram, “Synthesis and Characterization of Pt-Sn-Pd/C Catalysts for Ethanol Electro-Oxidation Reaction,” Journal of Physical Chemistry 114, 10634-10640 (2010). dx.doi.org/10.1021/jp101843h
- A. Sarkar, A. Vadivel Murugan, and A. Manthiram, “Rapid Microwave-Assisted Solvothermal Synthesis of Methanol Tolerant Pt-Pd-Co Nanoalloy Electrocatalysts,” Fuel Cells 10, 375-383 (2010). dx.doi.org/10.1002/fuce.200900139
- N. Kalaiselvi and A. Manthiram, “One-pot, Glycine-assisted Combustion Synthesis and Characterization of Nanoporous LiFePO4/C Composite Cathodes for Lithium-Ion Batteries,” Journal of Power Sources 195, 2894-2899 (2010). dx.doi.org/10.1016/j.jpowsour.2009.11.054
- J. Zhao, A. Sarkar, and A. Manthiram, “Synthesis and Characterization of Pd-Ni Nanoalloy Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Electrochimica Acta 55, 1756-1765 (2010). dx.doi.org/10.1016/j.electacta.2009.10.061
- A. Sarkar, A. Vadivel Murugan, and A. Manthiram, “Pt-Encapsulated Pd-Co Nanoalloy Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Langmuir 26, 2894-2903 (2010). dx.doi.org/10.1021/la902756j
- J.-H. Kim and A. Manthiram, “Low Thermal Expansion RBa(Co,M)4O7 Cathode Materials Based on Tetrahedral-Site Cobalt Ions for Solid Oxide Fuel Cells,” Chemistry of Materials 22, 822-831 (2010). dx.doi.org/10.1021/cm9015244
- I.-S. Park, E. Lee, and A. Manthiram, “Electrocatalytic Properties of Indium Tin Oxide (ITO)-supported Pt Nanoparticles for Methanol Electro-oxidation,” Journal of the Electrochemical Society 157, B251-B255 (2010). dx.doi.org/10.1149/1.3268126
- S. Yoon and A. Manthiram, “Nanoengineered Sn-TiC-C Anode for Lithium-Ion Batteries,” Journal of Materials Chemistry 20, 236-239 (2010). dx.doi.org/10.1039/B919116J
2009
- J. Yoon, S. Cho, J.-H. Kim, Z. Bi, A. Serquis, X. Zhang, A. Manthiram, and H. Wang, “Vertically Aligned Nanocomposite Thin Films as a Cathode/Electrolyte Interface Layer for Thin-Film Solid Oxide Fuel Cells,” Advanced Functional Materials 19, 3868-3873 (2009). dx.doi.org/10.1002/adfm.200901338
- A. Vadivel Murugan, T. Muraliganth, and A. Manthiram, “Rapid, Facile Microwave-solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Storage,” Chemistry of Materials 21, 5004-5006 (2009). dx.doi.org/10.1021/cm902413c
- T. Muraliganth, A. Vadivel Murugan, and A. Manthiram, “Facile Synthesis of Carbon-decorated Single-crystalline Fe3O4 Nanowires and Their Application as High Performance Anode in Lithium- Ion Batteries,” Chemical Communications 7360-7362 (2009). dx.doi.org/10.1039/B916376J
- J.-H. Kim and A. Manthiram, “Characterization of Sr2.7Ln0.3Fe1.4Co0.6O7 (Ln = La, Nd, Sm, Gd) Intergrowth Oxides as Cathodes for Solid Oxide Fuel Cells,” Solid State Ionics 180, 1478-1483 (2009). dx.doi.org/10.1016/j.ssi.2009.09.007
- W. Li, A. Manthiram, and M. D. Guiver, “Blend Membranes Consisting of Sulfonated Poly(ether ether ketone) and 1H-Perimidine Tethered Polysulfone for Direct Methanol Fuel Cells,” Electrochemical and Solid State Letters 12, B180-B184 (2009). dx.doi.org/10.1149/1.3243465
- J.-H. Kim and A. Manthiram, “Layered NdBaCo2-xNixO5+δ Perovskite Oxides as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Electrochimica Acta 54, 7551-7557 (2009). dx.doi.org/10.1016/j.electacta.2009.08.021
- W. Li and A. Manthiram, “Sulfonated Poly(arylene ether sulfone) as a Methanol-barrier Layer in Multilayer Membranes for Direct Methanol Fuel Cells,” Journal of Power Sources 195, 962-968 (2009). dx.doi.org/10.1016/j.jpowsour.2009.08.096
- J. Liu and A. Manthiram, “Kinetics Study of the 5 V Spinel Cathode LiMn1.5Ni0.5O4 before and after Surface Modifications,” Journal of the Electrochemical Society 156, A833-A838 (2009). dx.doi.org/10.1149/1.3206590
- J.-H. Kim, L. Mogni, F. Prado, A. Caneiro, J. A. Alonso, and A. Manthiram, “High Temperature Crystal Chemistry and Oxygen Permeation Properties of the Mixed Ionic-Electronic Conductors LnBaCo2O5+δ(Ln = lanthanide),” Journal of the Electrochemical Society 156, B1376-B1381 (2009). dx.doi.org/10.1149/1.3231501
- S. Yoon and A. Manthiram, “Sb-MOx-C (M = Al, Ti, or Mo) Nanocomposite Anodes for Lithium-Ion Batteries,” Chemistry of Materials 21, 3898-3904 (2009). dx.doi.org/10.1021/cm901495h
- W. Li, B. C. Norris, P. Snodgrass, K. Prasad, A. S. Stockett, V. Pryamitsyn, V. Ganesan, C. W. Bielawski, and A. Manthiram, “Evaluating the Role of Additive pKa on the Proton Conductivities of Blended Sulfonated Poly (Ether Ether Ketone) Membranes,” Journal of Physical Chemistry B 113, 10063-10067 (2009). dx.doi.org/10.1021/jp904192t
- J. Liu and A. Manthiram, “Understanding the Improved Electrochemical Performances of Fe-substituted 5 V Spinel Cathode LiMn1.5Ni0.5O4,” Journal of Physical Chemistry C 113, 15073-15079 (2009). dx.doi.org/10.1021/jp904276t
- S. Yoon and A. Manthiram, “Superior Capacity Retention Sn-Ni-Fe-C Composite Anodes for Lithium-Ion Batteries,” Electrochemical and Solid State Letters 12, A190-A193 (2009). dx.doi.org/10.1149/1.3158060
- A. Manthiram, “Materials and Manufacturing Challenges of Direct Methanol Fuel Cells,” The WSTIAC Quarterly 9, 69-74 (2009). https://apps.dtic.mil/docs/citations/ADA519964
- J. Gao and A. Manthiram, “Eliminating the Irreversible Capacity Loss of High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode by Blending with Other Lithium Insertion Hosts,” Journal of Power Sources 191, 644-647 (2009). dx.doi.org/10.1016/j.jpowsour.2009.02.005
- J. Liu and A. Manthiram, “Understanding the Improvement in the Electrochemical Properties of Surface Modified 5 V LiMn1.42Ni0.42Co0.16O4 Spinel Cathodes in Lithium-Ion Cells,” Chemistry of Materials 21, 1695-1707 (2009). dx.doi.org/10.1021/cm9000043
- Q. Y. Wang, J. Liu, A. Vadivel Murugan, and A. Manthiram, “High Capacity Double-layer Surface Modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode with Improved Rate Capability,” Journal of Materials Chemistry 19, 4965-4972 (2009). dx.doi.org/10.1039/B823506F
- A. Manthiram, “Phospho-Olivine Cathodes for Lithium-Ion Batteries,”Electrochemical Society Interface 18, 44-47 (2009). www.electrochem.org/dl/interface/spr/spr09/if_spr09.htm
- J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. Rolison, T. Sands, L. Shi. D. Sholl, and Y. Wu, “Nanoscale Design to Enable the Revolution in Renewable Energy,” Energy & Environmental Science 2, 559-588 (2009). dx.doi.org/10.1039/B821698C
- J. K. Lee, W. Li, and A. Manthiram, “Poly(arylene ether sulfone)s Containing Pendant Sulfonic Acid Groups as Membrane Materials for Direct Methanol Fuel Cells,” Journal of Membrane Science 330, 73-79 (2009). dx.doi.org/10.1016/j.memsci.2008.12.043
- Q. Luo, T. Muraliganth, and A. Manthiram, “On the Incorporation of Fluorine into the Manganese Spinel Cathode Lattice,” Solid State Ionics 180, 703-707 (2009). dx.doi.org/10.1016/j.ssi.2009.03.012
- H. Liu, W. Li, and A. Manthiram, “Factors Influencing the Electrocatalytic Activity of Pd100-xCox (0 ≤ x ≤ 50) Nanoalloys for Oxygen Reduction Reaction in Fuel Cells,” Applied Catalysis B: Environmental 90, 184-194 (2009). dx.doi.org/10.1016/j.apcatb.2009.03.008
- C. Torres-Garibay, D. Kovar, and A. Manthiram, “Ln0.6Sr0.4Co1-yFeyO3-δ (Ln = La and Nd; y = 0 and 0.5) Cathodes with Thin YSC Electrolytes for Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Power Sources 187, 480-486 (2009). dx.doi.org/10.1016/j.jpowsour.2008.11.025
- W. Li, Y.-Z. Fu, A. Manthiram, and M. D. Guiver, “Blend Membranes Consisting of Sulfonated Poly(ether ether ketone) and Polysulfone Bearing 4-nitro-benzimidazole for Direct Methanol Fuel Cells,” Journal of the Electrochemical Society 156, 258-263 (2009). dx.doi.org/10.1149/1.3040242
- A. Vadivel Murugan, T. Muraliganth, P. J. Ferreira, and A. Manthiram, “Dimensionally Modulated, Single-crystalline LiMPO4 (M = Mn, Fe, Co, and Ni) with Nano Thumb-like Shapes for High Power Energy Storage,” Inorganic Chemistry 48, 946-952 (2009). dx.doi.org/10.1021/ic8015723
- Y. Wu and A. Manthiram, “Effect of Surface Modifications on the Layered Solid Solution Cathodes (1-z) Li[Li1/3Mn2/3]O2 – (z) Li[Mn0.5-yNi0.5-yCo2y]O2,” Solid State Ionics 180, 50-56 (2009). dx.doi.org/10.1016/j.ssi.2008.11.002
- A. Sarkar, A. Vadivel Murugan, and A. Manthiram, “Low cost Pd-W Nanoalloy Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Journal of Materials Chemistry 19, 159-165 (2009). dx.doi.org/10.1039/B812722K
- H. Liu and A. Manthiram, “Controlled Synthesis and Characterization of Carbon-supported Pd4Co Nanoalloy Electrocatalysts for Oxygen Reduction Reaction,” Energy & Environmental Science 2, 124-132 (2009). dx.doi.org/10.1039/B814708F
- J. K. Lee, W. Li, A. Manthiram, and M. D. Guiver, “Blend Membranes Based on Acid-Base Interactions for Operation at High Methanol Concentrations,” Journal of the Electrochemical Society 156, B46-B50 (2009). dx.doi.org/10.1149/1.3005984
- Q. Luo and A. Manthiram, “Effect of Low Temperature Fluorine Doping on the Properties of Spinel LiMn2-2yLiyMyO4-ηFη (M = Fe, Co, and Zn) Cathodes,” Journal of the Electrochemical Society 156, A84-A88 (2009). dx.doi.org/10.1149/1.3028317
- A. Vadivel Murugan, T. Muraliganth, and A. Manthiram, “One-Pot Microwave-Hydrothermal Synthesis and Characterization of Carbon-Coated LiMPO4 (M = Mn, Fe, and Co) Cathodes,” Journal of the Electrochemical Society 156, A79-A83 (2009). dx.doi.org/10.1149/1.3028304
- J. Liu and A. Manthiram, “Improved Electrochemical Performance of the 5 V Spinel Cathode LiMn1.5Ni0.42Zn0.08O4 by Surface Modification,” Journal of the Electrochemical Society 156, A66-A72 (2009). dx.doi.org/10.1149/1.3028318
- J. Gao, J. Kim, and A. Manthiram, “High Capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2 – V2O5 Composite Cathodes with Low Irreversible Capacity Loss for Lithium-Ion Batteries,” Electrochemistry Communications 11, 84-86 (2009). dx.doi.org/10.1016/j.elecom.2008.10.036
2008
- T. Muraliganth, A. Vadivel Murugan, and A. Manthiram, “Nanoscale Networking of LiFePO4 Nanorods Prepared by a Microwave-solvothermal Route with Carbon Nanotubes for Lithium-Ion Batteries,” Journal of Materials Chemistry 18, 5661-5668 (2008). dx.doi.org/10.1039/B812165F
- A. Manthiram, A. Vadivel Murugan, A. Sarkar, and T. Muraliganth, “Nanostructured Electrode Materials for Electrochemical Energy Storage and Conversion,” Energy & Environmental Science 1, 621-638 (2008). dx.doi.org/10.1039/B811802G
- A. Vadivel Murugan, T. Muraliganth, and A. Manthiram, “Comparison of Microwave Assisted Solvothermal and Hydrothermal Syntheses of LiFePO4/C Nanocomposite Cathodes for Lithium-Ion Batteries,” Journal of Physical Chemistry C 112, 14665-14671 (2008). dx.doi.org/10.1021/jp8053058
- J.-H. Kim, F. Prado, and A. Manthiram, “Characterization of GdBa1-xSrxCo2O5+δ (0 ≤ x ≤ 1.0) Double Perovskites as Cathodes for Solid Oxide Fuel Cells,” Journal of the Electrochemical Society 155, B1023-B1028 (2008). dx.doi.org/10.1149/1.2839028
- Y. Wu, A. Vadivel Murugan, and A. Manthiram, “Surface Modification of High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathodes by AlPO4,” Journal of the Electrochemical Society 155, A635-A641 (2008). dx.doi.org/10.1149/1.2948350
- Y. Wu and A. Manthiram, “Structural Stability of Chemically Delithiated Layered (1-z) Li[Li1/3Mn2/3]O2 – z Li[Mn0.5-yNi0.5-yCo2y]O2 Solid Solution Cathodes,” Journal of Power Sources 183, 749-754 (2008). dx.doi.org/10.1016/j.jpowsour.2008.05.028
- A. Vadivel Murugan, T. Muraliganth, and A. Manthiram, “Rapid Microwave-Solvothermal Synthesis of Phospho-olivine Nanorods and Their Coating with a Mixed Conducting Polymer for Lithium-Ion Batteries,” Electrochemistry Communications 10, 903-906 (2008). dx.doi.org/10.1016/j.elecom.2008.04.004
- W. Li, A. Bellay, Y.-Z. Fu, and A. Manthiram, “N,N’-Bis-(1H-benzimidazol-2-yl)-isophthalamide as an Additive in Sulfonated Polymer Membranes for Direct Methanol Fuel Cells,” Journal of Power Sources 180, 719-723 (2008). dx.doi.org/10.1016/j.jpowsour.2008.02.067
- S. W. Choi, Y.-Z. Fu, Y. R. Ahn, S. M. Jo, and A. Manthiram, “Nafion-impregnated Electrospun Polyvinylidene Fluoride Composite Membranes for Direct Methanol Fuel Cells,” Journal of Power Sources 180, 167-171 (2008). dx.doi.org/10.1016/j.jpowsour.2008.02.042
- J. K. Lee, W. Li, and A. Manthiram, “Sulfonated Poly(ether ether ketone) as an Ionomer for Direct Methanol Fuel Cell Electrodes,” Journal of Power Sources 180, 56-62 (2008). dx.doi.org/10.1016/j.jpowsour.2008.02.015
- H. Liu and A. Manthiram, “Tuning the Electrocatalytic Activity and Durability of Low Cost Pd70Co30 Nanoalloy for Oxygen Reduction Reaction in Fuel Cells,” Electrochemistry Communications 10, 740-744 (2008). dx.doi.org/10.1016/j.elecom.2008.02.022
- J.-H. Kim and A. Manthiram, “LnBaCo2O5+δ Oxides as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells,” Journal of the Electrochemical Society 155, B385-B390 (2008). dx.doi.org/10.1149/1.2839028
- T. A. Arunkumar, E. Alvarez, and A. Manthiram, “Chemical and Structural Instability of the Chemically Delithiated (1-z) Li[Li1/3Mn2/3]O2 · (z) Li[Co1-yNiy]O2 (0 ≤ y ≤ 1 and 0 ≤ z ≤ 1) Solid Solution Cathodes,” Journal of Materials Chemistry 18, 190-198 (2008). dx.doi.org/10.1039/B713326J
- Y.-Z. Fu, W. Li, and A. Manthiram, “Sulfonated Polysulfone with 1,3-1H-dibenzimidazole-benzene Additive as a Membrane for Direct Methanol Fuel Cells,” Journal of Membrane Science 310, 262-267 (2008). dx.doi.org/10.1016/j.memsci.2007.10.050
2007
- W. Choi and A. Manthiram, “Influence of Fluorine Substitution on the Electrochemical Performance of 3 V Spinel Li4Mn5O12-ηFη Cathodes,” Solid State Ionics 178, 1541-1545 (2007). dx.doi.org/10.1016/j.ssi.2007.10.003
- A. Manthiram and W. Choi, “Suppression of Mn Dissolution in Spinel Cathodes by Trapping the Protons within Layered Oxide Cathodes,” Electrochemical and Solid State Letters 10, A228-A231 (2007). dx.doi.org/10.1149/1.2754387
- W. Choi and A. Manthiram, “Factors Controlling the Fluorine Content and the Electrochemical Performance of Spinel Oxyfluoride Cathodes,” Journal of the Electrochemical Society 154, A792-A797 (2007). dx.doi.org/ 10.1149/1.2746767
- T. A. Arunkumar, Y. Wu, and A. Manthiram, “Factors Influencing the Irreversible Oxygen Loss and Reversible Capacity in Layered Li[Li1/3Mn2/3]O2 – Li[M]O2 (M = Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) Solid Solutions,” Chemistry of Materials 19, 3067-3073 (2007). dx.doi.org/10.1021/cm070389q
- T. A. Arunkumar, E. Alvarez, and A. Manthiram, “Structural, Chemical, and Electrochemical Characterization of Layered Li[Li0.17Mn0.33Co0.5-yNiy]O2 Cathodes,” Journal of the Electrochemical Society 154, A770-A775 (2007). dx.doi.org/10.1149/1.2745635
- K. T. Lee and A. Manthiram, “Effect of Cation Doping on the Physical Properties and Electrochemical Performance of Nd0.6Sr0.4Co0.8M0.2O3-δ (M = Ti, Cr, Mn, Fe, Co, and Cu) Cathodes,” Solid State Ionics 178, 995-1000 (2007). dx.doi.org/10.1016/j.ssi.2007.04.010
- W. Choi and A. Manthiram, “Influence of Fluorine on the Electrochemical Performance of Spinel LiMn2-y-zLiyZnzO4-ηFη Cathodes,” Journal of the Electrochemical Society 154, A614-A618 (2007). dx.doi.org/10.1149/1.2732169
- Y. Wu and A. Manthiram, “Effect of Al3+ and F– Doping on the Irreversible Oxygen Loss from Layered Li[Li0.17Mn0.58Ni0.25]O2 Cathodes,” Electrochemical and Solid State Letters 10, A151-A154 (2007). dx.doi.org/10.1149/1.2720637
- Y.-Z. Fu, A. Manthiram, and M. D. Guiver, “Acid-Base Blend Membranes Based on 2-Amino-benzimidazole and Sulfonated Poly(ether ether ketone) for Direct Methanol Fuel Cells,” Electrochemistry Communications 9, 905-910 (2007). dx.doi.org/10.1016/j.elecom.2006.12.001
- Y.-Z. Fu, A. Manthiram, and M. D. Guiver, “Blend Membranes Based on Sulfonated Poly(ether ether ketone) and Polysulfone Bearing Benzimidazole Side Groups for Direct Methanol Fuel Cells,” Electrochemical and Solid State Letters 10, B70-B73 (2007). dx.doi.org/10.1149/1.2434205
- Y.-Z. Fu and A. Manthiram, “Nafion-Imidazole-H3PO4 Composite Membranes for Proton Exchange Membrane Fuel Cells,” Journal of the Electrochemical Society 154, B8-B12 (2007). dx.doi.org/10.1149/1.2364850
2006
- V. Raghuveer and A. Manthiram, “Role of TiB2 and Bi2O3 Additives on the Rechargeability of MnO2 in Alkaline Cells,” Journal of Power Sources 163, 598-603 (2006). dx.doi.org/10.1016/j.jpowsour.2006.09.029
- J. Choi and A. Manthiram, “Comparison of the Chemical and Structural Instabilities of Na0.75-xCoO2 and Li1-xCoO2,” Physical Review B 74, 205114: 1-7 (2006). dx.doi.org/10.1103/PhysRevB.74.205114
- J. Choi and A. Manthiram, “Crystal Chemistry and Electrochemical Characterization of Layered LiNi0.5-yCo0.5-yMn2yO2 and LiCo0.5-yMn0.5-yNi2yO2 (0 ≤ 2y ≤ 1) Cathodes,” Journal of Power Sources 162, 667-672 (2006). dx.doi.org/10.1016/j.jpowsour.2006.06.031
- A. Manthiram, J. Choi, and W. Choi, “Factors Limiting the Electrochemical Performance of Oxide Cathodes,” Solid State Ionics 177, 2629-2634 (2006). dx.doi.org/10.1016/j.ssi.2006.02.041
- L. Mogni, F. Prado, A. Caneiro, and A. Manthiram, “High Temperature Properties of the n = 2 Ruddlesden-Popper Phases (La,Sr)3(Fe,Ni)2O7-δ,” Solid State Ionics 177, 1807-1810 (2006). dx.doi.org/10.1016/j.ssi.2006.03.050
- K. T. Lee and A. Manthiram, “Electrochemical Performance of Nd0.6Sr0.4Co0.5Fe0.5O3-δ-Ag Composite Cathodes in Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Power Sources 160, 903-908 (2006). dx.doi.org/10.1016/j.jpowsour.2006.02.027
- A. M. Kannan and A. Manthiram, “Low Temperature Synthesis and Electrochemical Behavior of LiV3O8 Cathode,” Journal of Power Sources 159, 1405-1408 (2006). dx.doi.org/10.1016/j.jpowsour.2005.12.026
- V. Raghuveer and A. Manthiram, “Improved Rechargeability of Manganese Oxide Cathodes in Alkaline Cells in the Presence of TiB2 and TiS2,” Journal of Power Sources 159, 1468-1473 (2006). dx.doi.org/10.1016/j.jpowsour.2005.12.005
- A. Manthiram and J. Choi, “Chemical and Structural Instabilities of Lithium-Ion Battery Cathodes,” Journal of Power Sources 159, 249-253 (2006). dx.doi.org/10.1016/j.jpowsour.2006.04.028
- K. T. Lee and A. Manthiram, “Synthesis and Characterization of Nd0.6Sr0.4Co1-yMnyO3-δ (0 ≤ y ≤ 1.0) Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Power Sources 158, 1202-1208 (2006). dx.doi.org/10.1016/j.jpowsour.2005.10.021
- Y.-Z. Fu, A. Manthiram, and M. D. Guiver, “Blend Membranes Based on Sulfonated Poly (ether ether ketone) and Polysulfone Bearing Benzimidazole Side Groups for Proton Exchange Membrane Fuel Cells,” Electrochemistry Communications 8, 1386-1390 (2006). dx.doi.org/10.1016/j.elecom.2006.06.018
- W. Choi and A. Manthiram, “Comparison of Metal Ion Dissolutions from Lithium-Ion Battery Cathodes,” Journal of the Electrochemical Society 153, A1760-A1764 (2006). dx.doi.org/10.1149/1.2219710
- V. Raghuveer, P. J. Ferreira, and A. Manthiram, “Comparison of Pd-Co-Au Electrocatalysts Prepared by Conventional Borohydride and Microemulsion Methods for Oxygen Reduction in Fuel Cells,” Electrochemistry Communications 8, 807-814 (2006). dx.doi.org/10.1016/j.elecom.2006.03.022
- C. Yang, T. A. Arunkumar, and A. Manthiram, “Synthesis and Characterization of Layered Li(Ni0.5Co0.5)1-yFeyO2 (0 ≤ (1-x) ≤ 1 and 0 ≤ y ≤ 0.2) Cathodes,” Solid State Ionics 177, 863-868 (2006). dx.doi.org/10.1016/j.ssi.2006.02.020
- J. Choi and A. Manthiram, “Factors Influencing the Crystal Chemistry of Chemically Delithiated Layered HxNi1-y-zMnyCozO2,” Journal of Materials Chemistry 16, 1726-1733 (2006). dx.doi.org/10.1039/B600529B
- K. T. Lee, D. M. Bierschenk, and A. Manthiram, “Sr3-xLaxFe2-yCoyO7-δ (0.3 ≤ x ≤ 0.6 and 0 ≤ y ≤ 0.6) Intergrowth Oxide Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Journal of the Electrochemical Society 153, A1255-A1260 (2006). dx.doi.org/10.1149/1.2195835
- W. Choi and A. Manthiram, “Superior Capacity Retention Spinel Oxyfluoride Cathodes for Lithium-Ion Batteries,” Electrochemical and Solid State Letters 9, A245-A248 (2006). dx.doi.org/10.1149/1.2186022
- J. Choi, E. Alvarez, T. A. Arunkumar, and A. Manthiram, “Proton Insertion into Oxide Cathodes during Chemical Delithiation,” Electrochemical and Solid State Letters 9, A241-A244 (2006). dx.doi.org/10.1149/1.2184495
- Y.-Z. Fu and A. Manthiram, “Synthesis and Characterization of Sulfonated Polysulfone Membranes for Direct Methanol Fuel Cells,” Journal of Power Sources 157, 222-225 (2006). dx.doi.org/10.1016/j.jpowsour.2005.08.007
- K. T. Lee and A. Manthiram, “LaSr3Fe3-yCoyO10-δ (0 ≤ y ≤ 1.5) Intergrowth Oxide Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Chemistry of Materials 18, 1621-1626 (2006). dx.doi.org/10.1021/cm052645+
- Y. Wu and A. Manthiram, “High Capacity, Surface Modified Layered Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 Cathodes with Low Irreversible Capacity Loss,” Electrochemical and Solid State Letters 9, A221-A224 (2006). dx.doi.org/10.1149/1.2180528
- K. T. Lee and A. Manthiram, “Comparison of Ln0.6Sr0.4CoO3-δ (Ln = La, Pr, Nd, Sm, and Gd) as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells,” Journal of the Electrochemical Society 153, A794-A798 (2006). dx.doi.org/10.1149/1.2172572
- B. Yang and A. Manthiram, “Comparison of the Small Angle X-ray Scattering Study of Sulfonated Poly(etheretherketone) and Nafion Membranes for Direct Methanol Fuel Cells,” Journal of Power Sources 153, 29-35 (2006). dx.doi.org/10.1016/j.jpowsour.2005.03.185
2005
- V. Raghuveer and A. Manthiram, “Effect of Ba0.6K0.4BiO3 and BaBiO3 Additives on the Rechargeability of Manganese Oxide Cathodes in Alkaline Cells,” Electrochemistry Communications 7, 1329-1332 (2005). dx.doi.org/10.1016/j.elecom.2005.09.012
- V. Raghuveer, A. Manthiram, and A. J. Bard, “Pd-Co-Mo Electrocatalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells,” Journal of Physical Chemistry B 109, 22909-22912 (2005). dx.doi.org/10.1021/jp054815b
- J. L. Fernández, V. Raghuveer, A. Manthiram, and A. J. Bard, “Pd-Ti and Pd-Co-Au Electrocatalysts as a Replacement for Platinum for Oxygen Reduction in Proton Exchange Membrane Fuel Cells,” Journal of the American Chemical Society 127, 13100-13101 (2005). dx.doi.org/10.1021/ja0534710
- T. A. Arunkumar and A. Manthiram, “Influence of Chromium Doping on the Electrochemical Performance of the 5 V Spinel Cathode LiMn1.5Ni0.5O4,” Electrochimica Acta 50, 5568-5572 (2005). dx.doi.org/10.1016/j.electacta.2005.03.033
- J. Choi and A. Manthiram, “Structural and Electrochemical Characterization of the Layered LiNi0.5-yMn0.5-yCo2yO2 (0 ≤ 2y ≤ 1) Cathodes” Solid State Ionics 176, 2251-2256 (2005). dx.doi.org/10.1016/j.ssi.2005.06.004
- M. Wang, A. Navrotsky, S. Venkatraman, and A. Manthiram, “Enthalpy of Formation of LixCoO2 (0.5 ≤ x ≤ 1.0),” Journal of the Electrochemical Society 152, J82-J84 (2005). dx.doi.org/10.1149/1.1931292
- J. Choi and A. Manthiram, “Role of Chemical and Structural Stabilities on the Electrochemical Properties of Layered LiNi1/3Mn1/3Co1/3O2 Cathodes,” Journal of the Electrochemical Society 152, A1714-A1718 (2005). dx.doi.org/10.1149/1.1954927
- J. Choi and A. Manthiram, “Investigation of the Irreversible Capacity Loss in the Layered LiNi1/3Mn1/3Co1/3O2 Cathodes,” Electrochemical and Solid State Letters 8, C102-C105 (2005). dx.doi.org/10.1149/1.1943567
- V. Raghuveer and A. Manthiram, “Mesoporous Carbons with Controlled Porosity as an Electrocatalytic Support for Methanol Oxidation,” Journal of the Electrochemical Society 152, A1504-A1510 (2005). dx.doi.org/10.1149/1.1940767
- K. T. Lee and A. Manthiram, “Characterization of Nd0.6Sr0.4Co1-yFeyO3-δ (0 ≤ y ≤ 0.5) Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells,” Solid State Ionics 176, 1521-1527 (2005). dx.doi.org/10.1016/j.ssi.2005.05.002
- S. K. Aghara, S. Venkatraman, A. Manthiram, and E. Alvarez II, “Investigation of Hydrogen Content in Chemically Delithiated Lithium-Ion Battery Cathodes using Prompt Gamma-ray Activation Analysis,” Journal of Radioanalytical and Nuclear Chemistry 265, 321-328 (2005). dx.doi.org/10.1007/s10967-005-0828-0
- T. A. Arunkumar and A. Manthiram, “Influence of Lattice Parameter Differences on the Electrochemical Performance of the 5 V Spinel LiMn1.5-yNi0.5-zMy+zO4 (M = Li, Mg, Fe, Co, and Zn),” Electrochemical and Solid State Letters 8, A403-A405 (2005). dx.doi.org/10.1149/1.1945369
- L. Mogni, F. Prado, H. Ascolani, M. Abbate, M. S. Moreno, A. Manthiram, and A. Caneiro, “Synthesis, Crystal Chemistry, and Physical Properties of the Ruddlesden-Popper Phases Sr3Fe2-xNixO7-δ (0 ≤ x ≤ 1.0),” Journal of Solid State Chemistry 178, 1559-1568 (2005). dx.doi.org/10.1016/j.jssc.2005.02.018
- L. Xiong and A. Manthiram, “High Performance Membrane-Electrode Assemblies with Ultra-low Pt Loading for Proton Exchange Membrane Fuel Cells,” Electrochimica Acta 50, 3200-3204 (2005). dx.doi.org/10.1016/j.electacta.2004.11.049
- L. Xiong and A. Manthiram, “Nanostructured Pt-M/C (M = Fe and Co) Catalysts Prepared by a Microemulsion Method for Oxygen Reduction in Proton Exchange Membrane Fuel Cells,” Electrochimica Acta 50, 2323-2329 (2005). dx.doi.org/10.1016/j.electacta.2004.10.046
- L. Xiong and A. Manthiram, “Effect of Atomic Ordering on the Catalytic Activity of Carbon Supported PtM (M = Fe, Co, Ni, and Cu) Alloys for Oxygen Reduction in PEMFCs,” Journal of the Electrochemical Society 152, A697-A703 (2005). dx.doi.org/10.1149/1.1862256
- K. T. Lee and A. Manthiram, “Characterization of Nd1-xSrxCoO3-δ (0 ≤ x ≤ 0.5) Cathode Materials for Intermediate Temperature SOFCs,” Journal of the Electrochemical Society 152, A197-A204 (2005). dx.doi.org/10.1149/1.1828243
- L. Xiong and A. Manthiram, “Catalytic Activity of Pt-Ru Alloys Synthesized by a Microemulsion Method in Direct Methanol Fuel Cells,” Solid State Ionics 176, 385-392 (2005). dx.doi.org/10.1016/j.ssi.2004.08.005
- S. Venkatraman and A. Manthiram, “Comparison of the Phase Relationships of Chemically Delithiated Layered Li1-xCo1-yMyO2 (M = Al and Mg) Oxides,” Solid State Ionics 176, 291-298 (2005). dx.doi.org/10.1016/j.ssi.2004.07.017
2004
- B. Yang, Y.-Z. Fu, and A. Manthiram, “Operation of Thin Nafion-based Self-humidifying Membranes in Proton Exchange Membrane Fuel Cells with Dry H2 and O2,” Journal of Power Sources 139, 170-175 (2004). dx.doi.org/10.1016/j.jpowsour.2004.07.010
- S. Venkatraman and A. Manthiram, “Investigation of the Possible Incorporation of Protons into Oxide Cathodes during Chemical Delithiation,” Journal of Solid State Chemistry 177, 4244-4250 (2004). dx.doi.org/10.1016/j.jssc.2004.08.019
- B. Yang and A. Manthiram, “Hydrous Ta2O5·nH2O Modified Membrane-Electrode Assemblies for PEMFCs,” Journal of the Electrochemical Society 151, A2120-A2125 (2004). dx.doi.org/10.1149/1.1815155
- J. Choi and A. Manthiram, “Comparison of the Electrochemical Behaviors of Stoichiometric LiNi1/3Co1/3Mn1/3O2 and Lithium Excess Li1.03(Ni1/3Co1/3Mn1/3)0.97O2,” Electrochemical and Solid State Letters 7, A365-A368 (2004). dx.doi.org/10.1149/1.1792271
- V. Raghuveer and A. Manthiram, “Mesoporous Carbon with Larger Pore Diameter as an Electrocatalyst Support for Methanol Oxidation,” Electrochemical and Solid State Letters 7, A336-A339 (2004). dx.doi.org/10.1149/1.1792264
- S. Venkatraman, J. Choi, and A. Manthiram, “Factors Influencing the Chemical Lithium Extraction Rate from Layered LiNi1-y-zCoyMnzO2 Cathodes,” Electrochemistry Communications 6, 832-837 (2004). dx.doi.org/10.1016/j.elecom.2004.06.004
- L. Xiong and A. Manthiram, “Synthesis and Characterization of Methanol Tolerant Pt/TiOx/C Nanocomposites for Oxygen Reduction in Direct Methanol Fuel Cells,” Electrochimica Acta 49, 4163-4170 (2004). dx.doi.org/10.1016/j.electacta.2004.04.011
- F. Prado, N. Grunbaum, A. Caneiro, and A. Manthiram, “Effect of La3+ Doping on the Perovskite to Brownmillerite Transformation in Sr1-xLaxCo0.8Fe0.2O3-δ (0 ≤ x ≤ 0.4),” Solid State Ionics 167, 147-154 (2004). dx.doi.org/10.1016/j.ssi.2003.12.006
- B. Yang and A. Manthiram, “Multilayered Membranes with Suppressed Fuel Crossover for Direct Methanol Fuel Cells,” Electrochemistry Communications 6, 231-236 (2004). dx.doi.org/10.1016/j.elecom.2003.12.005
- L. Xiong and A. Manthiram, “Influence of Atomic Ordering on the Electrocatalytic Activity of Pt-Co Alloys in Proton Exchange Membrane Fuel Cells,” Journal of Materials Chemistry 14, 1454-1460 (2004). dx.doi.org/10.1039/B400968C
- A. Singhal, G. Skandan, G. Amatucci, F. Badway, N. Ye, A. Manthiram, H. Ye, and J. J. Xu, “Nanostructured Electrodes for Next Generation Rechargeable Electrochemical Devices,” Journal of Power Sources 129, 38-44 (2004). dx.doi.org/10.1016/j.jpowsour.2003.11.010
- Y. Shin and A. Manthiram, “Influence of Microstructure on the Electrochemical Performance of LiMn2-y-zLiyNizO4 Spinel Cathodes in Rechargeable Lithium Batteries,” Journal of Power Sources 126, 169-174 (2004). dx.doi.org/10.1016/j.jpowsour.2003.09.059
- Y. Shin and A. Manthiram, “Factors Influencing the Capacity Fade of Spinel Lithium Manganese Oxides,” Journal of the Electrochemical Society 151, A204-A208 (2004). dx.doi.org/10.1149/1.1634274
2003
- S. Venkatraman and A. Manthiram, “Structural and Chemical Characterization of Layered Li1-xNi1-yMnyO2-δ (y = 0.25 and 0.5 and 0 ≤ (1-x) ≤ 1) Oxides,” Chemistry of Materials 15, 5003-5009 (2003). dx.doi.org/10.1021/cm034757b
- D. Im, A. Manthiram, and B. Coffey, “Manganese (III) Chemistry in KOH Solutions in Presence of Bi- or Ba-Containing Compounds and its Implications on the Rechargeability of γ-MnO2 in Alkaline Cells,” Journal of the Electrochemical Society 150, A1651-A1659 (2003). dx.doi.org/10.1149/1.1622960
- Y. Shin and A. Manthiram, “Origin of the Capacity of Spinel LiMn2-yLiyO4±δ (0 ≤ y ≤ 0.15) in the 5 V Region,” Electrochemical and Solid State Letters 6, A249-A251 (2003). dx.doi.org/10.1149/1.1619368
- B. Yang and A. Manthiram, “Sulfonated Poly(ether ether ketone) Membranes for Direct Methanol Fuel Cells” Electrochemical and Solid State Letters 6, A229-A231 (2003). dx.doi.org/10.1149/1.1613073
- Y. Shin and A. Manthiram, “Origin of the High Voltage (> 4.5 V) Capacity of Spinel Lithium Manganese Oxides,” Electrochimica Acta 48, 3583-3592 (2003). dx.doi.org/10.1016/S0013-4686(03)00478-X
- Y. Shin and A. Manthiram, “Influence of the Lattice Parameter Difference between the Two Cubic Phases Formed in the 4 V Region on the Capacity Fading of Spinel Manganese Oxides,” Chemistry of Materials 15, 2954-2961 (2003). dx.doi.org/10.1021/cm0341787
- A. M. Kannan and A. Manthiram, “Synthesis and Electrochemical Evaluation of High Capacity Nanostructured VO2 Cathodes,” Solid State Ionics 159, 265-271 (2003). dx.doi.org/10.1016/S0167-2738(03)00099-7
- A. M. Kannan and A. Manthiram, “Synthesis and Electrochemical Properties of High Capacity V2O5-δ Cathodes,” Journal of the Electrochemical Society 150, A990-A993 (2003). dx.doi.org/10.1149/1.1581261
- L. Vayssieres and A. Manthiram, “2-D Mesoparticulate Arrays of α-Cr2O3,” Journal of Physical Chemistry 107, 2623-2625 (2003). dx.doi.org/10.1021/jp026933u
- D. Im and A. Manthiram, “Nanostructured Lithium Manganese Oxide Cathodes Obtained by a Reduction of Lithium Permanganate with Hydrogen,” Journal of the Electrochemical Society 150, A742-A746 (2003). dx.doi.org/10.1149/1.1570820
- B. Yang, A. M. Kannan and A. Manthiram, “Stability of the Dry Proton Conductor CsHSO4 in Hydrogen Atmosphere,” Materials Research Bulletin 38, 691-698 (2003). dx.doi.org/10.1016/S0025-5408(03)00008-4
- D. Im and A. Manthiram, “Lithium Manganese Oxide–Conductive Carbon Nanocomposite Cathodes for Lithium-Ion Batteries,” Solid State Ionics 159, 249-255 (2003). dx.doi.org/10.1016/S0167-2738(02)00888-3
- A. M. Kannan and A. Manthiram, “Structural Stability of Li1-xNi0.85Co0.15O2 and Li1-xNi0.85Co0.12Al0.03O2 Cathodes at Elevated Temperatures,” Journal of the Electrochemical Society 150, A349-A353 (2003). dx.doi.org/10.1149/1.1553766
- Y. Shin and A. Manthiram, “High Rate, Superior Capacity Retention LiMn2-2yLiyNiyO4 Spinel Cathodes for Lithium-Ion Batteries,” Electrochemical and Solid State Letters 6, A34-A36 (2003). dx.doi.org/10.1149/1.1535751
- A. M. Kannan, L. Rabenberg, and A. Manthiram, “High Capacity Surface Modified LiCoO2 Cathodes for Lithium-Ion Batteries,” Electrochemical and Solid State Letters 6, A16-A18 (2003). dx.doi.org/10.1149/1.1526782
- S. Venkatraman, Y. Shin, and A. Manthiram, “Phase Relationships and Structural and Chemical Stabilities of Charged Li1-xCoO2-δ and Li1-xNi0.85Co0.15O2-δ,” Electrochemical and Solid State Letters 6, A9-A12 (2003). dx.doi.org/10.1149/1.1525430
- D. Im and A. Manthiram, “Role of Bismuth and Factors Influencing the Formation of Mn3O4 in Rechargeable Alkaline Batteries Based on Bismuth-containing Manganese Oxides,” Journal of the Electrochemical Society 150, A68-A73 (2003). dx.doi.org/10.1149/1.1524611
2002
- J. W. Allen, L. Brus, P. C. Burns, R. J. Cava, G. Ceder, C. Chidsey, W. Clegg, E. Coronado, H. Dai, M. W. Deem, F. J. DiSalvo, K. R. Dunbar, B. S. Dunn, G. Galli, C. Gorman, S. M. Haile, L. V. Interrante, A. J. Jacobson, A. Manthiram, M. Mrksich, J. Musfeldt, A. Navrotsky, D. Nelson, D. Norris, A. Nozik, R. Nuzzo, X. Peng, W. E. Pickett, C. Rawn, D. Rolison, D. Singh, B. Toby, U. B. Wiesner, A. P. Wilkinson, P. Woodward, and P. Yang, “Future Directions in Solid State Chemistry: Report of the NSF-Sponsored Workshop,” Progress in Solid State Chemistry 30, 1-101 (2002). dx.doi.org/10.1016/S0079-6786(02)00010-9
- L. Xiong, A. M. Kannan, and A. Manthiram, “Pt-M (M = Fe, Co, Ni, and Cu) Electrocatalysts Synthesized by an Aqueous Route for Proton Exchange Membrane Fuel Cells,” Electrochemistry Communications 4, 898-903 (2002). dx.doi.org/10.1016/S1388-2481(02)00485-X
- L. Vayssieres, L. Rabenberg, and A. Manthiram, “Aqueous Chemical Route to Ferromagnetic Three-Dimensional Arrays of Iron Nanorods,” Nano Letters 2, 1393-1395 (2002). dx.doi.org/10.1016/S1388-2481(02)00485-X
- Y. U. Jeong and A. Manthiram, “Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes,” Journal of the Electrochemical Society 149, A1419-A1422 (2002). dx.doi.org/10.1149/1.1511188
- S. Venkatraman and A. Manthiram, “Synthesis and Characterization of P3-type CoO2-δ,” Chemistry of Materials 14, 3907-3912 (2002). dx.doi.org/10.1021/cm0203621
- A. Manthiram, F. Prado, and T. Armstrong, “Oxygen Separation Membranes Based on Intergrowth Structures,” Solid State Ionics 152-153, 647-655 (2002). dx.doi.org/10.1016/S0167-2738(02)00404-6
- F. Prado, K. Gurunathan, and A. Manthiram, “Synthesis, Crystal Chemistry, and Electrical, Oxygen Permeation, and Magnetic Properties of LaSr3GaFe2-xCoxO10-δ (0 ≤ x ≤ 2 and 0 ≤ δ ≤ 2),” Journal of Materials Chemistry 12, 2390-2395 (2002). dx.doi.org/10.1039/B203778E
- S. Choi and A. Manthiram, “Factors Influencing the Layered to Spinel-like Phase Transition in Layered Oxide Cathodes,” Journal of the Electrochemical Society 149, A1157-A1163 (2002). dx.doi.org/ 10.1149/1.1497171
- D. Im and A. Manthiram, “Nanostructured Lithium Manganese Oxide Cathodes Obtained by Reducing Lithium Permanganate with Methanol,” Journal of the Electrochemical Society 149, A1001-A1007 (2002). dx.doi.org/10.1149/1.1490355
- A. M. Kannan and A. Manthiram, “Surface/Chemically Modified LiMn2O4 Cathodes for Lithium-Ion Batteries,” Electrochemical and Solid State Letters 5, A167-A169 (2002). dx.doi.org/10.1149/1.1482198
- M. C. Tucker, J. A. Reimer, E. J. Cairns, S. Choi, and A. Manthiram, “7Li NMR Studies of Chemically Delithiated Li1-xCoO2,” Journal of Physical Chemistry 106, 3842-3847 (2002). dx.doi.org/10.1021/jp0133541
- A. M. Kannan, S. Bhavaraju, F. Prado, M. Manivel Raja, and A. Manthiram, “Characterization of the Bismuth Modified Manganese Dioxide Cathodes in Rechargeable Alkaline Cells,” Journal of the Electrochemical Society 149, A483-A492 (2002). dx.doi.org/10.1149/1.1459713
- S. Choi and A. Manthiram, “Chemical Synthesis and Properties of Spinel Li1-xCo2O4-δ,” Journal of Solid State Chemistry 164, 332-338 (2002). dx.doi.org/10.1006/jssc.2001.9480
- S. Choi and A. Manthiram, “Synthesis and Electrode Properties of Nanocrystalline Lithium Copper Iron Oxide Cathodes,” Journal of the Electrochemical Society 149, A570-A573 (2002). dx.doi.org/10.1149/1.1466855
- S. Choi and A. Manthiram, “Synthesis and Electrochemical Properties of LiCo2O4 Spinel Cathodes,” Journal of the Electrochemical Society 149, A162-A166 (2002). dx.doi.org/10.1149/1.1431574
- R. V. Chebiam, F. Prado, and A. Manthiram, “Comparison of the Chemical Stability of Li1-xCoO2 and Li1-xNi0.85Co0.15O2 Cathodes,” Journal of Solid State Chemistry 163, 5-9 (2002). dx.doi.org/10.1006/jssc.2001.9404
- Y. Shin and A. Manthiram, “Microstrain and Capacity Fade in Spinel Manganese Oxides,” Electrochemical and Solid State Letters 5, A55-A58 (2002). dx.doi.org/10.1149/1.1450063
2001
- R. V. Chebiam, A. M. Kannan, F. Prado, and A. Manthiram, “Comparison of the Chemical Stability of High Energy Density Cathodes of Lithium-Ion Batteries,” Electrochemistry Communications 3, 624-627 (2001). dx.doi.org/10.1016/S1388-2481(01)00232-6
- R. V. Chebiam, F. Prado, and A. Manthiram, “Soft Chemistry Synthesis and Characterization of Layered Li1-xNi1-yCoyO2-δ (0 ≤ x ≤ 1 and 0 ≤ y ≤ 1),” Chemistry of Materials 13, 2951-2957 (2001). dx.doi.org/10.1021/cm0102537
- P. Fulmer, M. Manivel Raja, and A. Manthiram, “Chemical Synthesis, Processing, and Characterization of Nanostructured Fe-B for the Magnetically Assisted Chemical Separation of Hazardous Waste,” Chemistry of Materials 13, 2160-2168 (2001). dx.doi.org/10.1021/cm010014j
- F. Prado and A. Manthiram, “Synthesis, Crystal Chemistry, and Electrical and Magnetic Properties of Sr3Fe2-xCoxO7-δ (0 ≤ x ≤ 0.8),” Journal of Solid State Chemistry 158, 307-314 (2001). dx.doi.org/10.1006/jssc.2001.9111
- T. Armstrong, F. Prado, and A. Manthiram, “Synthesis, Crystal Chemistry, and Oxygen Permeation Properties of LaSr3Fe3-xCoxO10 (0 ≤ x ≤ 1.5),” Solid State Ionics 140, 89-96 (2001). dx.doi.org/10.1016/S0167-2738(01)00696-8
- F. Prado, T. Armstrong, A. Caneiro, and A. Manthiram, “Structural Stability and Oxygen Permeation Properties of Sr3-xLaxFe2-yCoyO7-δ (0 ≤ x ≤ 0.3 and 0 ≤ y ≤ 1.0),” Journal of the Electrochemical Society 148, J7-J14 (2001). dx.doi.org/10.1149/1.1354605
- Y. U. Jeong and A. Manthiram, “Amorphous Tungsten Oxide/Ruthenium Oxide Composites for Electrochemical Capacitors,” Journal of the Electrochemical Society 148, A189-A193 (2001). dx.doi.org/ 10.1149/1.1345869
- Y. U. Jeong and A. Manthiram, “Synthesis of Nickel Sulfides in Aqueous Solutions Using Sodium Dithionite,” Inorganic Chemistry 40, 73-77 (2001). dx.doi.org/10.1021/ic000819d
- J. Stolk, M. Gross, D. Stolk, and A. Manthiram, “Synthesis and Processing of Nanocrystalline Ag-Fe-Ni for Low Thermal Expansion – High Conductivity Thermal Management Applications,” Journal of Materials Research 16, 340-343 (2001). dx.doi.org/10.1557/JMR.2001.0053
- Y. U. Jeong and A. Manthiram, “Synthesis of NaxMnO2+δ by a Reduction of Aqueous Sodium Permanganate with Sodium Iodide,” Journal of Solid State Chemistry 156, 331-338 (2001). dx.doi.org/10.1006/jssc.2000.9003
- A. Manthiram, J. Kim, and D. Im, “Amorphous Manganese Oxides for Lithium-Ion Batteries,” ITE Letters on Batteries, New Technologies & Medicine 2, 318-325 (2001).
- R. V. Chebiam, F. Prado, and A. Manthiram, “Structural Instability of Delithiated Li1-xNi1-yCoyO2 Cathodes,” Journal of the Electrochemical Society 148, A49-A53 (2001). dx.doi.org/10.1149/1.1339029
2000
- J. Stolk and A. Manthiram, “Chemical Synthesis and Characterization of Low Thermal Expansion – High Conductivity Cu-Mo and Ag-Mo Composites,” Metallurgical and Materials Transactions A 31, 2396-2398 (2000). dx.doi.org/10.1007/s11661-000-0159-2
- M. S. Shaarawi, J. M. Sanchez, H. Kan, and A. Manthiram, “Modeling of Laser-Induced Chemical Vapor Deposition of Silicon Carbide Rods from Tetramethylsilane,” Journal of the American Ceramic Society 83, 1947-1952 (2000). dx.doi.org/10.1111/j.1151-2916.2000.tb01495.x
- J. P. Tang, R. Dass, and A. Manthiram, “Comparison of the Crystal Chemistry and Electrical Properties of La2-xAxNiO4 (A = Ca, Sr, and Ba),” Materials Research Bulletin 35, 411-424 (2000). dx.doi.org/10.1016/S0025-5408(00)00234-8
- S. Choi and A. Manthiram, “Synthesis and Electrode Properties of Metastable Li2Mn4O9-δ Spinel Oxides,” Journal of the Electrochemical Society 147, 1623-1629 (2000). dx.doi.org/10.1149/1.1393408
- Y. Xia, T. Armstrong, F. Prado, and A. Manthiram, “Sol-gel Synthesis, Phase Relationships, and Oxygen Permeation Properties of Sr4Fe6-xCoxO13+δ (0 ≤ x ≤ 3),” Solid State Ionics 130, 81-90 (2000). dx.doi.org/10.1016/S0167-2738(00)00284-8
- Y. U. Jeong and A. Manthiram, “Amorphous Ruthenium-Chromium Oxides for Electrochemical Capacitors,” Electrochemical and Solid State Letters 3, 205-208 (2000). dx.doi.org/10.1149/1.1391003
- T. Armstrong, F. Prado, Y. Xia, and A. Manthiram, “Role of Perovskite Phase on the Oxygen Permeation Properties of the Sr4Fe6-xCoxO13+δ System,” Journal of the Electrochemical Society 147, 435-438 (2000). dx.doi.org/10.1149/1.1393214
- C. R. Horne, U. Bergmann, J. Kim, K. A. Streibel, A. Manthiram, S. F. Cramer, and E. J. Cairns, “Structural Investigations of Li1.5+xNa0.5MnO2.85I0.12 Electrodes by Mn X-ray Absorption Near Edge Spectroscopy,” Journal of the Electrochemical Society 147, 395-398 (2000). dx.doi.org/10.1149/1.1393208
1999
- J. Kim and A. Manthiram, “Synthesis and Lithium Intercalation Properties of Nanocrystalline Lithium Iron Oxides,” Journal of the Electrochemical Society 146, 4371-4374 (1999). dx.doi.org/10.1149/1.1392645
- A. Manthiram, J. P. Tang, and V. Manivannan, “Factors Influencing the Stabilization of Ni+ in Perovskite-Related Oxides,” Journal of Solid State Chemistry 148, 499-507 (1999). dx.doi.org/10.1006/jssc.1999.8487
- A. Manthiram and Y. U. Jeong, “Ambient Temperature Synthesis of Spinel Ni3S4: An Itinerant Electron Ferrimagnet,” Journal of Solid State Chemistry 147, 679-681 (1999). dx.doi.org/10.1006/jssc.1999.8492
- T. Armstrong, S. Guggilla, and A. Manthiram, “Oxygen Permeation Studies of Sr4Fe6-xCoxO13,” Materials Research Bulletin 34, 837-844 (1999). dx.doi.org/10.1016/S0025-5408(99)00082-3
- Y. U. Jeong and A. Manthiram, “Synthesis and Lithium Intercalation Properties of Na0.5-xLixMnO2+δ and Na0.5-xMnO2+δ Cathodes,” Electrochemical and Solid State Letters 2, 421-424 (1999). dx.doi.org/10.1149/1.1390858
- A. Manthiram and J. Kim, “Manganese Oxides for Rechargeable Lithium Batteries,” Transactions of the Society for the Advancement of Electrochemical Science and Technology 34, 1-5 (1999).
- S. Guggilla, T. Armstrong, and A. Manthiram, “Synthesis, Crystal Chemistry and Electrical Properties of the Intergrowth Oxides Sr4-xCaxFe6-yCoyO13+δ,” Journal of Solid State Chemistry 145, 260-266 (1999). dx.doi.org/10.1006/jssc.1999.8261
- J. Stolk and A. Manthiram, “Chemical Synthesis and Properties of Nanocrystalline Cu-Fe-Ni Alloys,” Materials Science and Engineering B 60, 112-117 (1999). dx.doi.org/10.1016/S0921-5107(99)00022-7
- J. Kim, P. Fulmer, and A. Manthiram, “Synthesis of LiCoO2 Cathodes by an Oxidation Reaction in Solution and Their Electrochemical Properties,” Materials Research Bulletin 34, 571-579 (1999). dx.doi.org/10.1016/S0025-5408(99)00049-5
- J. Kim and A. Manthiram, “Amorphous Manganese Oxyiodides Exhibiting High Lithium Intercalation Capacity at Higher Current Density,” Electrochemical and Solid State Letters 2, 55-57 (1999). dx.doi.org/ 10.1149/1.1390732
1998
- J. Kim and A. Manthiram, “Nanocomposite Manganese Oxides for Rechargeable Lithium Batteries,” Electrochemical and Solid State Letters 1, 207-209 (1998). dx.doi.org/10.1149/1.1390686
- A. Manthiram and J. Kim, “Low Temperature Synthesis of Insertion Oxides for Lithium Batteries,” Chemistry of Materials 10, 2895-2909 (1998). dx.doi.org/10.1021/cm980241u
- Y. T. Zhu, P. S. Baldonado, E. J. Peterson, Y. S. Park, A. Manthiram, D. P. Butt, D. E. Peterson, and F. M. Mueller, “Variation of Oxygen Content and Crystal Chemistry of YBa4Cu3O8.5+δ,” Physica C 298, 29-36 (1998). dx.doi.org/10.1016/S0921-4534(98)00013-6
- C. Tsang, J. Kim, and A. Manthiram, “Synthesis of Reduced Vanadium Oxides in Aqueous Solutions,” Journal of Materials Chemistry 8, 425-428 (1998). dx.doi.org/10.1039/A706273G
- C. Tsang, J. Kim, and A. Manthiram, “Synthesis of Manganese Oxides by Reduction of KMnO4 with KBH4 in Aqueous Solutions,” Journal of Solid State Chemistry 137, 28-32 (1998). dx.doi.org/10.1006/jssc.1997.7656
- J. Kim and A. Manthiram, “Low Temperature Synthesis and Electrode Properties of Li4Mn5O12,” Journal of the Electrochemical Society 145, L53-L55 (1998). dx.doi.org/10.1149/1.1838412
1997
- J. Kim and A. Manthiram, “A Manganese Oxyiodide Cathode for Rechargeable Lithium Batteries,” Nature 390, 265-267 (1997). dx.doi.org/10.1038/36812
- J. Kim and A. Manthiram, “Synthesis, Characterization, and Electrochemical Properties of Amorphous CrO2-δ (0 ≤ δ ≤ 0.5) Cathodes,” Journal of the Electrochemical Society 144, 3077-3081 (1997). dx.doi.org/10.1149/1.1837962
- S. Guggilla and A. Manthiram, “Crystal Chemical Characterization of the Mixed Conductor Sr(Fe, Co) 1.5Oy Exhibiting Unusually High Oxygen Permeability,” Journal of the Electrochemical Society 144, L120-L122 (1997). dx.doi.org/10.1149/1.1837631
- C. Tsang and A. Manthiram, “Synthesis of Lower Valent Molybdenum Oxides in Aqueous Solutions by Reducing Na2MoO4 by NaBH4,” Journal of Materials Chemistry 7, 1003-1006 (1997). dx.doi.org/10.1039/A606389F
- C. Tsang, S. Y. Lai, and A. Manthiram, “Reduction of Aqueous Na2WO4 by NaBH4 at Ambient Temperatures to Obtain Lower Valent Tungsten Oxides,” Inorganic Chemistry 36, 2206-2210 (1997). dx.doi.org/10.1021/ic9610039
- L. Zhang and A. Manthiram, “Synthesis and Characterization of Chains Composed of Nanometer Size Fe-Cr-B Particles,” Journal of Magnetism and Magnetic Materials 168, 85-93 (1997). dx.doi.org/10.1016/S0304-8853(96)00662-2
- L. Zhang and A. Manthiram, “Chains Composed of Nanosize Metal Particles and Identifying the Factors Driving Their Formation,” Applied Physics Letters 70, 2469-2471 (1997). dx.doi.org/10.1063/1.118859
- A. Manthiram, “Electrode Materials for Rechargeable Lithium Batteries,” JOM 49, 43-46 (1997). dx.doi.org/10.1007%2FBF02914656
- C. Tsang and A. Manthiram, “Synthesis of Nanocrystalline VO2 and Its Electrode Behavior in Lithium Batteries,” Journal of the Electrochemical Society 144, 520-524 (1997). dx.doi.org/ 10.1149/1.1837442
- L. Zhang and A. Manthiram, “Chemical Synthesis, Microstructure and Magnetic Properties of Chains Composed of Ultrafine Fe-Co-B Particles,” Journal of Applied Physics 80, 4534-4540 (1996). dx.doi.org/10.1063/1.363434
- L. Zhang and A. Manthiram, “Fabrication and Magnetic Properties of Chains Composed of Spherical Iron Particles,” IEEE Transactions on Magnetics 32, 4481-4483 (1996). dx.doi.org/10.1109/20.538904
- S. Guggilla and A. Manthiram, “Ambient Temperature Synthesis and Magnetic Properties of Aluminum Borate – Fe Nanocomposites,” Materials Science and Engineering B40, 191-197 (1996). dx.doi.org/10.1016/0921-5107(96)01592-9
1996
- L. Zhang and A. Manthiram, “An Experimental Study of Ferromagnetic Chains Composed of Nanosize Fe Spheres,” Physical Review B 54, 3462-3467 (1996). dx.doi.org/10.1103/PhysRevB.54.3462
- A. Manthiram and C. Tsang, “Synthesis of Amorphous MoO2+δ and Its Electrode Performance in Lithium Batteries,” Journal of the Electrochemical Society 143, L143-L145 (1996). dx.doi.org/10.1149/1.1836955
- A. Manthiram and C. Tsang, “Electrode Materials for Rechargeable Lithium Batteries,” Anales Asociacion Quimica Argentina 84, 265-270 (1996).
- C. Tsang and A. Manthiram, “A New Route for the Synthesis of LiMn2O4 Cathode: Variation of Composition, Microstructure, and Electrochemical Behavior with Synthesis Temperature,” Solid State Ionics 89, 305-312 (1996). dx.doi.org/10.1016/0167-2738(96)00350-5
- Y. T. Zhu and A. Manthiram, “Influence of Processing Parameters on the Formation of WC-Co Nanocomposite Powder using Polymer as Carbon Source,” Composites 27B, 407-413 (1996). dx.doi.org/10.1016/1359-8368(96)00004-2
- L. Zhang and A. Manthiram, “Ambient Temperature Synthesis of Fine Metal Particles in Montmorillonite Clay and Their Magnetic Properties,” Nanostructured Materials 6, 437-451 (1996). dx.doi.org/10.1016/0965-9773(96)00015-3
- L. Zhang and A. Manthiram, “Generation of Magnetic Metal Particles in Zeolite by Borohydride Reduction at Ambient Temperature,” Journal of Materials Chemistry 7, 999-1004 (1996). dx.doi.org/10.1039/JM9960600999
- R. Gupta and A. Manthiram, “Chemical Extraction of Lithium from Layered LiCoO2,” Journal of Solid State Chemistry 121, 483-491 (1996). dx.doi.org/10.1006/jssc.1996.0067
- C. Tsang, A. Dananjay, J. Kim, and A. Manthiram, “Synthesis of Lower Valent Molybdenum Oxides by an Ambient Temperature Reduction of Aqueous K2MoO4 with KBH4,” Inorganic Chemistry 35, 504-509 (1996). dx.doi.org/10.1021/ic950955w
1995
- Y. T. Zhu, Y. P. Gao, J. H. Devletian, and A. Manthiram, “Differential Thermal Analysis of Solid Zirconium,” Journal of Testing and Evaluation 23, 431-435 (1995). dx.doi.org/10.1520/JTE11431J
- L. Zhang and A. Manthiram, “Fine Magnetic Particles in Layered Silicates and Zeolites,” IEEE Transactions on Magnetics 31, 3784-3786 (1995). dx.doi.org/10.1109/20.489771
- J. P. Zhou, S. M. Savoy, R. K. Lo, J. Zhao, M. Arendt, Y. T. Zhu, A. Manthiram, and J. T. McDevitt, “Improved Corrosion Resistance of Cation Substituted YBa2Cu3O7-δ,” Applied Physics Letters 66, 2900-2902 (1995). dx.doi.org/dx.doi.org/10.1063/1.113467
- Y. T. Zhu and A. Manthiram, “A Thermogravimetric Study of the Influence of Internal Stresses on Oxygen Variations in Ln2-xCexCuO4,” Journal of Solid State Chemistry 114, 491-498 (1995). dx.doi.org/10.1006/jssc.1995.1074
- M. K. Agarwala, D. L. Bourell, A. Manthiram, B. R. Birmingham, and H. L. Marcus, “High Tc Dual Phase Ag-YBa2Cu3O7-x Composites by Selective Laser Sintering and Infiltration,” Journal of Materials Science 30, 459-464 (1995). dx.doi.org/10.1007/BF00354412
- Y. T. Zhu, J. H. Devletian, S. J. Chen, and A. Manthiram, “On the Nonuniform Distributions of Temperature and Thermal Stress in DTA Testing,” Journal of Testing and Evaluation 23, 63-66 (1995). dx.doi.org/10.1520/JTE10401J
1994
- J. P. Zhou, S. M. Savoy, J. Zhao, D. R. Riley, Y. T. Zhu, A. Manthiram, R. K. Lo, D. Borich, and J. T. McDevitt, “Chemically Tailored Corrosion Resistant High-Tc Phases,” Journal of the American Chemical Society 116, 9389-9390 (1994). dx.doi.org/10.1021/ja00099a090
- A. Manthiram, A. Dananjay, and Y. T. Zhu, “A New Route to Reduced Transition Metal Oxides,” Chemistry of Materials 6, 1601-1602 (1994). dx.doi.org/10.1021/cm00046a006
- Y. T. Zhu and A. Manthiram, “A New Route for the Synthesis of Tungsten Carbide-Cobalt Nanocomposites,” Journal of the American Ceramic Society 77, 2777-2778 (1994). dx.doi.org/10.1111/j.1151-2916.1994.tb04678.x
- B. Cho, W. Win, A. Manthiram, and R. M. Walser, “Coexistence of Antiferromagnetic and Ferromagnetic Clusters in Compositionally Modulated Amorphous FexZr100-x (66 < x < 85) Thin Films,” IEEE Transactions on Magnetics 30, 4443-4445 (1994). dx.doi.org/10.1109/20.334114
- Y. T. Zhu, G. Zong, A. Manthiram, and Z. Eliezer, “Strength Analysis of Random Short Fiber Reinforced Metal Matrix Composite Materials,” Journal of Materials Science 29, 6281-6286 (1994). dx.doi.org/10.1007/BF00354572
- A. Manthiram and Y. T. Zhu, “On the Absence of Superconductivity in Gd2-xCexCuO4,” Physica C 226, 165-169 (1994). dx.doi.org/10.1016/0921-4534(94)90492-8
- Y. T. Zhu and A. Manthiram, “Role of Oxygen in Ln2-xCexCuO4 Superconductors,” Physica C 224, 256-262 (1994). dx.doi.org/10.1016/0921-4534(94)90262-3
- Y. T. Zhu and A. Manthiram, “A New Route for the Synthesis of Tungsten Oxide Bronzes,” Journal of Solid State Chemistry 110, 187-189 (1994). dx.doi.org/10.1006/jssc.1994.1156
- Y. T. Zhu, J. H. Devletian, and A. Manthiram, “Application of Differential Thermal Analysis to Solid-solid Transitions in Phase Diagram Determination,” Journal of Phase Equilibria 15, 37-41 (1994). dx.doi.org/10.1007/BF02667680
- Y. T. Zhu and A. Manthiram, “Role of Bond Length Mismatch in L2-xCexCuO4 (L = Lanthanide),” Physical Review B 49, 6293-6298 (1994). dx.doi.org/10.1103/PhysRevB.49.6293
- K. S. Nanjundaswamy, A. Manthiram, and J. B. Goodenough, “Thallium Solubility Range in Tl2-yBa2Can-1CunO2n+4-x Superconductors,” Journal of Materials Chemistry 4, 1627-1633 (1994). dx.doi.org/10.1039/JM9940401627
- K. S. Nanjundaswamy, A. Manthiram, and J. B. Goodenough, “On the Question of Overlap between Tl:6s and Cu:3d Bands in the Tl1-yLaBa1-zSrzCuO5-x System,” Journal of Solid State Chemistry 111, 83-88 (1994). dx.doi.org/10.1006/jssc.1994.1201
1993
- A. Manthiram, D. L. Bourell, and H. L. Marcus, “Nanophase Materials in Solid Freeform Fabrication,” JOM 45, 66-70 (1993). dx.doi.org/10.1007/BF03222493
- J. P. Zhou, D. R. Riley, A. Manthiram, M. Arendt, M. Schmerling, and J. T. McDevitt, “Environmental Reactivity Characteristics of Copper Oxide Superconductors,” Applied Physics Letters 63, 548-550 (1993). dx.doi.org/10.1063/1.110000
- A. Manthiram and Y. T. Zhu, “Chemistry of Electron Doped Ln2-xCexCuO4 Superconductors,” Journal of Electronic Materials 22, 1195-1198 (1993). dx.doi.org/10.1007/BF02818060
- A. Manthiram, J. F. Kuo, and J. B. Goodenough, “Characterization of Oxygen-Deficient Perovskites as Oxide-ion Electrolytes,” Solid State Ionics 62, 225-234 (1993). dx.doi.org/10.1016/0167-2738(93)90376-E
- J. B. Goodenough, A. Manthiram, and J-F. Kuo, “Oxygen Diffusion in Perovskite-Related Oxides,” Materials Chemistry and Physics 35, 221-224 (1993). dx.doi.org/10.1016/0254-0584(93)90135-9
- K. S. Nanjundaswamy, A. Manthiram, and J. B. Goodenough, “Factors Influencing the Stabilization and Tc of Tl2-yBa2Ca2Cu3O10-x,” Physica C 207, 339-346 (1993). dx.doi.org/10.1016/0921-4534(93)90316-I
- J. B. Goodenough, A. Manthiram, and B. Wnetrzewski, “Electrodes for Lithium Batteries,” Journal of Power Sources 43, 269-275 (1993). dx.doi.org/10.1016/0378-7753(93)80124-8
1992
- A. Manthiram, “Critical Covalence and Superconductivity in Ln2-xCexCuO4,” Journal of Solid State Chemistry 100, 383-387 (1992). dx.doi.org/10.1016/0022-4596(92)90114-B
- D. R. Riley, A. Manthiram, and J. T. McDevitt, “Electrochemical Investigations of Various High Temperature Superconductor Phases,” Chemistry of Materials 4, 1176-1180 (1992). dx.doi.org/10.1021/cm00024a014
- M. G. Smith, J. B. Goodenough, A. Manthiram, R. D. Taylor, and H. Oesterreicher, “Effect of Annealing on the Local Microstructure and Tc in Y1-zCazBa2 (Cu0.90Co0.10)O6+y,” Physical Review B 46, 3041-3049 (1992). dx.doi.org/10.1103/PhysRevB.46.3041
- M. G. Smith, J. B. Goodenough, A. Manthiram, R. D. Taylor, and H. Oesterreicher, “Co Cluster Formation at Reduced Temperatures in Microdoped Y1-zCazBa2Cu3O6+y(57Co),” Journal of Solid State Chemistry 99, 140-148 (1992). dx.doi.org/10.1016/0022-4596(92)90298-A
- C. L. Wooten, O. Beom-hoan, J. T. Markert, M. G. Smith, A. Manthiram, J. Zhou, and J. B. Goodenough, “The Pressure Dependence of Tcin the Infinite-Layer Electron Doped Compound Sr0.84Nd0.16CuO2,” Physica C 192, 13-17 (1992). dx.doi.org/10.1016/0921-4534(92)90736-V
- M. G. Smith, J. B. Goodenough, A. Manthiram, R. D. Taylor, Weimin Peng, and C. W. Kimball, “Tin and Antimony Valence States in BaSn0.85Sb0.15O3-δ,” Journal of Solid State Chemistry 98, 181-186 (1992). dx.doi.org/10.1016/0022-4596(92)90084-9
- M. Paranthaman, A. Manthiram, and J. B. Goodenough, “Hole Concentration and Critical Temperature in Tl2-yBa2-zLazCuO6-x,” Journal of Materials Chemistry 2, 317-321 (1992). dx.doi.org/10.1039/JM9920200317
- M. Paranthaman, A. Manthiram, and J. B. Goodenough, “Hole Concentration and Tc in Tl2-yBa2Ca1-zCazCu2O8-x,” Journal of Solid State Chemistry 98, 343-349 (1992). dx.doi.org/10.1016/S0022-4596(05)80244-0
- A. Manthiram, M. Paranthaman, and J. B. Goodenough, “On the Determination of Hole Concentration in Thallium Cuprate Superconductors,” Journal of Solid State Chemistry 96, 464-467 (1992). dx.doi.org/10.1016/S0022-4596(05)80284-1
- G. Dutta, A. Manthiram, and J. B. Goodenough, “Chemical Synthesis and Properties of Li1-δ-xNi1+δO2and Li[Ni2]O4,” Journal of Solid State Chemistry 96, 123-131 (1992). dx.doi.org/10.1016/S0022-4596(05)80304-4
- J. B. Goodenough, A. Manthiram, M. Paranthaman, and Y. S. Zhen, “Oxide Ion Electrolytes,” Materials Science and Engineering B 12, 357-364 (1992). dx.doi.org/10.1016/0921-5107(92)90006-U
- J. B. Goodenough, A. Manthiram, M. Paranthaman, and Y. S. Zhen, “Fast Oxide-ion Conduction in Intergrowth Structures,” Solid State Ionics 52, 105-109 (1992). dx.doi.org/10.1016/0167-2738(92)90096-8
1991
- M. G. Smith, A. Manthiram, J. Zhou, J. B. Goodenough, and J. T. Markert, “Electron-doped Superconductivity at 40 K in the Infinite-Layer Compound Sr1-yNdyCuO2,” Nature 351, 549-551 (1991). dx.doi.org/10.1038/351549a0
- J. B. Goodenough, A. Manthiram, and G. Dutta, “Lattice Instabilities in Some Vanadium Oxides,” European Journal of Solid State and Inorganic Chemistry 28, 1125-1137 (1991).
- A. Manthiram and J. B. Goodenough, “Thermal-Expansion Mismatch and Intergrowth Types in the System La2-yNdyCuO4,” Journal of Solid State Chemistry 92, 231-236 (1991). dx.doi.org/10.1016/0022-4596(91)90262-G
- J. B. Goodenough, G. Dutta, and A. Manthiram, “Lattice Instabilities Near the Critical V-V Separation for Localized versus Itinerant Electrons in LiV1-yMyO2 (M = Cr or Ti) and Li1-xVO2,” Physical Review B 43, 10170-10178 (1991). dx.doi.org/10.1103/PhysRevB.43.10170
1990
- J. B. Goodenough and A. Manthiram, “Crystal Chemistry and Superconductivity of the Copper Oxides,” Journal of Solid State Chemistry 88, 115-139 (1990). dx.doi.org/10.1016/0022-4596(90)90209-G
- P. Lightfoot, Shiyou Pei, J. D. Jorgensen, X. X. Tang, A. Manthiram, and J. B. Goodenough, “Oxygen-Defect Structure of Non-superconducting La1.85Sr1.15Cu2O6.25: Excess Oxygen in the Interlayer Site,” Physica C 169, 464-468 (1990). dx.doi.org/10.1016/0921-4534(90)90593-4
- A. Manthiram, M. Paranthaman, and J. B. Goodenough, “Properties of the Chemically Characterized Thallium Cuprate Superconductors,” Physica C 171, 135-146 (1990). dx.doi.org/10.1016/0921-4534(90)90466-R
- P. Lightfoot, Shiyou Pei, J. D. Jorgensen, X. X. Tang, A. Manthiram, and J. B. Goodenough, “Interstitial Anions in the T*Structure,” Physica C 169, 15-22 (1990). dx.doi.org/10.1016/0921-4534(90)90283-K
- M. Paranthaman, A. Manthiram, and J. B. Goodenough, “Chemical Methods to Identify the Origin of Oxidation in the Thallium Cuprate Superconductors,” Journal of Solid State Chemistry 87, 479-482 (1990). dx.doi.org/10.1016/0022-4596(90)90054-2
- A. Manthiram and J. B. Goodenough, “Crystal Chemistry of the La2-yLnyCuO4 (Ln = Pr, Nd) Systems,” Journal of Solid State Chemistry 87, 402-407 (1990). dx.doi.org/10.1016/0022-4596(90)90042-V
- A. Manthiram, X. X. Tang, and J. B. Goodenough, “c-Axis Oxygen in Copper Oxide Superconductors,” Physical Review B 42, 138-149 (1990). dx.doi.org/10.1103/PhysRevB.42.138
- F. Devaux, A. Manthiram, and J. B. Goodenough, “Thermoelectric Power of High-Tc Superconductors,” Physical Review B 41, 8723-8731 (1990). dx.doi.org/10.1103/PhysRevB.41.8723
- J. S. Kim, X. X. Tang, A. Manthiram, J. S. Swinnea, and H. Steinfink, “A New Phase in the Sr-Pb-Cu-Oxide System: The Crystal Structure of Sr5-xPb3+xCuyO12-δ,” Journal of Solid State Chemistry 85, 44-50 (1990). dx.doi.org/10.1016/S0022-4596(05)80058-1
- C. J. Hou, A. Manthiram, L. Rabenberg, and J. B. Goodenough, “Electron Diffraction and Microscopy Study of Oxygen Ordering in YBa2Cu3O7-δ,” Journal of Materials Research 5, 9-16 (1990). dx.doi.org/10.1557/JMR.1990.0009
1989
- X. X. Tang, A. Manthiram, and J. B. Goodenough, “Role of Internal Electric Field on Suppression of Superconductivity by Pr in Copper Oxides,” Physica C 161, 574-580 (1989). dx.doi.org/10.1016/0921-4534(89)90392-4
- X. X. Tang, A. Manthiram, and J. B. Goodenough, “NiMn2O4 Revisited,” Journal of the Less Common Metals 156, 357-363 (1989). dx.doi.org/10.1016/0022-5088(89)90431-1
- A. Manthiram and J. B. Goodenough, “Chemical Probes of Tc vs p in p-type Copper-Oxide Superconductors,” Physica C 162-164, 69-70 (1989). dx.doi.org/10.1016/0921-4534(89)90921-0
- A. Manthiram and J. B. Goodenough, “Factors Influencing Tc in 123 Copper Oxide Superconductors,” Physica C 159, 760-768 (1989). dx.doi.org/10.1016/0921-4534(89)90146-9
- X. X. Tang, A. Manthiram, and J. B. Goodenough, “Copper Ferrite Revisited,” Journal of Solid State Chemistry 79, 250-262 (1989). dx.doi.org/10.1016/0022-4596(89)90272-7
- J. B. Goodenough and A. Manthiram, “Evidence for Some Suppression of Magnetic Moments in Superconductive Copper Oxides,” Physica C 157, 439-445 (1989). dx.doi.org/10.1016/0921-4534(89)90268-2
- A. Manthiram and J. B. Goodenough, “Lithium Insertion into Fe2(SO4)3 Frameworks,” Journal of Power Sources 26, 403-406 (1989). dx.doi.org/10.1016/0378-7753(89)80153-3
1988
- A. Manthiram and J. B. Goodenough, “Vanishing of Superconductivity at a Transition from Itinerant-electron to Small-polaron Conduction in Nominal Bi4-xPbx(Sr3Ca)Ca2-xYxCu4O16,” Applied Physics Letters 53, 2695-2697 (1988). dx.doi.org/10.1063/1.100548
- J. B. Goodenough, A. Manthiram, Y. Dai, and A. Campion, “Oxygen Clustering in 123 Copper Oxides Having Disordered or Excess (> 7.0) Oxygen,” Superconductor Science and Technology 1, 187-193 (1988). dx.doi.org/10.1088/0953-2048/1/4/007
- J. B. Goodenough and A. Manthiram, “The Role of Oxygen in YBa2Cu3O7-δ,” International Journal of Modern Physics B 2, 379-391 (1988). dx.doi.org/10.1142/S0217979288000251
- A. Manthiram and J. B. Goodenough, “Dependence of Tcon Hole Concentration in the Superconductors Bi4Sr3Ca3-xYxCu4O16+δ,” Applied Physics Letters 53, 420-422 (1988). dx.doi.org/10.1063/1.100608
- Y. Dai, A. Manthiram, J. B. Goodenough, and A. Campion, “X-ray-photoelectron-spectroscopy Evidence for Peroxide in 1:2:3 Copper Oxides Containing Disordered or Excess Oxygen,” Physical Review B 38, 5091-5094 (1988). dx.doi.org/10.1103/PhysRevB.38.5091
- J. S. Kim, J. S. Swinnea, A. Manthiram, and H. Steinfink, “Fluorine Substitution in YBa2Cu3O7-x,” Solid State Communications 66, 287-290 (1988). dx.doi.org/10.1016/0038-1098(88)90564-9
- Y. K. Tao, J. S. Swinnea, A. Manthiram, J. S. Kim, J. B. Goodenough, and H. Steinfink, “Co and Fe Substitution in YBa2Cu3O7-δ,” Journal of Materials Research 3, 248-256 (1988). dx.doi.org/10.1557/JMR.1988.0248
- A. Manthiram, X. X. Tang, and J. B. Goodenough, “Evidence for Peroxide Formation in the Superconducting YBa2-xLaxCu3O7±δ,” Physical Review B 37, 3734-3737 (1988). dx.doi.org/10.1103/PhysRevB.37.3734
- A. Manthiram, S. J. Lee, and J. B. Goodenough, “Influence of Ca on the Superconductivity of Y1-xCaxBa2Cu3O7-δ,” Journal of Solid State Chemistry 73, 278-282 (1988). dx.doi.org/10.1016/0022-4596(88)90080-1
1987
- A. Manthiram and J. B. Goodenough, “Synthesis of High-Tc Superconductor YBa2Cu3O7-δ in Small Particle Size,” Nature 329, 701-703 (1987). dx.doi.org/10.1038/329701a0
- A. Manthiram, J. S. Swinnea, Z. T. Sui, H. Steinfink, and J. B. Goodenough, “The Influence of Oxygen Variation on the Crystal Structure and Phase Composition of the Superconductor YBa2Cu3O7-x,” Journal of the American Chemical Society 109, 6667-6669 (1987). dx.doi.org/10.1021/ja00256a019
- A. Manthiram and J. B. Goodenough, “Lithium Insertion into Fe2(MO4) 3 Frameworks: Comparison of M = W with M = Mo,” Journal of Solid State Chemistry 71, 349-360 (1987). dx.doi.org/10.1016/0022-4596(87)90242-8
- A. Manthiram and J. B. Goodenough, “Refinement of the Critical V-V Separation for Spontaneous Magnetism in Oxides,” Canadian Journal of Physics 65, 1309-1317 (1987). dx.doi.org/10.1139/p87-206
1985
- A. Manthiram, “New Cation-deficient Spinel Oxides, Mn1-x□xV2-2xMo2xO4 (0 ≤ x ≤ 0.33),” Materials Research Bulletin 20, 955-959 (1985). dx.doi.org/10.1016/0025-5408(85)90079-0
- A. Manthiram, “Synthesis of Vanadium Spinels by Hydrogen Reduction of Oxide Precursors,” Polyhedron 4, 967-970 (1985). dx.doi.org/10.1016/S0277-5387(00)84065-6
1984
- A. Manthiram and J. Gopalakrishnan, “On the Valence State of Molybdenum in Ce2MoO6,” Journal of the Less Common Metals 99, 107-111 (1984). dx.doi.org/10.1016/0022-5088(84)90339-4
1981
- J. Gopalakrishnan and A. Manthiram, “Topochemically Controlled Hydrogen Reduction of Scheelite-related Rare-earth Metal Molybdates,” Journal of Chemical Society – Dalton Transactions 668-672 (1981). dx.doi.org/ 10.1039/DT9810000668
1980
- A. Manthiram, P. R. Sarode, W. H. Madhusudan, J. Gopalakrishnan, and C. N. R. Rao, “X-ray Spectroscopic Study of Chromium, Nickel, and Molybdenum Compounds,” Journal of Physical Chemistry 84, 2200-2203 (1980). dx.doi.org/10.1021/j100454a018
- A. Manthiram and J. Gopalakrishnan, “Fluorite-Related Ln2Mo2O7 Oxides in the Ln2O3-MoO2 System,” Indian Journal of Chemistry 19A, 1042-1045 (1980).
- A. Manthiram and J. Gopalakrishnan, “New A2+Mo4+O3 Oxides with Defect Spinel Structure,” Materials Research Bulletin 15, 207-211 (1980). dx.doi.org/10.1016/0025-5408(80)90121-X
1979
- A. Manthiram and J. Gopalakrishnan, “Studies on Some Ln2MoO5 Oxides,” Journal of the Less Common Metals 68, 167-174 (1979). dx.doi.org/10.1016/0022-5088(79)90053-5
1978
- A. Manthiram and J. Gopalakrishnan, “Preparation and Structure of Some Ln2MoO5 Oxides,” Proceedings of Indian Academy of Sciences 87A, 267-273 (1978). dx.doi.org/10.1007/BF03182142