• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
UT Shield
The University of Texas at Austin
  • Home
  • Bio
  • Research
  • Publications
    • Journal Articles
    • Conference Proceedings
    • Book Chapters
    • Books Edited
    • Reviews
  • People
  • News
  • Contact

Journal Articles

    2026

  1. T. Lai, K. Liao, and A. Manthiram, “Modulating Li+ and Polysulfide Solvation with Low-Density Moderately Solvating Electrolytes for Lithium–Sulfur Batteries,” Angewandte Chemie, (2026)
    https://doi.org/10.1002/anie.202522940

  2. 2025

  3. C. Liu, Z. Cui, and A. Manthiram, “Decoding Gas Evolution Pathways and Interfacial Chemistry in Layered Oxide Cathodes for Safer Sodium-Ion Batteries,” Advanced Energy Materials, (2025)
    http://doi.org/10.1002/aenm.202504756

  4. M. Pai and A. Manthiram, “Tailoring Na⁺ Chelation Dynamics for Expedient Sulfur Redox Kinetics in Low-Temperature Sodium–Sulfur Batteries,” Angewandte Chemie, (2025)
    http://doi.org/10.1002/anie.202517612

  5. E. Y. Bar-Nur and A. Manthiram, “Delineating the Factors Impacting the Electrochemical Behavior of Single-Crystal High-Nickel Layered Oxide Cathodes,” ACS Applied Materials & Interfaces, (2025)
    http://doi.org/10.1021/acsami.5c15671

  6. Z. Cui, C. Liu, and A. Manthiram, “A Perspective on Pathways Toward Commercial Sodium-Ion Batteries,” Advanced Materials, 37, 2420463 (2025)
    https://doi.org/10.1002/adma.202420463

  7. G. Jarrold and A. Manthiram, “Electrolyte Strategies for Practically Viable All-Solid-State Lithium-Sulfur Batteries,” Communications Materials (2025)
    https://doi.org/10.1038/s43246-025-00960-7

  8. C. Liu, S. Reed, and A. Manthiram, “Delineating the Triphasic Side Reaction Products in High-energy Density Lithium-ion Batteries,” Advanced Materials (2025)
    http://dx.doi.org/10.1002/adma.202509889

  9. A. Manthiram and T. Lai, “Accelerated Materials Discovery Through the Power of Artificial Intelligence for Energy Storage,” The Bridge, 55, 72 (2025)
    https://www.nae.edu/340918/Accelerated-Materials-Discovery-Through-the-Power-of-Artificial-Intelligence-for-Energy-Storage

  10. K. Aranda and A. Manthiram, “Influence of Anode Reactivity and Chemical Crossover on the Formation of Cathode-Electrolyte Interphase in High-nickel Layered Oxide Cathodes,” Advanced Energy Materials (2025)
    http://doi.org/10.1002/aenm.202502617

  11. S. Reed and A. Manthiram, “Delineating the Kinetic Limitations of Mn2+/3+ Redox in LiMnxFe1-xPO4 Cathodes for Lithium-ion Batteries,” Journal of Materials Chemistry A, 13 34730 – 34740 (2025)
    https://doi.org/10.1039/D5TA05970D

  12. S. Ober and A. Manthiram, “Harnessing the Kinetics of LiMn0.5Fe0.5PO4 in Energy-dense Layered-Olivine Blend Cathodes for Lithium-ion Batteries,” EES Batteries (2025)
    https://doi.org/10.1039/D5EB00132C

  13. G. Jarrold and A. Manthiram, “Delineating the Intricate Impact of Carbon in All-solid-state Lithium-sulfur Batteries,”
    Advanced Energy Materials (2025)
    https://doi.org/10.1002/aenm.202502557

  14. X. Yu, Y. Wang, N. Xu, Z. He, A. Manthiram, and X. Zhou, “Deposition of Metallic Lithium Inside Inorganic Solid-State Electrolytes,” APL Energy (2025)
    https://doi.org/10.1063/5.0264220

  15. J. Darga and A. Manthiram, “Delineating the Impact of Ti/Mg Substitution in P2-type Na2/3Ni1/3Mn2/3O2 with Advanced Electrolyte for Sodium-ion Batteries,” Journal of Materials Chemistry A, 13, 29183 – 29195 (2025)
    https://doi.org/10.1039/D5TA03522H

  16. K. Liao and A. Manthiram, “Impact of Cathode Microstructure on Sulfur Redox Kinetics in Lithium-Sulfur Batteries,” Advanced Energy Materials, 15, 2502062 (2025)
    https://doi.org/10.1002/aenm.202502062

  17. Z. Cui, Z. Yu, H. Lyu, Z. Bao, and A. Manthiram, “Resolving Electrolyte Decomposition Products in Gas, Liquid, and Solid Phases in Lithium-Metal Batteries,” ACS Energy Letters, 10, 3827-383 (2025)
    https://doi.org/10.1021/acsenergylett.5c01433

  18. B. Jin, T. Lai, and A. Manthiram, “Locally-confined Polysulfide-reactive Electrolytes for Shuttle-free Sodium-Sulfur Batteries,” Journal of the American Chemical Society (2025)
    https://doi.org/10.1021/jacs.5c05389

  19. T. J. Watts, M. C. Smart, and A. Manthiram, “Differentiating the Synergistic Interactions between Li+ Salts and Cyclic to LinearCarbonate Ratios to Enable Wide-temperature Performance of Lithium-Ion Batteries,” Advanced Functional Materials (2025)
    https://doi.org/10.1002/adfm.202511694

  20. M. Pai and A. Manthiram, “Electrolyte Design and Optimization for Alkali Metal-Sulfur Batteries,” Advanced Energy Materials (2025)
    https://doi.org/10.1002/aenm.202502691

  21. C. Trejo, K. Scanlan, and A. Manthiram, “Impacts of cell design and cycling conditions on the practical cycle life and energy density of aluminum foil anodes in Li-ion batteries,” Journal of Power Sources (2025)
    https://doi.org/10.1016/j.jpowsour.2025.237783

  22. T. Ingebrand, Z. Cui, A. Dolocan, and A. Manthiram, “Electrolyte-driven Interphase Stabilization in High-voltage Sodium-ion Full Cells,” Materials Today (2025)
    https://doi.org/10.1016/j.mattod.2025.06.040

  23. R. Schmidt, C. Liu, Z. Cui, and A. Manthiram, “Unveiling the influences of electrolyte additives on the fast-charging performance of lithium-ion batteries,” Journal of Power Sources, 627 (2025)
    https://doi.org/10.1016/j.jpowsour.2024.235844

  24. K. Sada, S. Nanda, H. Khani, and A. Manthiram, “Deciphering the Local Structure of Prussian Blue Analogue Cathodes with Raman Spectroscopy for Sodium-ion Batteries,” Journal of Materials Chemistry A (2025)
    https://doi.org/10.1039/D5TA02248G

  25. S. Ober and A. Manthiram, “Enabling Fast Formation for Lithium-ion Batteries with a Localized High-Concentration Electrolyte,” EES Batteries (2025)
    https://doi.org/10.1039/D5EB00037H

  26. Z. Guo, Z. Cui, and A. Manthiram, “Crossover Effects of Transition-metal Ions on Lithium-metal Anode in Localized High Concentration Electrolytes,” Advanced Functional Materials (2025)
    https://doi.org/10.1002/adfm.202501743

  27. A. Vignesh, G. Gnana kumar, P. Vajeeston, and A. Manthiram, “Bimetallic Organic Framework-derived 3D Hierarchical Ni-Cu/MWCNTs as Anode catalysts for High-performance, Durable Direct Urea Fuel Cells,” Advanced Energy Materials (2025)
    https://doi.org/10.1002/aenm.202405025

  28. Y. Yen, H. Sul, and A. Manthiram, “Enhanced Electrochemical Stability in All-Solid-State Lithium–Sulfur Batteries with Lithium Argyrodite Electrolyte,” Small (2025)
    https://doi.org/10.1002/smll.202501229

  29. Z. Zhao, C. Liu, T. Lai, Z. Cui, and A. Manthiram, “Macromolecule-Enriched Solvation Enabling High-Voltage Sodium-Ion Batteries,” Angewandte Chemie (2025)
    https://doi.org/10.1002/anie.202423625

  30. W. Yao, M. Pai, and A. Manthiram, “Inner-Outer Sheath Synergistic Shielding of Polysulfides in Asymmetric Solvent-based Electrolytes for Stable Sodium-Sulfur Batteries,” Journal of the American Chemical Society (2025)
    https://doi.org/10.1021/jacs.4c18374

  31. Z. Cui, C. Liu, and A. Manthiram, “A Perspective on Pathways towards Commercial Sodium-ion Batteries,” Advanced Materials (2025)
    https://doi.org/10.1002/adma.202420463

  32. W. Yao, M. Pai, and A. Manthiram, “Deciphering the Impact of Polysulfide Solvation Structure on Electrical Double Layer Chemistry in Sodium-Sulfur Batteries,” Angewandte Chemie (2025)
    https://doi.org/10.1002/anie.202424547

  33. E. Ruoff, S. Kmiec, and A. Manthiram, “Redox-active Halide Catholytes for Enhanced Energy Density in Solid-state Sodium Batteries,” ACS Applied Materials & Interfaces (2025)
    https://doi.org/10.1021/acsami.5c00755

  34. Z. Cui, C. Liu, F. Wang, and A. Manthiram, “Navigating Thermal-Stability Intricacies of High-Nickel Cathodes for High-Energy Lithium Batteries,” Nature Energy (2025)
    https://doi.org/10.1038/s41560-025-01731-x

  35. M. Pai, and A. Manthiram, “Fluorine-free Cosolvent Chemistry Empowering Sodium-Sulfurized Polyacrylonitrile Batteries,” Advanced Energy Materials, 202500026(2025)
    https://doi.org/10.1002/aenm.202500026

  36. K. Scanlan and A. Manthiram, “Equations and Electrochemical Methods for Measuring the Interfacial Charge-Transfer Kinetics of Li-ion Battery Active Materials at High Current Densities,” Electrochimca Acta, 520, 145875 (2025)
    https://doi.org/10.1016/j.electacta.2025.145875

  37. C. Liu, A. Dolocan, Z. Cui, and A. Manthiram, “Multi-Dimensional, Multi-Scale Analysis of Interphase Chemistry for Enhanced Fast-Charging of Lithium-Ion Batteries with Ion Mass Spectrometry,” Journal of the American Chemical Society (2025)
    https://doi.org/10.1021/jacs.4c16561

  38. J. B. Adamo, and A. Manthiram, “Understanding the Impact of Composition on the H2 – H3 Phase Transition in High-Nickel Cathodes,” ACS Applied Energy Materials (2025)
    https://doi.org/10.1021/acsaem.4c02730

  39. J. Darga, and A. Manthiram, “Morphological Tunability and Surface Reactivity Control of Single-crystal Sodium Layered Oxides Employing Spinel Ni1+xMn2-xO4 (x = 0 and 0.5) Precursor,” Advanced Functional Materials (2025)
    https://doi.org/10.1002/adfm.202420706

  40. 2024

  41. T. Lai, A. Bhargav, and A. Manthiram, “Long-life Graphite – Lithium Sulfide Full Cells Enabled through a Solvent Co-intercalation-free Electrolyte Design,” Materials Horizons, 12, 1282-1289 (2024)
    https://doi.org/10.1039/D4MH01287A

  42. S. Kmiec, E. Ruoff, and A. Manthiram, “A New Class of Oxyhalide Solid Electrolytes NaNbCl6-2xOx for Solid-state Sodium Batteries,” Angewandte Chemie (2024).
    https://doi.org/10.1002/anie.202416979

  43. K. Liao, M. Pai, and A. Manthiram, “Tuning the Solvation Structure of a Weakly Solvating Cyclic Ether Electrolyte for Wide-Temperature Cycling of Lithium-Sulfurized Polyacrylonitrile Batteries,” Advanced Energy Materials (2024)
    https://doi.org/10.1002/aenm.202403733

  44. H. Sul and A. Manthiram, “Impact of Ambient Air Contamination on the Performance of Argyrodite-based All-solid-state Lithium-sulfur Batteries,” ACS Energy Letters (2024)
    https://doi.org/10.1021/acsenergylett.4c01882

  45. T. J. Watts and A. Manthiram, “Delineating the Intricacies of Niobium-modified High-nickel Layered Cathodes with a Single-step Synthesis,” Journal of Materials Chemistry A, 12, 29998 – 30011 (2024)
    https://doi.org/10.1039/D4TA05544F

  46. D. Guo, J. Wang, Z. Cui, Z. Shi, G. Henkelman, H. N. Alshareef, and A. Manthiram, “Low- temperature Sodium-sulfur Batteries Enabled by Ionic Liquid in Localized High Concentration Electrolytes,” Advanced Functional Materials (2024)
    https://doi.org/10.1002/adfm.202409494
  47. J. B. Adamo and A. Manthiram, “Electrolyte Strategies to Minimize Surface Reactivity for Improved Reversibility of H2 – H3 Phase Transition,” Journal of Materials Chemistry A, 12, 28818 – 28829 (2024)
    https://doi.org/10.1039/D4TA05216A

  48. K. Sada, S. M. Greene, S. Kmiec, D. J. Siegel, A. Manthiram, “Unveiling the Influence of Water Molecules on the Structural Dynamics of Prussian Blue Analogues,” Small (2024).
    https://doi.org/10.1002/smll.202406853

  49. S. Lee and A. Manthiram, “Effects of Coprecipitation Conditions on the Electrochemical Properties of Cobalt-free LiNi0.9Mn0.1-xAlxO2 Cathodes,” Small (2024)
    https://doi.org/10.1002/smll.202406947

  50. S. Lee, K. Scanlan, S. Reed, and A. Manthiram, “Cost-effective Layered Oxide – Olivine Blend Cathodes for High-rate Pulse Power Lithium-ion Batteries,” Advanced Energy Materials (2024)
    https://doi.org/10.1002/aenm.202403002

  51. J. He, A. Bhargav, and A. Manthiram, “Long-life Sodium-sulfur Batteries Enabled by Super-sodiophilic Seeds,” Energy and Environmental Science (2024)
    https://doi.org/10.1039/D4EE02996H

  52. S. Lee, D. Lee, and A. Manthiram, “Mixed Ionic-electronic Conductivity of High-nickel, Single-crystal Cathodes Influencing the Cycling Stability of All-solid-state Lithium-ion Batteries,” Journal of Materials Chemistry A, 12, 26244 – 26252 (2024)
    https://doi.org/10.1039/D4TA03727H

  53. R. Brow, Z. Berquist, S. Lee, T. Martin, L. Meyer, M. Schulze, A. Singh, R. Tancin, G. Teeter, G. Veith, B. J. Tremolet de Villers, A. Colclasure, A. Manthiram, “Cobalt-Free Cathodes and Silicon Thin-Film Anodes Towards High-Capacity Solid-State Batteries,” Journal of Energy Storage, 99, 113329 (2024)
    https://doi.org/10.1016/j.est.2024.113329

  54. Z. Cui, C. Liu and A. Manthiram, “Enabling Stable Operation of Lithium-ion Batteries under Fast-Operating Conditions by Tuning the Electrolyte Chemistry,” Advanced Materials (2024)
    https://doi.org/10.1002/adma.202409272

  55. S. Kmiec, K. Krupp, E. Ruoff, and A. Manthiram, “Effects of Oxide Precursors on the Structure and Properties of Na3PS4-xOx Glassy Solid Electrolytes,” Chemistry of Materials (2024)
    https://doi.org/10.1021/acs.chemmater.4c01218

  56. P. Vanaphuti and A. Manthiram, “Enhancing the Mn redox kinetics of LiMn0.5Fe0.5PO4 cathodes through a synergistic co-doping with niobium and magnesium for lithium-ion batteries,” Small (2024)
    https://doi.org/10.1002/smll.202404878

  57. S. Ober and A. Manthiram, “Design of Localized High Concentration Electrolytes for Fast-charging Lithium-ion Batteries,” Small (2024)
    https://doi.org/10.1002/smll.202405731

  58. B. Jin, A. Dolocan, C. Liu, Z. Cui, and A. Manthiram, “Regulating Anode-electrolyte Interphasial Reactions by Zwitterionic Binder Chemistry in Lithium-ion Batteries with High-nickel Layered Oxide Cathodes and Silicon-Graphite Anodes,” Angewandte Chemie (2024)
    https://doi.org/10.1002/anie.202408021

  59. S. Reed, K. Scanlan, and A. Manthiram, “Scalable, Low-cost Synthesis of High volumetric Capacity LiMn0.5Fe0.5PO4 Cathode for Lithium-ion Batteries,” Journal of Materials Chemistry A (2024)
    https://doi.org/10.1039/D4TA03438D

  60. M. Yi, Z. Cui, and A. Manthiram, “Impact of Electrolyte on Direct-contact Prelithiation of Silicon-Graphite Anodes in Lithium-ion Cells with High-nickel Cathodes,” ACS Applied Materials and Interfaces (2024)
    https://doi.org/10.1021/acsami.4c08929

  61. J. Darga, and A. Manthiram, “Deconstructing the High Voltage Degradation Mechanisms in Na2/3Ni1/3Mn2/3O2 with Single Crystals and Advanced Electrolyte,” Advanced Functional Materials (2024)
    https://doi.org/10.1002/adfm.202408642

  62. H. Sul and A. Manthiram, “Bi-metallic Phosphide Electrocatalyst-integrated Li2S Cathode for High-performance Anode-free Li-S Batteries,” Advanced Functional Materials (2024)
    https://doi.org/10.1002/adfm.202408113

  63. Z. Cui, P. Zuo, Z. Guo, C. Wang and A. Manthiram, “Formation and Detriments of Residual Alkaline Compounds on High-Nickel Layered Oxide Cathodes,” Advanced Materials (2024)
    https://doi.org/10.1002/adma.202402420

  64. E. Ruoff, S. Kmiec, and A. Manthiram, “Enhanced Interfacial Conduction in Low-cost NaAlCl4 Composite Solid Electrolyte for Solid-state Sodium Batteries,” Advanced Energy Materials (2024)
    https://doi.org/10.1002/aenm.202402091

  65. M. Pai, T. Lai, and A. Manthiram, “Sodium-Sulfur Cells with a Sulfurized Polyacrylonitrile Cathode and a Localized High Concentration Electrolyte with Toluene as a Non-Fluorinated Diluent,” Advanced Functional Materials (2024)
    https://doi.org/10.1002/adfm.202407450

  66. Y. Yen and A. Manthiram, “Anode-free Lithium-Sulfur Batteries with a Rare-Earth Triflate as a Dual-Function Electrolyte Additive,” ACS Applied Materials & Interfaces (2024)
    https://doi.org/10.1021/acsami.4c05414

  67. J. He, A. Bhargav, J. Okasinski, and A. Manthiram, “A Class of Sodium Transition-metal Sulfide Cathodes with Anion Redox,” Applied Materials (2024)
    https://doi.org/10.1002/adma.202403521

  68. P. Vanaphuti, K. Scanlan, and A. Manthiram, “Ammonia-free Synthesis of Lithium Manganese Iron Phosphate Cathodes via a Co-precipitation Reaction,” RSC Sustainability 2, 1969 – 1978 (2024)
    https://doi.org/10.1039/D4SU00125G

  69. H. Zhang, T. Lai, J. Chen, A. Manthiram, J. M. Rondinelli, and W. Chen, “Learning Molecular Mixture Property using Chemistry-aware Graph Neural Network,” PRX Energy, 3, 023006 (2024)
    https://doi.org/10.1103/PRXEnergy.3.023006

  70. M. Yi, R. Sim, and A. Manthiram, “Electrolyte-enabled High-voltage Operation of a Low-nickel, Low-cobalt Layered Oxide Cathode for High Energy Density Lithium-ion Batteries,” Small, (2024)
    https://doi.org/10.1002/smll.202403429

  71. Z. Guo, Z. Cui, and A. Manthiram, “Reducing the Initial Capacity Loss in High-nickel Cathodes with a Higher Upper Cut-off Voltage Formation Cycle Protocol,” ACS Energy Letters , (2024)
    https://doi.org/10.1021/acsenergylett.4c01027

  72. T. Lai, and A. Manthiram, “Phloroglucinol – 2,6-Diaminoanthraquinone as a Durable Redox Mediator for Enhancing Conversion Reaction Kinetics in Lithium-Sulfur Batteries,” Advanced Functional Materials , (2024)
    https://doi.org/10.1002/adfm.202405814

  73. J. B. Adamo, and A. Manthiram, “Understanding the Effects of Al and Mn Doping on the H2 – H3 Phase Transition in High-nickel Layered Oxide Cathodes,” Chemistry of Materials , (2024)
    https://doi.org/10.1021/acs.chemmater.4c01033

  74. M. Olson, S. Kmiec, N. Riley, N. Oldham, K. Krupp, A. Manthiram, and S. W. Martin, “Structure and Properties of Na2S–SiS2–P2S5–NaPO3 Glassy Solid Electrolytes,” Inorganic Chemistry, 63, 9129-9144, (2024)
    https://doi.org/10.1021/acs.inorgchem.4c00423

  75. C. Trejo, K. Scanlan, and A. Manthiram, “Impact of LiAl Nucleation Kinetics on the Microstructural Evolution of Aluminum Foil Anodes in Lithium-ion Batteries,” Journal of the Electrochemical Society (2024).
    https://doi.org/10.1149/1945-7111/ad3ec2

  76. K. Sada, S. Kmiec, A. Manthiram, “Mitigating Sodium Ordering for Enhanced Solid Solution Behavior in Layered NaNiO2 Cathodes,” Angewandte Chemie e202403865: 1-10 (2024).
    https://doi.org/10.1002/anie.202403865

  77. W. Yao, K. Liao, T. Lai, H. Sul, and A. Manthiram, “Rechargeable Metal-sulfur Batteries: Key Materials to Mechanisms,” Chemical Reviews 124, 4935-5118 (2024).
    https://doi.org/10.1021/acs.chemrev.3c00919

  78. S. Lee, C. Li, and A. Manthiram, “Effects of Calcination Conditions on the Structural and Electrochemical Behaviors of High-nickel, Cobalt-free LiNi0.9Mn0.1O2 Cathode,” Advanced Energy Materials (2024).
    https://doi.org/10.1002/aenm.202400662

  79. D. Lee, A. Mesnier, and A. Manthiram, “Crack–free Single–crystalline LiNiO2 for High Energy Density All–solid–state Batteries,” Advanced Energy Materials , 2303490 (2024).
    https://doi.org/10.1002/aenm.202303490

  80. H. Sul, D. Lee, and A. Manthiram, “High-loading Lithium-Sulfur Batteries with Solvent-free Dry-electrode Processing,” Small (2024).
    https://doi.org/10.1002/smll.202400728

  81. J. He, A. Bhargav, J. Lamb, L. Su, J. Okasinski, W. Shin, and A. Manthiram, “Tuning the Solvation Structure with Salts for Stable Sodium-metal Batteries,” Nature Energy 9, 446-456 (2024).
    https://doi.org/10.1038/s41560-024-01469-y

  82. R. M. Torres, and A. Manthiram, “Delineating the Effects of Transition-metal-ion Dissolution on Silicon Anodes in Lithium-ion Batteries,” Small (2024).
    https://doi.org/10.1002/smll.202309350

  83. R. Sim, and A. Manthiram, “Factors Influencing Gas Evolution from High-nickel Layered Oxide Cathodes in Lithium-based Batteries,” Advanced Energy Materials (2024).
    https://doi.org/10.1002/aenm.202303985

  84. 2023

  85. S. Kmiec, P. Vanaphuti, and A. Manthiram, “Solid-state Sodium Batteries with P2-type Mn-based Layered Oxides by Utilizing Anionic Redox,” Journal of Materials Chemistry A, 12, 3006 – 3013 (2024).
    https://doi.org/10.1039/D3TA05790A

  86. D. Lee and A. Manthiram, “Boosting Electrochemical Performance with Functionalized Dry Electrodes for Practical All-solid-state Batteries,” Journal of Materials Chemistry A, 12, 3323 – 3330 (2023).
    https://doi.org/10.1039/D3TA05631G

  87. L. Su, Z. Cui, and A. Manthiram, “Impact of High-Nickel Cathodes and Test Conditions on the Coulombic Efficiency of Lithium Metal in Advanced Electrolytes,” ACS Materials Letters, 6, 109-114 (2023).
    https://doi.org/10.1021/acsmaterialslett.3c01164

  88. R. Sim, L. Su, A. Dolocan, and A. Manthiram, “Delineating the Impact of Transition-Metal Crossover on Solid-Electrolyte Interphase Formation with Ion Mass Spectrometry,” Advanced Materials (2023).
    https://doi.org/10.1002/adma.202311573

  89. E. Ruoff, S. Kmiec, and A. Manthiram, “Polycarbonate-based Solid-polymer Electrolytes for Solid-state Sodium Batteries,” Small (2023).
    https://doi.org/10.1002/smll.202311839

  90. X. Zhang, Z. Cui, and A. Manthiram, “Long-life Lithium-metal Batteries with an Ultra-high-nickel Cathode and Electrolytes with Bi-anion Activity,” Advanced Functional Materials, 2309591 (2023).
    https://doi.org/10.1002/adfm.202309591

  91. C. Liu, Z. Cui, and A. Manthiram, “Tuning Dopant Distribution for Stabilizing the Surface of High-nickel Layered Oxide Cathodes for Lithium-ion Batteries,” Advanced Energy Materials, 2302722 (2023).
    https://doi.org/10.1002/aenm.202302722

  92. R. Sim, Z. Cui, and A. Manthiram, “Impact of Dopants in Suppressing Gas Evolution from High-nickel Layered Oxide Cathodes” ACS Energy Letters, 8, 5143-5148 (2023).
    https://doi.org/10.1021/acsenergylett.3c02024

  93. Z. Cui, Z. Guo, and A. Manthiram, “Irreparable Interphase Chemistry Degradation Induced by Temperature Pulse in Lithium-ion Batteries,” Angewandte Chemie International Edition 62, 3202313437 (2023).
    https://doi.org/10.1002/anie.202313437

  94. M. Yi, Z. Cui, H. Celio, and A. Manthiram, “Roles of Mn and Co on the Air-synthesizability of Layered Oxide Cathodes for Lithium-based Batteries,” Chemistry of Materials 35, 9352-9361 (2023).
    https://doi.org/10.1021/acs.chemmater.3c02177

  95. P. Vanaphuti, Z. Cui, and A. Manthiram, “Demarcating the Impact of Electrolytes on High-nickel Cathodes and Lithium-metal Anode,” Advanced Functional Materials 2308619 (2023).
    https://doi.org/10.1002/adfm.202308619

  96. P. Vanaphuti, L. Su, and A. Manthiram, “Effect of Electrochemical Pre-Lithiation on Layered Oxide Cathodes for Anode-free Lithium-metal Batteries,” Small Methods 2301159 (2023).
    https://doi.org/10.1002/smtd.202301159

  97. A. Mesnier and A. Manthiram, “Interplay of Molten Salt and Dopants in Tuning the Performance of Single-crystalline LiNiO2,” Journal of Power Sources 586, 233681 (2023).
    https://doi.org/10.1016/j.jpowsour.2023.233681

  98. S. Lee, L. Su, A. Mesnier, Z. Cui, and A. Manthiram, “Cracking Vs. Surface Reactivity in High-nickel Cathodes in Lithium-ion Batteries,” Joule 7, 2430-2444 (2023).
    https://doi.org/10.1016/j.joule.2023.09.006

  99. H. Park, Z. Guo, and A. Manthiram, “Effect of Oxidative Synthesis Conditions on the Performance of Single-crystalline LiMn2-xMxO4 (M = Al, Fe, and Ni) Spinel Cathodes in Lithium-ion Batteries,” Small 2303526 (2023).
    https://doi.org/10.1002/smll.202303526

  100. J. He, A. Bhargav, L. Su, H. Charalambous, and A. Manthiram, “Intercalation-type Catalyst for Non-aqueous Room-temperature Sodium-sulfur Batteries,” Nature Communications 14, 6568 (2023).
    https://doi.org/10.1038/s41467-023-42383-3

  101. K. P. Scanlan, and A. Manthiram, “Revealing the Electrochemical Kinetics of Electrolytes in Nanosized LiFePO4 Electrodes,” Journal of the Electrochemical Society 170,100515 (2023).
    https://doi.org/10.1149/1945-7111/acfc69

  102. K. Liao, A. Bhargav, and A. Manthiram, “Scalable Metal Phosphides as a Dual-Function Catalyst and Lithium-Metal Stabilizer for Lithium-Sulfur Batteries,” ACS Energy Materials 6, 9585-9593 (2023).
    https://doi.org/10.1021/acsaem.3c01606

  103. K. Sada, J. Darga, and A. Manthiram, “Challenges and Prospects of Sodium-Ion and Potassium-Ion Batteries for Mass Production,” Advanced Energy Materials 13, 2302321 (2023).
    https://doi.org/10.1002/aenm.202302321

  104. B. Jin, T. Lai, and A. Manthiram,” High-Mass-Loading Anode-Free Lithium-Sulfur Batteries Enabled by a Binary Binder with Fast Lithium-Ion Transport,” ACS Energy Letters 8, 3767–3774 (2023).
    https://doi.org/10.1021/acsenergylett.3c01395

  105. D. Lee, Z. Cui, J. B. Goodenough, and A. Manthiram, “Interphase Stabilization of LiNi0.5Mn1.5O4 Cathode for 5 V−Class All-solid-state Batteries,” Advanced Functional   Materials 2306053 (2023).
    https://doi.org/10.1002/smll.202306053

  106. H. Sul, J. He, and A. Manthiram, “Tellurium Nanowires for Lithium-metal Anode Stabilization in High-performance Anode-free Li-S Batteries,” Small Science 3, 2300088 (2023).
    https://doi.org/10.1002/smsc.202300088

  107. A. Mesnier and A. Manthiram, “Influence of Single-crystalline Morphology on the Electrochemical Behavior of High-nickel Layered Oxide Cathodes,” Journal of the Electrochemical Society 170, 8 (2023).
    https://doi.org/10.1149/1945-7111/aceca6

  108. Z. Guo, Z. Cui, R. Sim, and A. Manthiram, “Localized high-concentration electrolytes with low-cost diluents compatible with both cobalt-free LiNiO2 cathode and lithium-metal anode,” Advanced Energy Materials 19, 2305055 (2023).
    https://doi.org/10.1002/smll.202305055

  109. R. Torres, A. Bhargav, and A. Manthiram, “Poly(vinylferrocene) as an Ionomer and Sulfur-Confining Additive for Lithium-Sulfur Batteries,” ACS Applied Materials & Interfaces 15, 39245–39252 (2023).
    https://doi.org/10.1021/acsami.3c05567

  110. T. Lai, A. Bhargav, and A. Manthiram, “Lithium Tritelluride as an Electrolyte Additive for Stabilizing Lithium Deposition and Enhancing Sulfur Utilization in Anode-free Lithium-sulfur Batteries,” Advanced Functional Materials 33, 2304568 (2023).
    https://doi.org/10.1002/adfm.202304568

  111. L. Su, S. Zhang, A. J. H. McGaughey, B. Reeja-Jayan, and A. Manthiram, “Battery Charge Curve Prediction via Feature Extraction and Supervised Machine Learning,” Advanced Science 10, 2301737 (2023).
    http://doi.org/10.1002/advs.202301737

  112. Z. Cui, and A. Manthiram, “Thermal Stability and Outgassing Behaviors of High-nickel Cathodes in Lithium-ion Batteries,” Angewandte Chemistry (2023). 135, e202307243
    https://doi.org/10.1002/anie.202307243

  113. Y Ren, T. Lai, and A. Manthiram, “Reversible Sodium-Sulfur Batteries Enabled by a Synergistic Dual-Additive Design,” ACS Energy Letters 8, 2746–2752 (2023).
    https://doi.org/10.1021/acsenergylett.3c00833

  114. H. Kim, Y. Kong, W. M. Seong, and A. Manthiram, “Controlling the Microstructure of Cobalt-free, High-nickel Cathode Materials with Dopant Solubility for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 15, 26585–26592 (2023).
    https://doi.org/10.1021/acsami.3c02009

  115. H. Park and A. Manthiram, “Ethanothermal Synthesis of Octahedral-shaped Doped Mn2O3 Single Crystals as a Precursor for LiMn2O4 Spinel Cathodes in Lithium-ion Batteries,” Journal of Physical Chemistry C 127, 8515–8522 (2023).
    https://doi.org/10.1021/acs.jpcc.3c02468

  116. M. Yi, L. Su, and A. Manthiram, “Tuning and Understanding the Solvent Ratios of Localized Saturated Electrolytes for Lithium-metal Batteries,” Journal of Materials Chemistry A  (2023).
    https://doi.org/10.1039/D3TA01061A

  117. S. Kmiec, E. Ruoff, J. Darga, A. Bodratti and A. Manthiram, “Scalable Glass-fiber-polymer Composite Solid Electrolytes for Solid-state Sodium-metal Batteries,” ACS Applied Materials & Interfaces (in press) (2023).
    https://doi.org/10.1021/acsami.3c00240

  118. D. Lee and A. Manthiram, “Stable Cycling with Intimate Contacts Enabled by Crystallinity-controlled PTFE-based Solvent-free Cathodes in All-solid-state Batteries,” Small Methods 2201680: 1-7 (2023).
    https://doi.org/10.1002/smtd.202201680

  119. A. Bhargav, H. Yaghoobnejad Asl, and A. Manthiram, “Mechanistic Understanding of Lithium-anode Protection by Organosulfide-based Solid-electrolyte Interphases and its Implications,” Journal of Materials Chemistry A 11, 9772 -9783 (2023).
    https://doi.org/10.1039/D3TA00417A

  120. R. Sim, L. Su, and A. Manthiram, “A High Energy-density, Cobalt-free, Low-nickel LiNi0.7Mn0.25Al0.05O2 Cathode with a High-voltage Electrolyte for Lithium-metal Batteries,” Advanced Energy Materials 13, 2300096: 1-12 (2023).
    https://doi.org/10.1002/aenm.202300096

  121. Y. Kim, W. Shin, H. Kim, E. Jo, and A. Manthiram, “Insights into the Microstructural Engineering of Cobalt-free, High-nickel Cathodes Based on Surface Energy for Lithium-ion Batteries,” Advanced Energy Materials 202204054: 1-8 (2023).
    https://doi.org/10.1002/aenm.202204054

  122. J. B. Adamo, L. Su, and A. Manthiram, “Operation of Layered LiCoO2 to Higher Voltages with a Localized Saturated Electrolyte” Chemistry of Materials 15, 15458-15466 (2023).
    https://doi.org/10.1021/acsami.2c22786

  123. A. Bhargav and A. Manthiram, “Li-S batteries, What’s Next?” Next Energy, https://doi.org/10.1016/j.nxener.2023.100012i (2023).

  124. A. Mesnier and A. Manthiram, “Heuristics for Molten-salt Synthesis of Single-Crystalline Ultrahigh-nickel Layered Oxide Cathodes,” ACS Applied Materials and Interfaces 15, 12895–12907 (2023).
    https://doi.org/10.1021/acsami.2c16326

  125. L. Su, S. Kumar, B. Reeja-Jayan, and A. Manthiram, “A Review on Application of Poly(3,4-ethylenedioxythiophene) (PEDOT) in Rechargeable Batteries,” Organic Materials 4, 292-300 (2023).
    http://dx.doi.org/10.1055/a-1990-3149

  126. L. Su, K. Jarvis, H. Charalambous, A. Dolocan, and A. Manthiram, “Stabilizing High-nickel Cathodes with High-voltage Electrolytes,” Advanced Functional Materials 33, 2213675: 1-11 (2023).
    https://doi.org/10.1002/adfm.202213675

  127. M. Yi, A. Dolocan, and A. Manthiram, “Stabilizing the Interphase in Cobalt-free, Ultrahigh-nickel Cathodes for Lithium-ion Batteries,” Advanced Functional Materials 33, 2213164: 1-14 (2023).
    https://doi.org/10.1002/adfm.202213164

  128. B. Jin, Z. Cui, and A. Manthiram, “In situ Interweaved Binder Framework Mitigating the Structural and Interphasial Degradations of High-nickel Cathodes in Lithium-ion Batteries,” Angewandte Chemie 62, e202301241: 1-11 (2023).
    https://doi.org/10.1002/anie.202301241

  129. Z. Cui, Z. Guo, and A. Manthiram “Assessing the Intrinsic Roles of Key Dopant Elements in High-nickel Layered Oxide Cathodes in Lithium-based Batteries,” Advanced Energy Materials 13, 2203853: 1-15 (2023).
    https://doi.org/10.1002/aenm.202203853

  130. R. Fang, Y. Liu, Y. Li, A. Manthiram, and J. B. Goodenough, “Achieving Stable All-solid-state Lithium-metal Batteries by Tuning the Cathode-electrolyte Interface and Ionic/electronic Transport within the Cathode,” Materials Today, 64, 52-60 (2023).
    https://doi.org/10.1016/j.mattod.2023.03.001

  131. X. Zhang, E. Jo, Z. Cui, and A. Manthiram, “Inhibition of Transition-metal Dissolution with Advanced Electrolytes in Batteries with Silicon-graphite Anodes and High-nickel Cathodes,” Energy Storage Materials 56, 562-571 (2023).
    https://doi.org/10.1016/j.ensm.2023.01.048

  132. D. Guo, J. Wang, T. Lai, G. Henkelman, and A. Manthiram, “Electrolytes with Solvating Inner Sheath Engineering for Practical Na-S Batteries,” Advanced Materials, 35, 2300841: 1-19 (2023).
    https://doi.org/10.1002/adma.202300841

  133. R. Sim, J. Langdon, and A. Manthiram, “Design of an Online Electrochemical Mass Spectrometry System to Study Gas Evolution from Cells with Lean and Volatile Electrolytes,” Small Methods, 2201438: 1-12 (2023).
    https://doi.org/10.1002/smtd.202201438

  134. S. Kadulkar, Z. W. Brotherton, A L. Lynch, G. Pohlman, Z. Zhang, R. Torres, N. A. Lynd, T. M. Truskett, V. Ganesan, and A. Manthiram, “The Importance of Morphology on Ion Transport in Single-Ion, Comb-Branched Copolymer Electrolytes: Experiments and Simulations,” Macromolecules, (2023)
    https://doi.org/10.1021/acs.macromol.2c02500

  135. S. Ober, A. Mesnier, and A. Manthiram, “Surface Stabilization of Cobalt-free LiNiO2 with Niobium for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 15, 1442-1451 (2023).
    https://doi.org/10.1021/acsami.2c20268 

  136. 2022

  137. J. Darga and A. Manthiram, “Facile Synthesis of O3-type NaNi0.5Mn0.5O2 Single Crystals with Improved Performance in Sodium-ion Batteries,” ACS Applied Materials & Interfaces 14, 52729-52737 (2022). https://doi.org/10.1021/acsami.2c12098

  138. R. Fang, Y. Li, N. Wu, B. Xu, Y. Liu, A. Manthiram, and J. B. Goodenough, “Ultra-thin Single-particle-layer Sodium Beta-alumina-based Composite Polymer Electrolyte Membrane for Sodium-metal Batteries,” Advanced Functional Materials 33, 2211229: 1-7 (2022). https://doi.org/10.1002/adfm.202211229

  139. H. Sul, A. Bhargav, and A. Manthiram, “Sodium Trithiocarbonate Cathode for High-performance Sodium-sulfur Batteries,” Journal of Materials Chemistry A 11, 130-140 (2022). https://doi.org/10.1039/D2TA07918F

  140. Y. Kim, H. Kim, W. M. Seong, Y. Kong, and A. Manthiram, “A Kinetic Study on Cobalt-free High-nickel Layered Oxide Cathode Materials for Practical Lithium-ion Batteries,” Journal of Power Sources 558, 232633: 1-8 (2022). https://doi.org/10.1039/D2TA07918F

  141. R. Pan, E. Jo, Z. Cui, and A. Manthiram, “Degradation Pathways of Cobalt-free LiNiO2 Cathode in Lithium Batteries,” Advanced Functional Materials 33, 2211461: 1-11 (2022). https://doi.org/10.1002/adfm.202211461

  142. Z. Cui, N. Khosla, T. Lai, J. Narayan, and A. Manthiram, “Laser-assisted Surface Fluorine Decoration of a Cobalt-free High-voltage Spinel LiNi0.5Mn1.5O4 Cathode for Long-life Lithium-ion Batteries,” ACS Applied Materials and Interfaces 15, 1247–1255 (2022). https://doi.org/10.1021/acsami.2c18918

  143. L. Su and A. Manthiram, “Lithium-metal Batteries via Suppressing Li Dendrite Growth and Improving Coulombic Efficiency,” Small Structures 3, 2200114: 1-16 (2022). https://doi.org/10.1002/sstr.202200114

  144. Y. Ren and A. Manthiram, “A Dual-phase Electrolyte for High-energy Lithium-sulfur Batteries, Advanced Energy Materials 12, 2202566: 1-8 (2022). https://doi.org/10.1002/aenm.202202566

  145. J. He, H. Sul, A. Bhargav, and A. Manthiram, “Highly Efficient Organosulfur and Lithium-metal Hosts Enabled by C@Fe3N Sponge,” Angewandte Chemie 62, e202216267: 1-7 (2022). https://doi.org/10.1002/anie.202216267

  146. S. Lee and A. Manthiram, “Can Cobalt Be Eliminated from Lithium-Ion Batteries?” ACS Energy Letters 7, 3058–3063 (2022). https://doi.org/10.1021/acsenergylett.2c01553

  147. P. Crowley, K. Scanlan, and A. Manthiram, “Diffusional Lithium Trapping as a Failure Mechanism of Aluminum Foil Anodes in Lithium-ion Batteries,” Journal of Power Sources 546, 231973: 1-10 (2022). https://doi.org/10.1016/j.jpowsour.2022.231973

  148. H. Yaghoobnejad Asl, A. Bhargav, and A. Manthiram, “Taming Polysulfides in Sulfur-based Batteries via Electrolyte-soluble Thiomolybdate Additives,” Journal of Materials Chemistry A 10, 17572-17585 (2022). https://doi.org/10.1039/D2TA03893E

  149. A. Bhargav and A. Manthiram, “A Lithium-ion Conducting Polysulfide Polymer for Flexible Batteries,” ACS Materials Letters 4, 1904–1911 (2022). https://doi.org/10.1021/acsmaterialslett.2c00590

  150. J. Langdon and A. Manthiram, “Crossover Effects in Lithium-Metal Batteries with a Localized High Concentration Electrolyte and High-Nickel Cathodes,” Advanced Materials 34, 2205188: 1-10 (2022). https://doi.org/10.1002/adma.202205188

  151. J. Langdon, R. Sim, and A. Manthiram, “Gas Generation in Lithium Cells with High-Nickel Cathodes and Localized High-Concentration Electrolytes,” ACS Energy Letters 7, 2634–2640 (2022). https://doi.org/10.1021/acsenergylett.2c01444

  152. Z. Cui, F. Zou, H. Celio, and A. Manthiram, “Paving Pathways Towards Long-life Graphite/LiNi0.5Mn1.5O4 Full Cells: Electrochemical and Interphasial Points of View,” Advanced Functional Materials 32, 2203779: 1-11 (2022). https://doi.org/10.1002/adfm.202203779

  153. Y. Ren, A. Bhargav, W. Shin, and A. Manthiram, “Anode-free Lithium-sulfur Cells Enabled by Rationally Tuning Lithium Polysulfide Molecules,” Angewandte Chemie 61, e202207907: 1-10 (2022). https://doi.org/10.1002/anie.202207907

  154. A. Manthiram, “John Goodenough’s 100th Birthday Celebration: His Impact in Science and Humanity,” ACS Energy Letters 7, 2404–2406 (2022). https://doi.org/10.1021/acsenergylett.2c01343

  155. R. R. Brow, A. W. Donakowski, A. Mesnier, D. J. Pereiral, K. X. Steirer, S. Santhanagopalan, and A. Manthiram, “Mechanical Pulverization of Co-Free Nickel-Rich Cathodes for Improved High-Voltage Cycling of Lithium-Ion Batteries,” ACS Applied Energy Materials 5, 6996–7005 (2022). https://doi.org/10.1021/acsaem.2c00606

  156. J. Lamb and A. Manthiram, “Stable Sodium-based Batteries with Advanced Electrolytes and Layered-oxide Cathodes,” ACS Applied Materials & Interfaces 14, 28865–28872 (2022). https://doi.org/10.1021/acsami.2c05402

  157.  A. Bhargav and A. Manthiram, “2,5-Dimercapto-1,3,4-thiadiazole (DMCT)-based Polymers for Rechargeable Metal-sulfur Batteries,” Energy & Environmental Materials, e12446: 1-8 (2022). https://doi.org/10.1002/eem2.12446

  158.  Z. Liang, J. He, C. Hu, X. Pu, H. Khani, L. Dai, D. Fan, Z.-L. Wang, and A. Manthiram, “Next-generation Energy Harvesting and Storage Technologies for Robots Across All Scales,” Advanced Intelligent Systems, 2200045: 1-19 (2022). https://doi.org/10.1002/aisy.202200045

  159. L. Su, X. Zhao, M. Yi, H. Celio, Y. Liu, and A. Manthiram, “Uncovering the Solvation Structure of LiPF6-based Localized Saturated Electrolytes and Their Effect on LiNiO2-based Lithium-metal Batteries,” Advanced Energy Materials 12, 2201911: 1-13 (2022). https://doi.org/10.1002/aenm.202201911

  160. L. Su, E. Jo, and A. Manthiram, “Protection of Cobalt-free LiNiO2 from Degradation with Localized Saturated Electrolytes in Lithium-metal Batteries,” ACS Energy Letters 7, 2165-2172 (2022). https://doi.org/10.1021/acsenergylett.2c01081

  161. L. Sharma, M. Yi, E. Jo, H. Celio, and A. Manthiram, “Surface Stabilization with Fluorine of Layered Ultra-high-nickel Oxide Cathodes for Lithium-ion Batteries,” Chemistry of Materials 34, 4514–4522 (2022). https://doi.org/10.1021/acs.chemmater.2c00301

  162. H. Sul, A. Bhargav, and A. Manthiram, “Lithium Trithiocarbonate as a Dual-function Electrode Material for High-performance Lithium-sulfur Batteries,” Advanced Energy Materials 12, 2200680: 1-9 (2022). https://doi.org/10.1002/aenm.202200680

  163. D. Guo, D. B. Shinde, W. Shin, E. Abou-Hamad, A.-H. Emwas, Z. Lai, and A. Manthiram, “Foldable Solid-state Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks,” Advanced Materials 34, 2201410: 1-9 (2022). https://doi.org/10.1002/adma.202201410

  164. S. Kim, G. Kim, and A. Manthiram, “Dysprosium Doping Effects on Perovskite Oxides for Air and Fuel Electrodes of Solid Oxide Cells,” Journal of Power Sources 497, 229873: 1-6 (2022). https://doi.org/10.1016/j.jpowsour.2021.229873

  165. Y. Chen, M. Xu, Y. Huang, and A. Manthiram, “Creating a Rechargeable World,” Chem 8, 312-318 (2022). https://doi.org/10.1016/j.chempr.2022.01.011

  166. W. Shin, and A. Manthiram, “Fast and Simple Ag/Cu Ion Exchange on Cu Foil for Anode-Free Lithium-Metal Batteries,” ACS Applied Materials & Interfaces 14, 17454−17460 (2022). https://doi.org/10.1021/acsami.2c01980

  167. S. Nanda, H. Yaghoobnejad Asl, A. Bhargav, and A. Manthiram, “Thiometallate-mediated Polysulfide Chemistry and Lithium Stabilization for Stable Anode-free Lithium-sulfur Batteries,” Cell Reports Physical Science 3, 100808: 1-15 (2022). https://doi.org/10.1016/j.xcrp.2022.100808

  168. Y. Ren, W. Shin, and A. Manthiram, “Operating High-energy Lithium-metal Pouch Cells with Reduced Stack Pressure Through a Rational Lithium-host Design,” Advanced Energy Materials, 2200190:1-10 (2022). https://doi.org/10.1002/aenm.202200190

  169. A. Manthiram, J. L. Lutkenhaus, Y. Fu, P. Bai, B. G. Kim, S. W. Lee, E. Okonkwo, and R. M. Penner, “Technological Pathways toward Sustainable Batteries,” One Earth, 5, 203-206, 2022. https://doi.org/10.1016/j.oneear.2022.02.010

  170. R. Pan, Z. Cui, M. Yi, Q. Xie, and A. Manthiram, “Ethylene Carbonate-Free Electrolytes for Stable, Safer High-Nickel Lithium-Ion Batteries,” Advanced Energy Materials, 2103806: 1-11 (2022). https://doi.org/10.1002/aenm.202103806

  171. A. Manthiram, “A Fruitful Transition of John B. Goodenough from Oxford to the University of Texas at Austin,” Journal of the Electrochemical Society 169, 034520 (2022). https://iopscience.iop.org/article/10.1149/1945-7111/ac59f7

  172. B. Heligman, K. P. Scanlan, and A. Manthiram, “Nanostructured Composite Foils Produced via Accumulative Roll Bonding as Lithium-ion Battery Anodes,” ACS Applied Materials & Interfaces 14, 11408–11414 (2022). https://doi.org/10.1021/acsami.1c23529

  173. X. Zhang, Z. Cui, and A. Manthiram, “Insights into the Crossover Effects in Cells with High-nickel Layered Oxide Cathodes and Silicon/Graphite Composite Anodes,” Advanced Energy Materials 12, 2103611: 1-9 (2022). https://doi.org/10.1002/aenm.202103611

  174. L. Su, H. Charalambous, Z. Cui, and A. Manthiram, “High-efficiency, Anode-free Lithium-metal Batteries with a Close-packed Homogeneous Lithium Morphology,” Energy & Environmental Science 15, 843 – 854 (2022). https://doi.org/10.1039/D1EE03103A

  175. J. Lamb, K. Jarvis, and A. Manthiram, “Molten-Salt Synthesis of O3-type Layered Oxide Single Crystal Cathodes with Controlled Morphology for Long-life Sodium-ion Batteries,” Small 18, 2106927: 1 of 9 (2022). https://doi.org/10.1002/smll.202106927

  176. X. Li, R. Zhao, Y. Fu, and A. Manthiram, “Nitrate Additives for Lithium Batteries: Mechanisms, Applications, and Prospects,” eScience 1, 108-123 (2022). https://doi.org/10.1016/j.esci.2021.12.006

  177. J. He, A. Bhargav, and A. Manthiram, “High-performance Anode-free Li-S Batteries with an Integrated Li2S-electrocatalyst Cathode,” ACS Energy Letters 7, 583–590 (2022). https://doi.org/10.1021/acsenergylett.1c02569

  178. W. Shin and A. Manthiram, “A Facile Potential Hold Method for Fostering Inorganic-rich Solid-electrolyte Interphase for Anode-free Lithium-metal Batteries,” Angewandte Chemie 61, e202115909: 1-6 (2022). https://doi.org/10.1002/anie.202115909

  179. M. Yi, W. Li, and A. Manthiram, “Delineating the Roles of Mn, Al, and Co by Comparing Three Layered Oxide Cathodes with the Same Nickel Content of 70% for Lithium-ion Batteries,” Chemistry of Materials 34, 629-642 (2022). https://doi.org/10.1021/acs.chemmater.1c03322

  180. L. Sharma and A. Manthiram, “Polyanionic Insertion Hosts for Aqueous Rechargeable Batteries,” Journal of Materials Chemistry A 10, 6376-6396 (2022). https://doi.org/10.1039/D1TA11080B

  181. J. He, A. Bhargav, and A. Manthiram, “Covalent Organic Framework as an Efficient Protection Layer for Stable Lithium-metal Anode,” Angewandte Chemie, e202116586: 1-7 (2022). https://doi.org/10.1002/anie.202116586

  182. 2021

  183. B. Heligman, K. P. Scanlan, and A. Manthiram, “An In-depth Analysis of the Transformation of Tin Foil Anodes during Electrochemical Cycling in Lithium-ion Batteries,” Journal of  The Electrochemical Society 168, 120544 (2021).  https://iopscience.iop.org/article/10.1149/1945-7111/ac42f0

  184. J. He and A. Manthiram, “In-situ Grown 1T’-MoTe2 Nanosheets on Carbon Nanotubes as an Efficient Electrocatalyst and Lithium Regulator for Stable Lithium-sulfur Full Cells,” Advanced Energy Materials 12, 2103204: 1-10 (2021). https://doi.org/10.1002/aenm.202103204

  185. J. He, A. Bhargav, and A. Manthiram, “Stable, Dendrite-free Sodium-sulfur Batteries Enabled by a Solvated Ionic-liquid Electrolyte,” Journal of the American Chemical Society 143, 20241- 20248 (2021). https://doi.org/10.1021/jacs.1c08851

  186. K. P. Padmasree, K-Y Lai, and A. Manthiram, “Synthesis and Characterization of Ca3-xLaxCo4-yCuyO9+δ cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Ceramics International 48, 455-462 (2021). https://doi.org/10.1016/j.ceramint.2021.09.121

  187. X. Yu and A. Manthiram, “Nonaqueous Hybrid Redox Flow Energy Storage with a Sodium-TEMPO Chemistry and a Single-ion Separator,” Energy Advances 1, 21-27 (2021). https://doi.org/10.1039/D1YA00010A

  188. F. Zou, Z. Cui, H. C. Nallan, J. G. Ekerdt, and A. Manthiram, “Long-term Cycling of Mn-rich High-voltage Spinel Cathode by Stabilizing the Surface with a Small Dose of Iron,”  ACS Applied Energy Materials 4, 13297–13306 (2021). https://doi.org/10.1021/acsaem.1c02903

  189. F. Zou, H. C. Nallan, A. Dolocan, Q. Xie, J. Li, B. M. Coffey, J. G. Ekerdt, A. Manthiram, “Long-life LiNi0.5Mn1.5O4/Graphite Lithium-ion Cells With an Artificial Graphite-electrolyte Interface,” Energy Storage Materials 43, 499-508 (2021). https://doi.org/10.1016/j.ensm.2021.09.033

  190. J. Lamb and A. Manthiram,” Surface-modified Na(Ni0.3Fe0.4Mn0.3)O2 Cathodes with Enhanced Cycle Life and Air Stability for Sodium-ion Batteries,” ACS Applied Energy Materials 4, 11735-11742 (2021). https://doi.org/10.1021/acsaem.1c02485

  191. Y. Ren, Z. Cui, A. Bhargav, J. He, A. Manthiram, “A Self-healable Sulfide/Polymer Composite Electrolyte for Long-life, Low-lithium-excess Lithium-metal Batteries,” Advanced Functional Materials 32, 2106680: 1-10 (2021). https://doi.org/10.1002/adfm.202106680

  192. Z. Cui, Q. Xie, and A. Manthiram, “A Cobalt- and Manganese-free High-nickel Layered Oxide Cathode for Long-life, Safer Lithium-ion Batteries,” Advanced Energy Materials 11, 2102421: 1-10 (2021). https://doi.org/10.1002/aenm.202102421

  193. S. Sharma, P. Crowley, and A. Manthiram, “Silicon-Doped Aluminum Foils as Low Cost, Environmentally Friendly Anodes for Lithium-ion Batteries,” ACS Sustainable Chemistry & Engineering 9, 14515-14524 (2021). https://doi.org/10.1021/acssuschemeng.1c05168

  194. J. Langdon, Z. Cui, and A. Manthiram, “Role of Electrolyte in Overcoming the Challenges of LiNiO2 Cathode in Lithium Batteries,” ACS Energy Letters 6, 3809-3816 (2021). https://doi.org/10.1021/acsenergylett.1c01714

  195. A. Manthiram and J. B. Goodenough, “Lithium-based Polyanion Oxide Cathodes,” Nature Energy 6, 844-845 (2021). https://doi.org/10.1038/s41560-021-00865-y

  196. Y. Kim, H. Park, K. Shin, G. Henkelman, J. H. Warner, and A. Manthiram, “Rational Design of Coating Ions via Advantageous Surface Reconstruction in High-nickel Layered Oxide Cathodes for Lithium-ion Batteries,” Advanced Energy Materials, 11, 2101112: 1-11 (2021). https://doi.org/10.1002/aenm.202101112

  197. R. Sim, S. Lee, W. Li, and A. Manthiram, “Influence of Calendering on the Electrochemical Performance of LiNi0.9Mn0.05Al0.05O2 Cathodes in Lithium-ion Cells,” ACS Applied Materials & Interfaces 13, 42898-42908 (2021). https://doi.org/10.1021/acsami.1c12543

  198. M. J. Park, H. Yaghoobnejad Asl, and A. Manthiram, “Understanding Zn-ion Insertion Chemistry Through Electrochemical Investigation of 2H-NbSe2,” Advanced Materials Interfaces 8, 2100878: 1-9 (2021). https://doi.org/10.1002/admi.202100878

  199. X. Yu and A. Manthiram, “Accessing a High-voltage Nonaqueous Hybrid Flow Battery with a Sodium – Methylphenothiazine Chemistry and a Sodium-ion Solid Electrolyte,” Energy Storage 4, 1-10 (2021). https://doi.org/10.1002/est2.281

  200. M. J. Park and A. Manthiram, “Understanding the Limited Electrochemical Zn-ion Insertion Into 2H-MoS2 and 2H-WS2: A Case Study of 2H-NbS2,” ACS Applied Energy Materials 4, 8849–8856 (2021). https://doi.org/10.1021/acsaem.1c00985

  201. S. Kim, G. Kim, and A. Manthiram, “A Review on Infiltration Techniques for Energy Conversion and Storage Devices: From Fundamentals to Applications,” Sustainable Energy & Fuels 5, 5024-5037 (2021). https://doi.org/10.1039/D1SE00878A

  202. S. Nanda, A. Bhargav, Z. Jiang, X. Zhao, Y. Liu, and A. Manthiram, “Implications of In-situ Chalcogen Substitutions in Polysulfides for Rechargeable Batteries,” Energy & Environmental Science 14, 5423-5432 (2021). https://doi.org/10.1039/D1EE01113H

  203. Q. Xie, Z. Cui, and A. Manthiram, “Unveiling the Stabilities of Nickel-based Layered Oxide Cathodes at an Identical Degree of Delithiation in Lithium-based Batteries,” Advanced Materials 33, 2100804: 1-14 (2021). https://doi.org/10.1002/adma.202100804

  204. B. Heligman and A. Manthiram, “Elemental Foil Anodes for Lithium-ion Batteries,” ACS Energy Letters 6, 2666–2672 (2021). https://doi.org/10.1021/acsenergylett.1c01145

  205. S. Lee, W. Li, A. Dolocan, H. Celio, H. Park, J. H. Warner, and A. Manthiram, “In-depth Analysis of the Degradation Mechanisms of High-Nickel, Low/No-Cobalt Layered Oxide Cathodes for Lithium-ion Batteries,” Advanced Energy Materials https://doi.org/10.1002/aenm.202100858 (2021).

  206. X. Yu, Y. Liu, J. B. Goodenough, and A. Manthiram, “A Rationally Designed PEGDA – LLZTO Composite Electrolyte for Solid-state Lithium Batteries,” ACS Applied Materials & Interfaces 13, 30703–30711 (2021). https://doi.org/10.1021/acsami.1c07547

  207. Y. Kim, H. Park, A. Dolocan, J. H. Warner, and A. Manthiram, “A Wet-CO2 Pretreatment Process for Reducing Residual Lithium in High-nickel Layered Oxides for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 13, 27096–27105 (2021).  https://doi.org/10.1021/acsami.1c06277

  208. H. Park, A. Mesnier, S. Lee, K. Jarvis, J. H. Warner, and A. Manthiram,” Intrinsic Li Distribution in Layered Transition-Metal Oxides Using Low-Dose Scanning Transmission Electron Microscopy and Spectroscopy,” Chemistry of Materials 33, 4638–4650 (2021). https://doi.org/10.1021/acs.chemmater.1c01145

  209. X. Wang, S. Tang, W. Guo, Y. Fu, and A. Manthiram, “Advances in Multimetallic Alloy-based Anodes for Alkali-ion and Alkali-metal Batteries,” Materials Today 50, 259-275 (2021). https://doi.org/10.1016/j.mattod.2021.05.001

  210. Y. Tang, Y. Huang, L. Luo, D. Fan, Y. Lu, and A. Manthiram, “Self-supported MoO2/MoS2Nano-sheets Embedded in a Carbon Cloth as a Binder-free Substrate for High-energy Lithium-sulfur Batteries,” Electrochimica Acta 367,137482: 1-9 (2021). https://doi.org/10.1016/j.electacta.2020.137482

  211.  J.-M. Kim, X. Zhang, J.-G. Zhang, A. Manthiram, Y. S. Meng, and W. Xu, “A Review on the Stability and Surface Modification of Layered Transition-metal Oxide Cathodes,” Materials Today 46, 155-182 (2021). https://doi.org/10.1016/j.mattod.2020.12.017

  212. W. Guo, W. Zhang, Y. Si, D. Wang, Y. Fu, and A. Manthiram “Artificial Dual Solid-electrolyte Interfaces Based on In Situ Organothiol Transformation in Li-S Battery,” Nature Communications 12, 3031: 1-13 (2021). https://doi.org/10.1038/s41467-021-23155-3

  213. X. Yu, N. S. Grundish, J. B. Goodenough, and A. Manthiram, “Ionic Liquid (IL) Laden Metal Organic Framework (IL-MOF) Electrolyte for Solid-state Sodium Batteries,” ACS Applied Materials & Interfaces 13, 24662−24669 (2021). https://doi.org/10.1021/acsami.1c02563

  214. A. Gupta and A. Manthiram, “Unifying the Clustering Kinetics of Lithium Polysulfides with the Nucleation Behavior of Li2S in Lithium-Sulfur Batteries,” Journal of Materials Chemistry A 9, 13242–13251(2021). https://doi.org/10.1039/D1TA02779D

  215. J. He, A. Bhargav, and A. Manthiram, “High-Energy-Density, Long-Life Lithium-Sulfur Batteries with Practically Necessary Parameters Enabled by Low-Cost Fe-Ni Nanoalloy Catalysts,” ACS Nano,15, 8583-8591(2021). https://doi.org/10.1021/acsnano.1c00446

  216. A. Gupta, A. Bhargav, and A. Manthiram, “Tailoring Lithium Polysulfide Coordination and Clustering Behavior through Cationic Electrostatic Competition,” Chemistry of Materials 33, 3457-3466 (2021). https://doi.org/10.1021/acs.chemmater.1c00893

  217. X. Zhang, L. Zou, Z. Cui, H. Jia, M. H. Engelhard, B. E. Matthews, X. Cao, Q. Xie, C. Wang, A. Manthiram, J.-G. Zhang, and W. Xu, “Stabilizing Ultrahigh-Nickel Layered Oxide Cathodes for High-Voltage Lithium Metal Batteries,” Materials Today 4, 16-24 (2021). https://doi.org/10.1016/j.mattod.2021.01.013

  218. Z. Cui, Q. Xie, and A. Manthiram, “Zinc-doped High-nickel, Low-Cobalt Layered Oxide Cathodes for High-energy-density Lithium-ion Batteries,” ACS Applied Materials & Interfaces, 13, 15324-15332 (2021). https://doi.org/10.1021/acsami.1c01824

  219. A. Manthiram and J. B. Goodenough, “Layered Lithium Cobalt Oxide Cathodes,” Nature Energy 6, 323 (2021). https://doi.org/10.1038/s41560-020-00764-8

  220.  X. Yu and A. Manthiram, “Sustainable Battery Materials for Next Generation Electrical Energy Storage,” Advanced Energy & Sustainability Research 2, 2000102: 1-12 (2021). https://doi.org/10.1002/aesr.202000102

  221. X. Liu, X. Zhan, Z. D. Hood, W. Li, D. N. Leonard, A. Manthiram, and M. Chi, “Essential Effect of the Electrolyte on the Mechanical and Chemical Degradation of LiNi0.8Co0.15Al0.05O2 Cathodes upon Long-Term Cycling,” Journal of of Materials Chemistry A, 9, 2111–2119 (2021).  https://doi.org/10.1039/D0TA07814J

  222. S. Nanda and A. Manthiram, “Delineating the Lithium-electrolyte Interfacial Chemistry and the Dynamics of Lithium Deposition in Lithium-sulfur Batteries,” Advanced Energy Materials, 11, 2003293: 1-13 (2021). https://doi.org/10.1002/aenm.202003293

  223. Y. Kim, H. Park, J. H. Warner, and A. Manthiram, “Unraveling the Intricacies of Residual Lithium in High-Ni Cathodes for Lithium-ion Batteries,” ACS Energy Letters, 6, 941-948 (2021). https://doi.org/10.1021/acsenergylett.1c00086

  224. J. Langdon and A. Manthiram, “A Perspective on Single-crystal Layered Oxide Cathodes for Lithium-ion Batteries,” Energy Storage Materials, 37, 143-160 (2021). https://doi.org/10.1016/j.ensm.2021.02.003

  225. J. Langdon and A. ­­­Manthiram, “Crossover Effects in Batteries with High-nickel Cathodes and Lithium-metal Anodes,” Advanced Functional Materials, 31, 2010267: 1-9(2021). https://doi.org/10.1002/adfm.202010267

  226. X. Yu, W. A. Yu, and A. Manthiram, “Advances and Prospects of High-voltage Spinel Cathodes for Lithium-based Batteries,” Small Methods 5, 2001196: 1-30 (2021). https://doi.org/10.1002/smtd.202001196

  227. S. Kim, G. Kim, and A. Manthiram, “A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions: Nano-Co3O4-Deposited La0.5Sr0.5MnO3 Via Infiltration,” Molecules 26, 277: 1-10 (2021). https://doi.org/10.3390/molecules26020277

  228. 2020

  229. H. Yaghoobnejad Asl and A. Manthiram, “Proton-induced Disproportionation of Jahn-Teller-active Transition-metal Ions in Oxides due to Electronically-driven Lattice Instability,” Journal of the American Chemical Society 142, 21122-21130 (2020). https://doi.org/10.1021/jacs.0c10044

  230. H. Yaghoobnejad Asl, A. Manthiram, “Toward Sustainable Batteries,” Nature Sustainability 4, 379-380 (2020). https://doi.org/10.1038/s41893-020-00664-5

  231. A. Gupta, A. Bhargav, and A. Manthiram, “Evoking High Donor Number-assisted and Organosulfur-mediated Conversion in Lithium-Sulfur Batteries,” ACS Energy Letters 6, 224-231 (2021). https://doi.org/10.1021/acsenergylett.0c02461

  232. X. Yu, L. Xue, J. B. Goodenough, and A. Manthiram, “All-solid-state Sodium Batteries with a Polyethylene Glycol Diacrylate (PEGDA) – Na3Zr2Si2PO12 Composite Electrolyte,” Advanced Energy & Sustainability Research, 2, 2000061: 1–9 (2020). https://doi.org/10.1002/aesr.202000061

  233. A. Mesnier and A. Manthiram, “Synthesis of LiNiO2 at Moderate Oxygen Pressure and Long-term Cyclability in Lithium-ion Full Cells,” ACS Applied Materials & Interfaces 12, 52826-52835 (2020). https://doi.org/10.1021/acsami.0c16648

  234. W. M. Seong, Y. Kim, and A. Manthiram, “Impact of Residual Lithium on the Adoption of High-nickel Layered Oxide Cathodes for Lithium-ion Batteries,” Chemistry of Materials 32, 9479-9489 (2020). https://doi.org/10.1021/acs.chemmater.0c02808

  235. F. Zou and A. Manthiram, “A Review of the Design of Advanced Binders for High-performance Batteries,” Advanced Energy Materials 10, 2002508: 1-28 (2020). https://doi.org/10.1002/aenm.202002508

  236. X. Yu, W. A. Yu, and A. Manthiram, “A High Energy, Single-ion Mediated Nonaqueous Zinc-TEMPO Re-dox Flow Battery,” ACS Applied Materials & Interfaces 12, 48654-48661 (2020). https://doi.org/10.1021/acsami.0c14736

  237. J. Darga, J. Lamb, and A. Manthiram, “Industrialization of Layered Oxide Cathodes for Lithium-ion and Sodium-ion Batteries: A Comparative Perspective,” Energy Technology 8, 200723: 1-13 (2020). https://doi.org/10.1002/ente.202000723

  238. G. Gnana kumar, A. Farithkhan, and A. Manthiram, “Direct Urea Fuel Cells: Recent Progress and Critical Challenges of Urea Oxidation Electrocatalysis,” Advanced Energy & Sustainability Research 1, 2000015: 1 – 17 (2020). https://doi.org/10.1002/aesr.202000015

  239. J. He and A. Manthiram, “3D CoSe@C Aerogel as a Host for Dendrite-free Lithium-metal Anode and Efficient Sulfur Cathode in Li–S Full Cells,” Advanced Energy Materials 10, 2002654: 1-9 (2020). https://doi.org/10.1002/aenm.202002654

  240. K. Zhou, Q. Xie, B. Li, and A. Manthiram, “An In-depth Understanding of the Effect of Aluminum Doping in High-nickel Cathodes for Lithium-ion Batteries,” Energy Storage Materials 34, 229-240 (2020). https://doi.org/10.1016/j.ensm.2020.09.015

  241. S. Sharma and A. Manthiram, “Towards More Environmentally and Socially Responsible Batteries,” Energy & Environmental Science 13, 4087-4097 (2020). https://doi.org/10.1039/D0EE02511A

  242. Y. Kim, W. M. Seong, and A. Manthiram, “Cobalt-free High-nickel Layered Oxide Cathodes for Lithium-ion Batteries: Progress, Challenges, and Perspectives,” Energy Storage Materials 34, 250-259 (2020). https://doi.org/10.1016/j.ensm.2020.09.020

  243. Yu, X. and A. Manthiram, “A Review of Composite Polymer-ceramic Electrolytes for Lithium Batteries,” Energy Storage Materials 34, 282-300 (2020). https://doi.org/10.1016/j.ensm.2020.10.006

  244. W. M. Seong and A. Manthiram, “Complementary Effects of Mg and Cu incorporation in Stabilizing the Cobalt-free LiNiO2 Cathode for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 12, 43653-43664 (2020). https://doi.org/10.1021/acsami.0c11413

  245. J. Lamb and A. Manthiram, “Synthesis Control of Layered Oxide Cathodes for Sodium-ion Batteries: A Necessary Step Towards Practicality,” Chemistry of Materials 32, 8431-8441 (2020). https://doi.org/10.1021/acs.chemmater.0c02435 

  246. X. Yu and A. Manthiram, “Recent Advances in Lithium – Carbon Dioxide Batteries,” Small Structures 1, 2000027: 1-23 (2020). https://doi.org/10.1002/sstr.202000027

  247. W. Li, X. Liu, Q. Xie, Y. You, M. Chi, and A.  Manthiram, “Long-term Cyclability of NCM-811 at High Voltages in Lithium-ion Batteries: An In-depth Diagnostic Study,” Chemistry of Materials 32, 7796-7804 (2020). https://doi.org/10.1021/acs.chemmater.0c02398  

  248. J. He, A. Bhargav, and A. Manthiram, “Molybdenum Boride as an Efficient Catalyst for Polysulfide Redox to Enable High-Energy-Density Lithium-Sulfur Batteries,” Advanced Materials 32, 2004741: 1-7 (2020). https://doi.org/10.1002/adma.202004741

  249. X. Yu and A. Manthiram, “A Progress Report on Metal ̶ Sulfur Batteries,” Advanced Functional Materials 30, 2004084: 1-27 (2020). https://doi.org/10.1002/adfm.202004084

  250. Q. Xie and A. Manthiram, “Long-life, Ultrahigh-nickel Cathodes with Excellent Air-storage Stability for High-energy-density Lithium-based Batteries,” Chemistry of Materials 32, 7413–7424 (2020). https://dx.doi.org/10.1021/acs.chemmater.0c02374

  251. J. Lamb, L. Stokes, and A. Manthiram, “Delineating the Capacity Fading Mechanisms of Na(Ni0.3Fe0.4Mn0.3)O2at Higher Operating Voltages in Sodium-ion Cells,” Chemistry of Materials 32, 7389–7396 (2020). https://doi.org/10.1021/acs.chemmater.0c02292 

  252. X. Yu, L. Xue, J. B. Goodenough, and A. Manthiram, “Ambient-temperature All-solid-state Sodium Batteries with a Laminated Composite Electrolyte,” Advanced Functional Materials, 11, 200244: 1-10 (2020). https://doi.org/10.1002/adfm.202002144

  253. S. Agarwal, X. Yu, and A. Manthiram, “A Pair of Metal Organic Framework (MOF)-derived Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER) Catalysts for Zinc-air Batteries,” Materials Today Energy 16, 100405 (2020). https://doi.org/10.1016/j.mtener.2020.100405

  254. C.-S. Lee, S.-H. Ahn, D.-J. Kim, J.-H. Lee, A. Manthiram, and J.-H. Kim, “Flexible, All-Solid-State 1.4 V Symmetric Supercapacitors with High Energy Density Based on Comb Polymer Electrolyte and 1D Hierarchical Carbon Nanotube Electrode,” Journal of Power Sources 474, 228477: 1-11 (2020). https://doi.org/10.1016/j.jpowsour.2020.228477

  255. W. Li, Y-G Cho, W. Yao, Y. Li, A. Cronk, R. Shimizu, M. A. Schroeder, Y. Fu, F. Zou, V. Battaglia, A. Manthiram, M. Zhang, and Y. S. Meng, “Enabling High Areal Capacity for Co-free High Voltage Spinel Materials in Next generation Li-ion Batteries,” Journal of Power Sources 473, 228579: 1-9 (2020). https://doi.org/10.1016/j.jpowsour.2020.228579

  256. D.-S. Ko, J.-H. Park, B. Y. Yu, D. Ahn, K. Kim, H. N. Han, W. S. Jeon, C. Jung, and A. Manthiram, “Degradation of High-Nickel Layered Oxide Cathodes from Surface to Bulk: A Comprehensive Structural, Chemical, and Electrical Analysis,” Advanced Energy Materials 10, 2001035:1-13 (2020). https://doi.org/10.1002/aenm.202001035

  257. A. Bhargav and A. Manthiram, “Xanthogen Polysulfides as a New Class of Electrode Material for Rechargeable Batteries,” Advanced Energy Materials 10, 2001658: 1-10 (2020). https://doi.org/10.1002/aenm.202001658

  258. A. Gupta and A. Manthiram, “Designing Advanced Lithium-based Batteries for Low-temperature Conditions,” Advanced Energy Materials 10, 2001972: 1-14 (2020). https://doi.org/10.1002/aenm.202001972

  259. H. Shin, M. Baek, A. Gupta, A. Manthiram, J. W. Choi, “Recent Progress in High Donor Electrolytes for Lithium-Sulfer Batteries,” Advanced Energy Materials 10, 2001456: 1-21 (2020).  https://doi.org/10.1002/aenm.202001456

  260. R. Pipes, J. He, A. Bhargav, and A. Manthiram, “Freestanding Vanadium Nitride Nanowire Membrane as an Efficient, Carbon-Free Gas Diffusion Cathode for Li-CO2 Batteries,” Energy Storage Materials 31, 95-104 (2020).  https://doi.org/10.1016/j.ensm.2020.06.009

  261. H. Yaghoobnejad Asl and A. Manthiram, “Reigning in Dissolved Transition Metal Ions” Science 369, 140-141 (2020). Full text: https://science.sciencemag.org/content/369/6500/140.full?ijkey=rZ5y3WUnJFeXQ&keytype=ref&siteid=sci

  262.  M. J. Park, H. Yaghoobnejad Asl and A. Manthiram, “Multivalent-ion vs Proton Insertion into Battery Electrodes,” ACS Energy Letters 5, 2367−2375 (2020).  https://doi.org/10.1021/acsenergylett.0c01021  

  263. W. Li, S. Lee, and A. Manthiram, “High-nickel NMA: A Cobalt-free Alternative to NMC and NCA Cathodes for Lithium-ion Batteries,” Advanced Materials, 2002718: 1-6 (2020). https://doi.org/10.1002/adma.202002718  

  264. S. Nanda and A. Manthiram, “Lithium Degradation in Lithium-Sulfur Batteries: Insights into Inventory Depletion and Interphasial Evolution with Cycling,” Energy & Environmental Science 13, 2501 -2514 (2020). https://doi.org/10.1039/D0EE01074J

  265. S.-H. Ahn and A. Manthiram, “Single Ni Atoms and Clusters Embedded in N-doped Carbon ‘Tubes on Fibers’ Matrix with Bi-functional Activity for Water Splitting at High Current Densities,” Small 16, 2002511: 1-14 (2020). https://doi.org/10.1002/smll.202002511

  266. P. Chiochan, X. Yu, M. Sawangphruk, and A. Manthiram, “A Metal Organic Framework (MOF)-derived Solid Electrolyte for Lithium-Sulfur Batteries,” Advanced Energy Materials 10, 2001285: 1-11 (2020). https://doi.org/10.1002/aenm.202001285 

  267. L. Luo and A. Manthiram, “An Artificial Protective Coating towards Dendrite-free Lithium-metal Anodes for Lithium-sulfur Batteries,” Energy Technology 8, 2000348: 1-6 (2020). https://doi.org/10.1002/ente.202000348

  268. X. Yu, W. A. Yu, and A. Manthiram, “A Mediator-ion Nitrobenzene – Iodine Nonaqueous Redox Flow Battery with Asymmetric Solvents,”  Energy Storage Materials 29, 266-272 (2020). https://doi.org/10.1016/j.ensm.2020.04.023

  269. J. He, Y. Chen, and A. Manthiram, “1T’-ReS2 Nanosheets in-situ Grown on Carbon Nanotubes as a Highly Efficient Polysulfide Electrocatalyst for Li-S Batteries,” Advanced Energy Materials 10, 2001017: 1-9 (2020). https://doi.org/10.1002/aenm.202001017

  270. S. Nanda, A. Bhargav, and A. Manthiram, “Anode-free, Lean-electrolyte Lithium-sulfur Batteries Enabled by Tellurium-stabilized Lithium Deposition,” Joule 4, P1121-1135 (2020). https://doi.org/10.1016/j.joule.2020.03.020

  271. S. Nanda, A. Gupta, and A. Manthiram, “Anode-free Full Cells: A Pathway to High-energy-density Lithium-metal Batteries,” Advanced Energy Materials 11, 2000804: 1-18 (2020). https://doi.org/10.1002/aenm.202000804

  272. M. J. Park and A. Manthiram, “Unveiling the Charge Storage Mechanism in Non-aqueous and Aqueous Zn/Na3V2(PO4)2F3 Batteries,” ACS Applied Energy Materials 3, 5015-5023 (2020).  https://doi.org/10.1021/acsaem.0c00505 

  273. H. Yaghoobnejad Asl, S. Sharma, and A. Manthiram, “The Critical Role of Water Content in the Electrolyte on the Reversible Electrochemical Performance of Zn-VPO4F Cell,” Journal of Materials Chemistry A 8, 8262 – 8267 (2020). https://doi.org/10.1039/D0TA01622E

  274. A. Manthiram, “A Reflection on Lithium-ion Battery Cathode Chemistry,” Nature Communications 11, 1550 (2020). https://doi.org/10.1038/s41467-020-15355-0.

  275. E. M. Erickson, W. Li, A. Dolocan and A. Manthiram, “Insights into the Cathode-electrolyte Interphases of High-energy-density Cathodes in Lithium-ion Batteries,” ACS Applied Materials & Interfaces 12, 16451-16461 (2020). https://doi.org/10.1021/acsami.0c00900.

  276. A. Gupta, A. Bhargav, J.-P. Jones, R.-V. Bugga, and A. Manthiram, “Influence of Lithium Polysulfide Clustering on the Kinetics of Electrochemical Conversion in Lithium-Sulfur Batteries,” Chemistry of Materials 32, 2070-2077 (2020).  https://doi.org/10.1021/acs.chemmater.9b05164.

  277. X. Yu and A. Manthiram, “A Long-cycle-life All-solid-state Lithium Battery with a Ceramic-polymer Composite Electrolyte,” ACS Applied Energy Materials 3, 2916-2924 (2020). https://doi.org/10.1021/acsaem.9b02547.

  278. L. Luo, J. Li, H. Yaghoobnejad Asl, and A. Manthiram, “In-situ Assembled VS4 as a Polysulfide Mediator for High-loading Lithium-sulfur Batteries,” ACS Energy Letters 5, 1177-1185 (2020). https://doi.org/10.1021/acsenergylett.0c00292

  279. X. Yu, J. Li, and A. Manthiram, “Rational Design of a Laminated Copolymer/Polymer-ceramic Composite Electrolyte for High-voltage All-solid-state Lithium Batteries,” ACS Materials Letters 2, 317-324 (2020). https://doi.org/10.1021/acsmaterialslett.9b00535

  280. A. Bhargav, J. He, A. Gupta, and A. Manthiram, “Lithium-Sulfur Batteries: Attaining the Critical Metrics,” Joule 4, 285-291 (2020). https://doi.org/10.1016/j.joule.2020.01.001

  281. J. He and A. Manthiram, “Long-life, High-rate Lithium-sulfur Cells with a Carbon-free VN Host as an Efficient Polysulfide Adsorbent and Lithium Dendrite Inhibitor,” Advanced Energy Materials 10, 1903241 (2020). https://doi.org/10.1002/aenm.201903241

  282. W. Li, E. M. Erickson, and A. Manthiram, “High-nickel Layered Oxide Cathodes for Lithium-based Automotive Batteries,” Nature Energy 5, 26-34 (2020). https://doi.org/10.1038/s41560-019-0513-0

  283. J. Li, C.-H. Chang, and A. Manthiram, “Towards Long-life, Ultrahigh-nickel Layered Oxide Cathodes for Lithium-ion Batteries: Optimizing the Interphase Chemistry with a Dual-functional Polymer,” Chemistry of Materials 32, 759-768 (2020). https://doi.org/10.1021/acs.chemmater.9b04102

  284. 2019

  285. R. Pipes, J. He, A. Bhargav and A. Manthiram, “Efficient Li-CO2 Batteries with Molybdenum Disulfide Nanosheets on Carbon Nanotubes as a Catalyst,” ACS Applied Energy Materials 2, 8685-8694 (2019). https://doi.org/10.1021/acsaem.9b01653

  286. L. Yin, Z. Li, G. S. Mattei, J. Zheng, W. Zhao, F. Omenya, C. Fang, W. Li, J. Li, Q. Xie, E. M. Erickson, J.-G. Zhang, M. S. Whittingham, Y. S. Meng, A. Manthiram, and P. Khalifah, “Thermodynamics of Anti-site Defects in Layered NMC Cathodes: Systematic Insights from High-precision Powder Diffraction Studies,” Chemistry of Materials 32, 1002-1010 (2019). https://doi.org/10.1021/acs.chemmater.9b03646

  287. X. Yu, H. Wu, J. H. Koo, and A. Manthiram, “Tailoring the Pore Size of a Polypropylene Separator with a Polymer having Intrinsic Nanoporosity for Suppressing the Polysulfide Shuttle in Lithium-Sulfur Batteries,” Advanced Energy Materials 10, 1902872 (2019). https://doi.org/10.1002/aenm.201902872

  288. X. Yu, W. A. Yu., and A. Manthiram, “A Unique Single-ion Mediation Approach for Crossover-free Nonaqueous Redox Flow Batteries with a Na+-ion Solid Electrolyte,” Small Methods 4, 1900697 (2019). https://doi.org/10.1002/smtd.201900697

  289. J. Li and A. Manthiram, “A Comprehensive Analysis of the Interphasial and Structural Evolution over Long-term Cycling of Ultrahigh-nickel Cathodes in Lithium-ion Batteries,” Advanced Energy Materials 9, 1902731 (2019). https://doi.org/10.1002/aenm.201902731

  290. W. Li, A. Dolocan, J. Li, Q. Xie, and A. Manthiram, “Ethylene Carbonate-free Electrolytes for High-nickel Layered Oxide Cathodes in Lithium-ion Batteries,” Advanced Energy Materials 9, 1901152 (2019). https://doi.org/10.1002/aenm.201901152

  291. J. He and A. Manthiram, “A Review on the Status and Challenges of Electrocatalysts in Lithium-Sulfur Batteries,” Energy Storage Materials 20, 55-70 (2019). https://doi.org/10.1016/j.matt.2019.03.008

  292. X. Yu and A. Manthiram, “Sodium-sulfur (Na-S) Batteries with a Polymer-coated NASICON-type Sodium-ion Solid Electrolyte,” Matter 1, 439-451 (2019). https://doi.org/10.1016/j.matt.2019.03.008

  293. J. Liu, Z. Bao, Y. Cui, E. J. Dufek, P. Khalifah, J. B. Goodenough, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, and J.-G. Zhang, “Pathways for Practical High-Specific-Energy, Long Cyclability Rechargeable Lithium,” Nature Energy 4, 180-186 (2019). https://doi.org/10.1038/s41560-019-0338-x

  294. B. Heligman, K. J. Kreder III, and A. Manthiram, “Zn-Sn Interdigitated Eutectic Alloy Anodes with High-Volumetric Capacity for Lithium-ion Batteries,” Joule 3, 1051-1063 (2019). https://doi.org/10.1016/j.joule.2019.01.005

  295. A. Manthiram, “High Sodium-storage Capacity in Metal-Organic Framework Achieved by Activating Aromatic Rings,” Joule 2, 2198-2199 (2019). https://doi.org/10.1016/j.joule.2018.10.013

  296. A. Bhargav and A. Manthiram, “Lithium–sulfur batteries: Less Pore Equals More,” Nature Energy 4, 908-909 (2019). https://doi.org/10.1038/s41560-019-0495-y

  297. Q. Xie, W. Li, A. Dolocan, and A. Manthiram, “Insights into Boron-based Polyanion-tuned High-nickel Cathodes for High-energy-density Lithium-ion Batteries,” Chemistry of Materials 31, 8886-8897 (2019). https://doi.org/10.1021/acs.chemmater.9b02916

  298. L. Luo, J. Li, and A. Manthiram “A Three-dimensional Lithiophilic Mo2N-modified Carbon Nanofiber Architecture for Dendrite-free Lithium-metal Anodes in a Full Cell,” Advanced Materials 31, 1904537: 1 – 9 (2019). https://doi.org/10.1002/adma.201904537

  299. L. Zou, J. Li, Z. Liu, G. Wang, A. Manthiram, and C. Wang, “Lattice Doping Regulated Interfacial Reactions in Cathode for Enhanced Cycling Stability,” Nature Communications 10, 3447: 1-11 (2019). https://doi.org/10.1038/s41467-019-11299-2

  300. S.-H. Chung, H. Yaghoobnejad Asl, Y. Chen, and A. Manthiram, “A Li2S-TiS2-Electrolyte Composite for Stable Li2S-based Lithium-Sulfur Batteries,” Advanced Energy Materials 10, 1901397: 1 – 9 (2019). https://doi.org/10.1002/aenm.201901397

  301. X. Yu, L. Xue, J. B. Goodenough, and A. Manthiram, “A High-Performance All-solid-state Sodium-ion Battery with a Poly(ethylene oxide) – Na3Zr2Si2PO12 Composite Electrolyte,” ACS Materials Letters 1, 132-138 (2019). https://doi.org/10.1021/acsmaterialslett.9b00103

  302. J. He, A. Bhargav, and A. Manthiram, “Three-Dimensional Fe3O4/N-Graphene Sponge as an Efficient Organosulfide Host for High-Performance Lithium-Organosulfur Batteries,” Energy Storage Materials 23, 88-94 (2019). https://doi.org/10.1016/j.ensm.2019.05.027

  303. Y. You, B. Song, K. Jarvis, A. Huq, and A. Manthiram, “Insights into the Improved Chemical Stability against Water of LiF-incorporated Layered Oxide Cathodes for Sodium-ion Batteries,” ACS Materials Letters 1, 89-95 (2019). https://doi.org/10.1021/acsmaterialslett.9b00080

  304. S.-H. Chung and A. Manthiram, “Current Status and Future Prospects of Metal-Sulfur Batteries,” Advanced Materials 31, 1901125 (2019). https://doi.org/10.1002/adma.201901125

  305. P. Han, S.-H. Chung, C.-H. Chang, and A. Manthiram, “A Bifunctional Binder with Nucleophilic Lithium Polysulfide Immobilization Ability for High-loading, High-thickness Cathodes in Lithium-sulfur Batteries,” ACS Applied Materials & Interfaces 11, 17393-17399 (2019). https://doi.org/10.1021/acsami.9b02399

  306. M. Gross and A. Manthiram “Long–Life Polysulfide–Polyhalide Batteries with a Mediator-ion Solid Electrolyte,” ACS Applied Energy Materials 2 5, 3445-3451 (2019). https://doi.org/10.1021/acsaem.9b00253

  307. J. He, Y. Chen, and A. Manthiram, “Metal Sulfide-decorated Carbon Sponge as a Highly Efficient Electrocatalyst and Absorbant for Polysulfide in High-loading Li2S Batteries,” Advanced Energy Materials 9, 1900584 (2019). https://doi.org/10.1002/aenm.201900584

  308. R. M. Pipes, A. Bhargav, and A. Manthiram, “Phenyl Disulfide Additive for Solution-mediated Carbon Dioxide Utilization in Li-CO2 Batteries,” Advanced Energy Materials 9, 1900453 (2019). https://doi.org/10.1002/aenm.201900453

  309. W. Li, H. Yaghoobnejad Asl, Q. Xie, and A. Manthiram, “Collapse of LiNi1-x-yCoxMnyO2 Lattice at Deep Charge Irrespective of Nickel Content in Lithium-ion Batteries,” Journal of the American Chemical Society 141, 13 5097-5101 (2019). https://doi.org/10.1021/jacs.8b13798

  310. H. Yaghoobnejad Asl and A. Manthiram, “Mass Transfer of Divalent Ions in an Oxide Host: Comparison of Mg2+ and Zn2+ Diffusion in Hexagonal KxW3O9 Bronze,” Chemistry of Materials 7, 2296-2307 (2019). https://doi.org/10.1021/acs.chemmater.8b03756

  311. K.-Y. Lai and A. Manthiram, “CO2-tolerant (Y, Tb)Ba(Co, Ga)4O7 Cathodes with Low Thermal Expansion for Solid Oxide Fuel Cells,” Journal of Materials Chemistry A 7, 8540-8549 (2019). https://doi.org/10.1039/C9TA01338E

  312. X. Yu, M. Boyer, G. Hwang, and A. Manthiram, “Toward a Reversible Calcium-Sulfur Battery with a Lithium-ion Mediation Approach,” Advanced Energy Materials 9, 1803794 (2019). https://doi.org/10.1002/aenm.201803238

  313. X. Yu, M. Boyer, G. S. Hwang, and A. Manthiram, “Toward a Reversible Calcium-Sulfur Battery with a Lithium-ion Mediation Approach,” Advanced Energy Materials 9, 1803794 (2019). https://doi.org/10.1002/aenm.201803794

  314. F. Li, Z. Wei, A. Manthiram, Y. Feng, J. Ma, and L. Mai, “Sodium-based Batteries: From Critical Materials to Battery Systems,” Journal of Materials Chemistry 7, 9406-9431 (2019). https://doi.org/10.1039/C8TA11999F

  315. M. Gross and A. Manthiram, “Development of Low-cost Sodium-Aqueous Polysulfide Hybrid Batteries,” Energy Storage Materials 19, 346-351 (2019). https://doi.org/10.1016/j.ensm.2019.03.026

  316. S.-H. Ahn and A. Manthiram, “Hierarchical Tri-functional Electrocatalysts Derived from Bimetallic-imidazolate Framework for Overall Water Splitting and Rechargeable Zinc-air Batteries,” Journal of Materials Chemistry A 7, 8641-8652 (2019). https://doi.org/10.1039/C9TA01340G

  317. P. Han, S.-H. Chung, and A. Manthiram, “Pyrrolic-type Nitrogen-doped Hierarchical Macro/Mesoporous Carbon as a Bifunctional Host for High-performance Thick Cathodes for Lithium-sulfur Batteries,” Small 15, 1900690 (2019). https://doi.org/10.1002/smll.201900690

  318. R. Yu, S.-H. Chung, C.-H. Chen, and A. Manthiram, “An Ant-nest-like Cathode Substrate for Lithium-sulfur Batteries with Practical Cell Fabrication Parameters,” Energy Storage Materials 18, 491-499 (2019). https://doi.org/10.1016/j.ensm.2018.12.025

  319. M. J. Park, H. Yaghoobnejad Asl, S. Therese, and A. Manthiram, “Structural Impact of Zn-insertion into Monoclinic V2(PO4)3: Implications for Zn-ion Batteries,” Journal of Materials Chemistry A 7, 7159 – 7167 (2019). https://doi.org/10.1039/C9TA00716D

  320. Q. Xie, W. Li, and A. Manthiram, “A Mg-doped High-nickel Layered Oxide Cathode Enabling Safer, High-energy-density Li-ion Batteries,” Chemistry of Materials 31, 938 – 946 (2019). https://doi.org/10.1021/acs.chemmater.8b03900

  321. A. Bhargav, C.-H. Chang, Y. Fu, and A. Manthiram, “A Rationally Designed High Sulfur Content Polymeric Cathode Material for Lithium-Sulfur Batteries,” ACS Applied Materials & Interfaces 11, 6136 – 6142 (2019). https://doi.org/10.1021/acsami.8b21395

  322. 2018

  323. A. Gupta, A. Bhargav, and A. Manthiram, “Highly Solvating Electrolytes for Lithium-Sulfur Batteries,” Advanced Energy Materials 9, 1803096 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  324. Y. You, A. Dolocan, W. Li, and A. Manthiram, “Understanding the Air-exposure Degradation Chemistry of High-Nickel Oxide Cathodes during Air Exposure for Sodium-ion Batteries,” Nano Letters 19, 182 – 188 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  325. M. Gross and A. Manthiram, “An Aqueous Polysulfide-Air Battery with a Mediator-ion Solid Electrolyte and a Copper Sulfide Catalyst for Polysulfide Redox,” ACS Applied Energy Materials 1, 7230 – 7236 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  326. S.-H. Chung and A. Manthiram, “Designing Lithium-sulfur Batteries with High-loading Cathodes at a Lean Electrolyte condition,” ACS Applied Materials & Interfaces 10, 43749 – 43759 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  327. R. Yu, S.-H. Chung, C.-H. Chen, and A. Manthiram, “A Core-shell Cathode Substrate for Developing High-loading, High-performance Lithium-sulfur Batteries,” Journal of Materials Chemistry A 6, 24841 – 24847 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  328. X. Yu and A. Manthiram, “Enhanced Interfacial Stability of Hybrid-Electrolyte Lithium-Sulfur Batteries with a Thin Layer of Multifunctional Polymer with Intrinsic Nanoporosity,” Advanced Functional Materials 29, 1805996 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  329. P. Han, S.-H. Chung, and A. Manthiram, “Designing a High-Loading Sulfur Cathode with a Mixed Ionic-electronic Conducting Polymer for Electrochemically Stable Lithium-sulfur Batteries,” Energy Storage Materials 17, 317 – 324 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  330. S.-H. Chung, K.-Y. Lai, and A. Manthiram, “A Facile, Low-cost Hot-pressing Process for Fabricating Lithium-sulfur Cells with Stable Dynamic and Static Electrochemistry,” Advanced Materials 30, 1805571 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  331. L. Yin, G. S. Mattei, Z. Li, J. Zheng, W. Zhao, F. Omenya, C. Fang, W. Li, J. Li, Q. Xie, J. G. Zhang, M. S. Whittingham, Y. S. Meng, P. Khalifah, and A. Manthiram,“Extending the Limits of Powder Diffraction Analysis: Diffraction Parameter Space, Occupancy Defects, and Atomic Form Factors,” Review of Scientific Instruments 89, 093002 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  332. J. Li, W. Li, Y. You, and A. Manthiram, “Extending the Service Life of High-Ni Layered Oxides by Tuning the Electrode-Electrolyte Interphase,” Advanced Energy Materials 8, 1801597 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  333. L. Luo, S.-H. Chung, H. Yaghoobnejad Asl, and A. Manthiram, “Long-life Lithium-sulfur Batteries with a Bifunctional Cathode Substrate Configured with Boron Carbide Nanowires,” Advanced Materials 30, 1804149 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  334. S. Nanda, A. Gupta, and A. Manthiram, “A Lithium-sulfur Cell Based on Reversible Lithium Deposition from a Li2S Cathode Host onto a Hostless-anode Substrate,” Advanced Energy Materials 8, 1801556 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  335. H. Wang, Y. Jiang, and A. Manthiram, “N-doped Fe3C@C as an Efficient Polyselenide Reservoir for High-performance Sodium-selenium Batteries,” Energy Storage Materials 16, 374 – 382 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  336. L. Luo, S.-H. Cheng, and A. Manthiram, “Rational Design of a Dual-function Hybrid Cathode Substrate for Lithium-sulfur Batteries,” Advanced Energy Materials 8, 1801014 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  337. X. Yu and A. Manthiram, “A Reversible Nonaqueous Room-temperature Potassium-sulfur Chemistry for Electrochemical Energy Storage,” Energy Storage Materials 15, 368 – 373 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  338. H. Xu, S. Wang, and A. Manthiram, “Hybrid Lithium–sulfur Batteries with an Advanced Gel Cathode and Stabilized Lithium-metal Anode,” Advanced Energy Materials 8, 1800813 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  339. S-H. Chung, C.-H. Chang, and A. Manthiram, “Progress on the Critical Parameters for Lithium-sulfur Batteries to be Practically Viable,” Advanced Functional Materials 28, 1801188 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  340. X. Yu, L. Cheng, Y. Liu, A. Manthiram, “A Membraneless Direct Isopropanol Fuel Cell (DIPAFC) Operated with a Catalyst-selective Principle,” Journal of Physical Chemistry 122, 13558 – 13563 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  341. J. He, G. Hartmann, M. Lee, G. S. Hwang, Y. Chen, and A. Manthiram, “Freestanding 1T MoS2/Graphene Heterostructure as a Highly Efficient Electrocatalyst for Lithium Polysulfides in Li-S Batteries,” Energy & Environmental Science 12, 344 – 350 (2019). dx.doi.org/10.1021/acsenergylett.8b01061

  342. K. P. Padmasree, K.-Y. Lai, A. Fuentes, and A. Manthiram, “Electrochemical Properties of Sr2.7-xCaxLn0.3Fe2-yCoyO7-δ Cathode for Intermediate-temperature Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy 44, 1896-1904 (2019). dx.doi.org/10.1021/acsenergylett.8b01061

  343. G. He, W.H. Kan, and A. Manthiram, “Delithiation/Lithiation Behaviors of Three Polymorphs of LiVOPO4,” Chemical Communications 54, 13224 – 13227 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  344. M. Ranjani, G. Gnana kumar, and A. Manthiram, “3D Flower-like Hierarchical NiCo2O4 Architectures on Carbon Cloth Fibers as an Anode Catalyst for High-performance, Durable Direct Urea Fuel Cells,” Journal of Materials Chemistry A 6, 23019 – 23027 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  345. R. Pipes, A. Bhargav, and A. Manthiram, “Nanostructured Anatase Titania as a Cathode Catalyst for Li-CO2 Batteries,” ACS Applied Materials & Interfaces 10, 37119-37124 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  346. C. Dillard, S.-H. Chung, A. Manthiram, and V. Kalra, “Binder-free, Freestanding Cathodes Fabricated with an Ultra-rapid Diffusion of Sulfur into Carbon Nanofibers Mat for Lithium-sulfur Batteries,” Materials Today Energy 9, 336-344 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  347. Y. You, S. Xin, H. Yaghoobnejad Asl, W. Li, P.-F. Wang, Y.-G. Guo, and A. Manthiram, “Insights into the Improved High-voltage Performance of Li-incorporated Layered Oxide Cathodes for Sodium-ion Batteries,” Chem 4, 2124-2139 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  348. X. Yu and A. Manthiram, “Towards Reversible Room-temperature Calcium-ion Batteries,” Chem 4, 1200-1202 (2018). https://doi.org/10.1016/j.chempr.2018.05.009

  349. J. He, Y. Chen, and A. Manthiram, “MOF-derived Cobalt Sulfide Grown on 3D Graphene Foam as an Efficient Sulfur Host for Long-life Lithium-Sulfur Batteries,” iScience 4, 36-43 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  350. J. He, Y. Chen, and A. Manthiram, “Vertical Co9S8 Hollow  Nanowall Arrays Grown on Celgard Separator as a Multifunctional Polysulfide Barrier for High-performance Li-S Batteries,” Energy & Environmental Science 11, 2560-2568 (2018). dx.doi.org/10.1039/C8EE00893K

  351. K-Y. Lai and A. Manthiram, “Effect of Trivalent Dopants on the Phase Stability and Catalytic Activity of YBaCo4O7-based Cathodes in Solid Oxide Fuel Cells,” Journal of Materials Chemistry A 6, 16412-16420 (2018). dx.doi.org/10.1039/C8TA01230J

  352. Z. Zhao-Karger, R. Liu, W. Dai, Z. Li, T. Diemant, B. P. Vinayan, C.B. Minella, X. Yu, A. Manthiram, R. Jurgen Behm, M. Ruben, and M. Fichtner, “Towards highly reversible magnesium-sulfur batteries with efficient and practical Mg[B(hfip)4]2 electrolyte,” ACS Energy Letters 3, 2005-2013 (2018). dx.doi.org/10.1021/acsenergylett.8b01061

  353. X. Yu and A. Manthiram, “Electrochemical Energy Storage with an Aqueous Quinone-Air Chemistry,” ACS Applied Energy Materials 1, 2424-2428 (2018). dx.doi.org/10.1021/acsaem.8b00536

  354. G. Gnana kumar, S.-H. Chung, T. Raj kumar, and A. Manthiram, “A 3D Graphene-CNT-Ni Hierarchical Architecture as a Polysulfide trap for Lithium-Sulfur Batteries,” ACS Applied Materials & Interfaces 10, 20627-20634 (2018). dx.doi.org/10.1021/acsami.8b06054

  355. P. Han, S-H. Chung, and A. Manthiram, “Thin-Layered Molybdenum Disulfide Nanoparticles as an Effective Polysulfide Mediator in Lithium-Sulfur Batteries,” ACS Applied Materials & Interfaces 10, 23122-23130 (2018). dx.doi.org/10.1021/acsami.8b05397.

  356. X. Yu and A. Manthiram, “A Strategically Managed Rechargeable Battery System with a Neutral Methyl Viologen Anolyte and an Acidic Air-Cathode Enabled by a Mediator-ion Solid Electrolyte,” Sustainable Energy & Fuel 2, 1452-1457 (2018). dx.doi.org/10.1039/C8SE00227D

  357. W. Li, X. Liu, H. Celio, P. Smith, A. Dolocan, M. Chi, and A.Manthiram, “Mn vs. Al in layered oxide cathodes in lithium-ion batteries: a comprehensive evaluation on long-term cyclability,” Advanced Energy Materials 8, 1703154:1-11 (2018). dx.doi.org/10.1002/aenm.201703154

  358. You, H. Celio, A. Dolocan, J. Li, and A. Manthiram, “Stable Surface Chemistry Against Ambient Air of Modified High-nickel Cathodes for Lithium-ion Batteries,” Angewandte Chemie 57, 6480-6485 (2018). dx.doi.org/10.1002/anie.201801533

  359. K.-Y. Lai and A. Manthiram, “Self-regenerating Co-Fe Nanoparticles on Perovskite Oxides as a Hydrocarbon Fuel Oxidation Catalyst in Solid Oxide Fuel Cells,” Chemistry of Materials 30, 2515-2525 (2018). dx.doi.org/10.1021/acs.chemmater.7b04569

  360. K.-Y. Lai and A. Manthiram, “Evolution of Exsolved Nanoparticles on a Perovskite Oxide Surface during a Redox Process,” Chemistry of Materials 30, 2838-2847 (2018). dx.doi.org/10.1021/acs.chemmater.8b01029

  361. J. Li, W. Li, S. Wang, K. Jarvis, J. Yang, and A. Manthiram, “Facilitating the Operation of Lithium-ion Cells with High-nickel Layered Oxide Cathodes with a Small Dose of Aluminum,” Chemistry of Materials 30, 3101-3109 (2018). dx.doi.org/10.1021/acs.chemmater.8b01077

  362. X. Yu and A. Manthiram, “Scalable Membraneless Direct Liquid Fuel Cells Based on a Catalyst-Selective Strategy,” Energy & Environmental Materials 1, 13-19 (2018). https://doi.org/10.1002/eem2.12000

  363. X. Yu and A. Manthiram, “Electrochemical Energy Storage with an Aqueous Zinc-Quinone Chemistry Enabled by a Mediator-ion Solid Electrolyte,” ACS Applied Energy Materials 1, 273-277(2018). dx.doi.org/10.1021/acsaem.7b00089

  364. H. Li, J. Janek, and A. Manthiram, “From Liquid towards All Solid: Fundamental and Key Materials,” Solid State Ionics 318, 1-1, (2018). dx.doi.org/10.1016/j.ssi.2017.12.025

  365. L. Luo, S.-H. Chung, and A. Manthiram, “Three-dimensional Self-assembled SnS2-Nano- dots@Graphene Hybrid Aerogel as an Efficient Polysulfide Reservoir for High-performance Lithium-sulfur Batteries,” Journal of Materials Chemistry 6, 7659-7667 (2018). dx.doi.org/10.1039/C8TA01089G

  366. M. Gross and A. Manthiram, “A Rechargeable Zinc-Aqueous Polysulfide Battery with a Mediator-ion Solid Electrolyte,” ACS Applied Materials & Interfaces 10, 10612-10617 (2018). dx.doi.org/10.1021/acsami.8b00981

  367. S. -H. Chung, L. Luo and A. Manthiram, “TiS2-Polysulfide Hybrid Cathode with High Sulfur Loading and Low Electrolyte Consumption for Lithium-sulfur Batteries,” ACS Energy Letters 3, 568-573 (2018). dx.doi.org/10.1021/acsenergylett.7b01321

  368. X. Yu and A. Manthiram, “Electrode-Electrolyte Interfaces in Lithium-based Batteries,” Energy & Environmental Science 11, 527-543 (2018). dx.doi.org/10.1039/C7EE02555F

  369. J. Zhang, H. Huang, J. Bae, S.-H. Chung, W. Zhang, A. Manthiram, and G. Yu, “Nanostructured host materials for trapping sulfur in rechargeable Li−S batteries: structure design and interfacial chemistry,” Small Methods 2, 1799279 (2018). dx.doi.org/10.1002/smtd.201700279

  370. S.-H. Chung and A. Manthiram, “Designing Lithium-Sulfur Batteries with Practically Necessary Parameters,” Joule 2, 1-15 (2018). dx.doi.org/10.1016/j.joule.2018.01.002

  371. X. Yu, S. Feng, M. Boyer, M. Lee, R. Ferrier, N. Lynd, G. S.Hwang, G. Wang, S. Swinnea, and A. Manthiram, “Controlling the Polysulfide Diffusion in Lithium-Sulfur Batteries with a Polymer Membrane with Intrinsic Nanoporosity,” Materials Today Energy 7, 98-104 (2018). dx.doi.org/10.1016/j.mtener.2018.01.002

  372. S. Wang, H. Xu, W. Li, A. Dolocan, and A. Manthiram, “Interfacial Chemistry in Solid-state Batteries: Formation of Interphase and Its Consequences,” Journal of the American Chemical Society 140, 250-257 (2018). dx.doi.org/10.1021/jacs.7b09531

  373. X. Yu, M. Broyer, G. S. Hwang, and A. Manthiram, “Room-temperature Aluminium-sulfur Batteries with a Lithium-ion-mediated Ionic Liquid Electrolyte,” Chem 4, 586-598 (2018). dx.doi.org/10.1016/j.chempr.2017.12.029

  374. K. P. Padmasree, K.-Y. Lai, W. Kaveevivitchai, and A. Manthiram, “Effect of Ca substitution on the electrochemical properties of the Ruddlesden-Popper oxides Sr3.2-xCaxLn0.8Fe1.5Co1.5O10-δ,” Journal of Power Sources 374, 249-256 (2018). dx.doi.org/10.1016/j.jpowsour.2017.11.047

  375. C.-H. Chang and A. Manthiram, “Covalently-grafted Polysulfur-graphene Nanocomposites for Ultrahigh Sulfur-loading Lithium-polysulfur Batteries,” ACS Energy Letters 3, 72-77 (2018). dx.doi/10.1021/acsenergylett.7b01031

  376. S.-H. Chung and A. Manthiram, “Rational design of statically and dynamically stable lithium-sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio,” Advanced Materials 30, 1705951: 1-9 (2018). dx.doi.org/10.1002/adma.201705951

  377. H. Wang, Y. Jiang, and A. Manthiram, “Long cycle life, low self-discharge sodium-selenium batteries with high selenium loading and suppressed polyselenide shuttling,” Advanced Energy Materials 8, 1701953 (1-8) (2018). dx.doi/10.1002/aenm.201701953

  378. N. Senthilkumar, G. Gnana Kumar, and A. Manthiram, “Three-dimensional Hierarchical Core-Shell Nanostructured Arrays on Carbon Fibers as Catalysts for Direct Urea Fuel Cells,” Advanced Energy Materials 8, 1702207 (1-11) (2018). dx.doi.org/10.1002/aenm.201702207

  379. 2017

  380. X. Yu and A. Manthiram, “Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes,” Accounts of Chemical Research 50, 2653-2660 (2017). dx.doi.org/10.1021/acs.accounts.7b00460

  381. X. Yu and A. Manthiram, “Electrochemical Energy Storage with Mediator-ion Solid Electrolytes,” Joule 1, 453-462 (2017). dx.doi.org/10.1016/j.joule.2017.10.011

  382. P. Han and A. Manthiram, “Boron- and Nitrogen-doped Reduced Graphene Oxide Coated Separators for High-performance Li-S Batteries,” Journal of Power Sources 369, 87-94 (2017). dx.doi.org/10.1016/j.jpowsour.2017.10.005

  383. K. J. Kreder III, B. Heligman, and A. Manthiram, “Interdigitated Eutectic Alloy Foil Anodes for Rechargeable Batteries,” ACS Energy Letters 2, 2422-2423 (2017). dx.doi/10.1021/acsenergylett.7b00844

  384. H.-H. Sun and A. Manthiram, “Impact of Microcrack Generation and Surface Degradation on Nickel-rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-ion Batteries,” Chemistry of Materials 5, 20497-20504 (2017). dx.doi/10.1039/C7TA06258C

  385. G. Gnana kumar and A. Manthiram, “Sulfonated polyether ether ketone/strontium zirconite@TiO2 nanocomposite membranes for direct methanol fuel cells,” Journal of Materials Chemistry A 5, 20497–20504 (2017). dx.doi/10.1039/C7TA06258C

  386. C.-H. Chang, S.-H. Chung, S. Nanda, and A. Manthiram, “A Rationally Designed Polysulfide-trapping Interface on the Polymeric Separator for High-energy Li-S Batteries,” Materials Today Energy 6, 72-78 (2017). dx.doi/110.1021/acsenergylett.7b00697

  387. L. Luo and A. Manthiram, “Rational Design of High-loading Sulfur Cathodes with a Poached-egg-shaped Architecture for Long-cycle Lithium-sulfur Batteries,” ACS Energy Letters 2, 2205-2211 (2017). dx.doi/10.1016/j.mtener.2017.09.001

  388. A. Manthiram, “An Outlook on Lithium Ion Battery Technology,” ACS Central Science 3, 1063-1069 (2017). dx.doi/10.1021/acscentsci.7b00288

  389. Y. You and A Manthiram, “Progress in High-voltage Cathode Materials for Rechargeable Sodium-ion Batteries,” Advanced Energy Materials 8, 1701785: 1-11 (2017). dx.doi/10.1002/aenm.201701785

  390. J. Oliva, C.R. Garcia, E. Verduzco, A. I. Martinez, A. Manthiram, and K. P. Padmasree, “Enhancing the Photocatalytic Activity of the Perovskite-based Intergrowth Oxide Sr3.2La0.8Fe1.5Co1.5O10-δ with Ca Substitution,” Ceramics International 43, 14074-14081 (2017). dx.doi/10.1016/j.ceramint.2017.07.143

  391. K. Jarvis, C.-C. Wang, M. Varela, R. R. Unocic, A. Manthiram, and P. Ferreira, “Surface Reconstruction in Li-rich Layered Oxides of Li-ion Batteries,” Chemistry of Materials 29, 7668–7674 (2017). dx.doi/10.1021/acs.chemmater.7b00120

  392. H. Xu, S. Wang, H. Wilson, F. Zhao, and A. Manthiram, “Y-doped NASICON-type LiZr2(PO4)3 Solid Electrolytes for Solid-state Batteries,” Chemistry of Materials 29, 7206-7212 (2017). dx.doi.org/10.1021/acs.chemmater.7b01463

  393. S.-H. Ahn, and A. Manthiram, “Cobalt Phosphide Coupled with Heteroatom-doped Nanocarbon Hybrid Electroctalysts for Efficient, Long-life Rechargeable Zinc-air Batteries,” Small 13, 1702068: 1-11 (2017). dx.doi/10.1002/smll.201702068

  394. S. Feng, J. Pang, X. Yu, G. Wang, and A. Manthiram, “A High-Performance Semicrystalline Poly(Ether Ketone)-based Proton Exchange Membrane,” ACS Applied Materials & Interfaces 9, 24527-24537 (2017).  dx.doi.org/10.1021/acsami.7b03720

  395. X. Yu and A. Manthiram, “Ambient-temperature Energy Storage with Polyvalent Metal-Sulfur Chemistries,” Small Methods 1, 1700217: 1-11 (2017). dx.doi.org/10.1002/smtd.201700217

  396. X. Yu and A. Manthiram, “A Zinc-Cerium Cell for Energy Storage Using a Sodium-ion Exchange Membrane,” Advanced Sustainable Systems 1, 1700082: 1-6 (2017). dx.doi/10.1002/adsu.201700082

  397. C.-H. Chang, S.-H. Chung, P. Han, and A. Manthiram, “Oligoanilines as a Suppressor of Polysulfide Shuttling in Lithium-Sulfur Batteries,” Materials Horizons 4, 908-914 (2017). dx.doi/10.1039/c7mh00510e

  398. M. J. Klein, G. Veith, and A. Manthiram, “Chemistry of sputter-deposited lithium sulfide films,” Journal of the American Chemical Society 139, 10669–10676 (2017). dx.doi/10.1021/jacs.7b03379

  399. L. Luo, S.-H. Chung, C.-H. Chang, and A. Manthiram, “A Nickel-foam@carbon-shell with a Pie-like Architecture as an Efficient Polysulfide Trap for High-energy Li-S Batteries,” Journal of Materials Chemistry 5, 15002 – 15007 (2017). dx.doi/10.1039/c7ta05277d

  400. M. J. Klein, G. Veith, and A. Manthiram, “Rational design of lithium-sulfur battery cathodes based on experimentally determined maximum active material thickness,” Journal of the American Chemical Society 139, 9229-9237 (2017). dx.doi/10.1021/jacs.7b03380

  401. J. He, L. Luo, Y. Chen and A. Manthiram, “Yolk-Shelled C@Fe3O4 Nanoboxes as Efficient Sulfur Hosts for High-Performance Lithium–Sulfur Batteries,” Advanced Materials 29, 1702707: 1-5 (2017). dx.doi/10.1002/adma.201702707

  402. W. Kaveevivitchai, A. Huq, S. Wang, M. J. Park, and A. Manthiram, “Rechargeable Aluminum-ion Batteries Based on an Open Tunnel Framework,” Small 13, 1701296:1-10 (2017). dx.doi/10.1002/smll.201701296

  403. M. J. Klein, A. Dolocan, C. Zu, and A. Manthiram, “An Effective Lithium Sulfide Encapsulation Strategy for Stable Lithium-sulfur Batteries,” Advanced Energy Materials 7, 1701122: 1-9 (2017). dx.doi.org/10.1002/aenm.201500408

  404. S.-H. Chung, P. Han, and A. Manthiram, “Quantitative Analysis of Electrochemical and Electrode Stability with Low Self-discharge Lithium-sulfur Batteries,” ACS Applied Materials & Interfaces 9, 20318-20323 (2017). dx.doi.org/10.1021/acsami.7b05602

  405. W. Li, U.-H. Kim, A. Dolocan, Y.-K. Sun, and A. Manthiram, “Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover,” ACS Nano 11, 5853-5863 (2017). dx.doi/10.1021/acsnano.7b01494

  406. L. Wang, Y.-G. Sun, L.-L. Hu, J.-Y. Piao, J. Guo, A. Manthiram, J. Ma, and A.-M. Cao, “Copper-Substituted Na0.67Ni0.3-xCuxMn0.7O2 Cathode Materials for Sodium-Ion Batteries with Suppressed P2-O2 Phase Transition,” Journal of Materials Chemistry 5, 8752-8761 (2017). dx.doi/10.1039/c7ta00880e

  407. S.-H. Chung, P. Han, and A. Manthiram, “Lithium-sulfur batteries with the lowest self-discharge and the longest shelf-life,” ACS Energy Letters 2, 1056–1061 (2017). dx.doi/10.1021/acsenergylett.7b00245

  408. X. Yu and A. Manthiram, “A Voltage-enhanced, Low-cost Aqueous Iron-air Battery Enabled with a Mediator-ion Solid Electrolyte,” ACS Energy Letters 2, 1050–1055 (2017). dx.doi/10.1021/acsenergylett.7b00168

  409. X. Yu and A. Manthiram, “Electrochemical Energy Storage with a Reversible Nonaqueous Room-temperature Aluminum-sulfur Chemistry,” Advanced Energy Materials 7, 1700561: 1-9 (2017). dx.doi/10.1002/aenm.201700561

  410. S.-H. Chung, P. Han, C.-H. Chang, and A. Manthiram, “A Shell-shaped Carbon Architecture with High-loading Capability for Lithium Sulfide Cathodes,” Advanced Energy Materials 7, 1700537: 1-7 (2017). dx.doi/0.1002/aenm.201700537

  411. S.-O. Kim and A. Manthiram, “Phosphorus-rich CuP2 Embedded in Carbon Matrix as a High-performance Anode for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 9, 16221-16227 (2017). dx.doi/10.1021/acsami.7b02826

  412. W. Li, B. Song, and A. Manthiram, “High-voltage Positive Electrode Materials for Lithium-ion Batteries,” Chemical Society Reviews 46, 3006-3059 (2017). dx.doi/0.1039/C6CS00875E

  413. S.-H. Ahn, X. Yu, and A. Manthiram, “Wiring” Fe-Nx-embedded Porous Carbon Frameworks onto One-dimensional Nanotubes for Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media,” Advanced Materials 29, 1606534: 1-10 (2017). dx.doi/10.1002/adma.201606534

  414. C.-H. Chang, S.-H. Chung, and A. Manthiram, “Transforming Waste Newspapers into Nitrogen-doped Conducting Interlayers for Advanced Li-S Batteries,” Sustainable Energy & Fuels 1, 444-449 (2017). dx.doi/10.1039/C7SE00014F

  415. B. Song, W. Li, S.-M. Oh, and A. Manthiram, “Long-life Nickel-rich Layered Oxide Cathodes with a Uniform Li2ZrO3 Surface Coating for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 9, 9718-9725 (2017). dx.doi/10.1021/acsami.7b00070

  416. L. Xue, Y. Li, H. Gao, W. Zhou, X. Lü, W. Kaveevivitchai, A. Manthiram, and J. B. Goodenough, “Low-cost High-energy Potassium Cathode,” Journal of the American Chemical Society 139, 2164-2167 (2017). dx.doi/10.1021/jacs.6b12598

  417. W. Li, A. Dolocan, P. Oh, H. Celio, S. Park, J. Cho, and A. Manthiram, “Dynamic Behaviour of Interphases and Its Implication on High-energy-density Cathode Materials in Lithium-ion Batteries,” Nature Communications 8, 14589: 1-10 (2017).  dx.doi/10.1038/ncomms14589

  418. S.-H. Ahn and A. Manthiram, “Direct Growth of Ternary Ni–Fe–P Porous Nanorods onto Nickel Foam as a Highly Active, Robust Bi-functional Electrocatalyst for Overall Water Splitting,” Journal of Materials Chemistry A 5, 2496-2503 (2017). dx.doi/10.1039/C6TA10509B

  419. J.-S. Lee, J. Jun, J. Jang, and A. Manthiram, “Sulfur-Immobilized, Activated Porous Carbon Nanotube Composite Based Cathodes for Lithium-sulfur Batteries,” Small 13, 1602984: 1-7 (2017). dx.doi/10.1002/smll.201602984

  420. J.-S. Lee and A. Manthiram, “Hydroxylated N-doped Carbon Nanotube-sulfur Composites as Cathodes for High-performance Lithium-sulfur Batteries,” Journal of Power Sources 343, 54-59(2017). dx.doi/10.1016/j.jpowsour.2017.01.049

  421. C.-H. Chang, S.-H. Chung, and A. Manthiram, “Dendrite-free Lithium Anode via a Homogenous Li-ion Distribution Enabled by a Kimwipe Paper,” Advanced Sustainable Systems 1, 1600034: 1-5(2017). dx.doi/10.1002/adsu.201600034

  422. H. Xu and A. Manthiram, “Hollow Cobalt Sulfide Polyhedra-enabled Long-life, High Areal-capacity Lithium-Sulfur Batteries,” Nano Energy 33, 124-129 (2017). dx.doi/10.1016/j.nanoen.2017.01.007

  423. C.-H. Chang, S.-H. Chung, and A. Manthiram, “Highly Flexible, Freestanding Tandem Sulfur Cathodes for Foldable Li–S Batteries with a High Areal Capacity,” Materials Horizons 4, 249-258 (2017). dx.doi/10.1039/C6MH00426A

  424. A. Manthiram, X. Yu, and S. Wang, “Lithium Battery Chemistries Enabled by Solid-state Electrolytes,” Nature Reviews Materials 2, 16103: 1-16 (2017). dx.doi/10.1038/natrevmats.2016.103

  425. W. Kaveevivitchai, A. Huq, and A. Manthiram, “Microwave-assisted Chemical Insertion: A Rapid Technique for Screening Cathodes for Mg-ion Batteries,” Journal of Materials Chemistry A 5, 2309-2318 (2017). dx.doi/10.1039/C6TA09497J

  426. S.-M. Oh, P. Oh, S.-O. Kim, and A. Manthiram, “A High-performance Sodium-ion Full Cell with a Layered Oxide Cathode and a Phosphorous-based Composite Anode,” Journal of Electrochemical Society 164, A321-A326 (2017). dx.doi/10.1149/2.0931702jes

  427. K. J. Kreder III and A. Manthiram, “Metal Nanofoams via a Facile Microwave-assisted Solvothermal Process,” Chemical Communications 53, 865-868 (2017). dx.doi/10.1039/c6cc08322f

  428. K. J. Kreder III and A. Manthiram, “Vanadium-substituted LiCoPO4 core with a monolithic LiFePO4 shell for high-voltage lithium-ion batteries,” ACS Energy Letters 2, 64-69 (2017). dx.doi/10.1021/acsenergylett.6b00496

  429. C. A. Milroy, S. Jang, T. Fujimori, A. Dodabalapur, and A. Manthiram, “Inkjet-printed Lithium-Sulfur Microcathodes for All-Printed, Integrated Nanomanufacturing,” Small 13, 1603786: 1-11 (2017). dx.doi/10.1002/smll.201603786

  430. S.-H. Ahn and A. Manthiram, “Self-templated Synthesis of Co- and N-doped Carbon Microtubes Composed of Hollow Nanospheres and Nanotubes for Efficient Oxygen Reduction Reaction,” Small 13, 1603437: 1-8(2017). dx.doi/10.1002/smll.201603437

  431. X. Yu, M. M. Gross, S. Wang, and A. Manthiram, “Aqueous Electrochemical Energy Storage with a Mediator-ion Solid Electrolyte,” Advanced Energy Materials 1602454: 1-8 (2017). dx.doi/10.1002/aenm.201602454

  432. Y. Li, B. Xu, H. Xu, H. Duan, X. Lü, S. Xin, W. Zhou, L. Xue, G. Fu, A. Manthiram, and J. B. Goodenough, “Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries,” Angewandte Chemie 56, 753-756(2017). dx.doi.org/10.1002/anie.201608924

  433. S.-H. Ahn, M. J. Klein, and A. Manthiram, “1D Co- and N-doped Hierarchically Porous Carbon Nanotubes Derived from Bimetallic Metal Organic Framework for Efficient Oxygen and Tri-iodide Reduction Reactions,” Advanced Energy Materials 7, 1601979: 1-9 (2017). dx.doi/10.1002/aenm.201601979

  434. Y. You, S.-O. Kim, and A. Manthiram, “A Honeycomb Layered Oxide Cathode for Sodium-Ion Batteries with Suppressed P3-O1 Phase Transition,” Advanced Energy Materials 7, 1601698: 1-7(2017). dx.doi.org/10.1002/aenm.201601698 

  435. J.-S. Lee, W. Kim, J. Jang, and A. Manthiram, “Sulfur-Embedded Activated Multichannel Carbon Nanofiber Composites for Long-life, High-rate Lithium-sulfur Batteries,” Advanced Energy Materials 7, 1-8 (2017). dx.doi.org/10.1002/aenm.201601943

  436. A. Manthiram, B. Song, and W. Li, “A Perspective on Nickel-rich Layered Oxide Cathodes for Lithium-ion Batteries,” Energy Storage Materials 6, 125-139 (2017). dx.doi/10.1016/j.ensm.2016.10.007

  437. 2016

  438. W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, and J. B. Goodenough, “Plating a Dendrite-free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte,” Journal of the American Chemical Society 138, 9385-9388 (2016). dx.doi/10.1021/jacs.6b05341

  439. K.-Y. Lai and A. Manthiram, “Phase Stability, Oxygen-storage Capability, and Electrocatalytic Activity in Solid Oxide Fuel Cells of (Y, In, Ca)BaCo4-yGayO7+d,” Chemistry of Materials (2016). dx.doi/10.1021/acs.chemmater.6b04122

  440. W. Kaveevivitchai and A. Manthiram, “High-capacity Zinc-ion Storage in an Open-tunnel Oxide for Aqueous and Nonaqueous Zn-ion Batteries,” Journal of Materials Chemistry A 4, 18737-18741 (2016). dx.doi/10.1039/C6TA07747A

  441. S. Wang, Y. Ding, G. Zhou, G. Yu, and A. Manthiram, “Durability of the Li1+xTi2-xAlx(PO4)3 Solid Electrolyte in Lithium-sulfur Batteries,” ACS Energy Letters 1, 1080-1085 (2016). dx.doi.org/10.1021/acsenergylett.6b00481

  442. S.-H. Chung, C.-H. Chang, and A. Manthiram, “A Carbon-cotton Cathode with Ultrahigh-loading Capability for Statically and Dynamically Stable Lithium-sulfur Batteries,” ACS Nano 10, 10462-10470 (2016). dx.doi.org/10.1021/acsnano.6b06369

  443. L. Luo, S.-H. Chung, and A. Manthiram, “Trifunctional Multi-walled Carbon Nanotubes/Polyethylene Glycol (MWCNT/PEG)-coated Separator through a Layer-by-layer Coating Strategy for High-energy Li-S Batteries,” Journal of Materials Chemistry A 4, 16805-16811 (2016). dx.doi.org/10.1039/c6ta07709a

  444. S.-H. Chung, C.-H. Chang, and A. Manthiram, “Hierarchical sulfur electrodes as a test platform for understanding the high-loading capability of Li-S batteries,” Journal of Power Sources 334, 179-190 (2016). dx.doi.org/10.1016/j.jpowsour.2016.10.023

  445. G.-P. Kim, H.-H. Sun, and A. Manthiram, “Design of a Sectionalized MnO2-Co3O4 Electrode via Selective Electrodeposition of Metal Ions in Hydrogel for Enhanced Electrocatalytic Activity in Metal-air Batteries,” Nano Energy 30, 130-137 (2016). dx.doi.org/10.1016/j.nanoen.2016.10.003

  446. J. Liu, A. Huq, Z. Moorhead-Rosenberg, A. Manthiram, and K. Page, “Nanoscale Ni/Mn Ordering in the High Voltage Spinel Cathode LiNi0.5 Mn1.5O4,” Chemistry of Materials 28, 6817-6821 (2016). dx.doi.org/10.1021/acs.chemmater.6b02946

  447. S.-O. Kim and A. Manthiram, “Low-cost Carbon-coated Si-Cu3Si-Al2O3 Nanocomposite Anodes for High-performance Lithium-ion Batteries,” Journal of Power Sources 332, 222-229 (2016). dx.doi.org/10.1016/j.jpowsour.2016.09.089

  448. X. Yu, E. J. Pascual, J. C. Wauson, and A. Manthiram, “A Membraneless Alkaline Direct Liquid Fuel Cell (DLFC) Platform Developed with a Catalyst-Selective Strategy,” Journal of Power Sources 331, 340-347 (2016). dx.doi.org/10.1016/j.jpowsour.2016.09.077

  449. C. A. Milroy and A. Manthiram, “Bioelectronic Energy Storage: A Pseudocapacitive Hydrogel Composed of Endogenous Biomolecules,” ACS Energy Letters 1, 672-677 (2016). dx.doi.org/10.1021/acsenergylett.6b00334

  450. A. Manthiram, “Electrical Energy Storage: Materials Challenges and Prospects,” MRS Bulletin 41, 624-630 (2016). dx.doi.org/10.1557/mrs.2016.167

  451. J.-Y. Liao, S.-M. Oh, and A. Manthiram, “A Core/double-shell Type Gradient Ni-rich LiNi0.76Co0.10Mn0.14O2 with High Capacity and Long Cycle Life for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 8, 24543-24549 (2016). dx.doi.org/10.1021/acsami.6b06172

  452. C. A. Milroy and A. Manthiram, “An Elastic, Conductive, Electroactive Nanocomposite Binder for Flexible Sulfur Cathodes in Lithium-sulfur Batteries,” Advanced Materials 28, 9744-9751 (2016). dx.doi.org/10.1002/adma.201601665

  453. T.-T. Shan, S. Xin, Y. You, H.-P. Cong, S.-H. Yu, and A. Manthiram, “Combining Nitrogen-doped Graphene Sheets and MoS2: A Unique “Film-foam-film” Structure for Enhanced Lithium Storage,” Angewandte Chemie 55, 12783-12788 (2016). dx.doi.org/10.1002/anie.201606870

  454. S.-H. Chung, C.-H. Chang, and A. Manthiram, “A Core-shell Electrode for Dynamically and Statically Stable Li-S Battery Chemistry,” Energy & Environmental Science 9, 3188-3200 (2016). dx.doi.org/10.1039/C6EE01280A

  455. L. Qie and A. Manthiram, “Uniform Li2S Precipitation on N, O-Codoped Porous Hollow Carbon Fibers for High-energy-density Lithium-sulfur Batteries with Superior Stability,” Chemical Communications 52, 10964-10967 (2016). dx.doi.org/10.1039/C6CC06340C

  456. X. Yu, Z. Bi, F. Zhao, and A. Manthiram, “Polysulfide-Shuttle Control in Lithium-sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON-type Solid Electrolyte,” Advanced Energy Materials 6, 1601392: 1-8 (2016). dx.doi.org/10.1002/aenm.201601392

  457. X. Yu and A. Manthiram, “Performance Enhancement and Mechanistic Studies of Magnesium-Sulfur (Mg-S) Cells with an Advanced Cathode Structure,” ACS Energy Letters 1, 431-437 (2016). dx.doi.org/10.1021/acsenergylett.6b00213

  458. S.-O. Kim and A. Manthiram, “High-performance Red P-based P-TiP2-C Nanocomposite Anode for Lithium-ion and Sodium-ion Storage,” Chemistry of Materials 28, 5935-5942 (2016). dx.doi.org/10.1021/acs.chemmater.6b02482

  459. M. J. Klein, K. Goossens, C. W. Bielawski, and A. Manthiram, “Elucidating the Electrochemical Activity of Electrolyte-insoluble Polysulfide Species in Lithium-sulfur Batteries,” Journal of the Electrochemical Society 163, A2109-A2116 (2016). dx.doi/org/10.1149/2.0051610jes

  460. B. Song, W. Li, P. Yan, S.-M. Oh, C.-M. Wang, and A. Manthiram, “A Facile Cathode Design Combining Ni-rich Layered Oxides with Li-rich Layered Oxides for Lithium-ion Batteries,” Journal of Power Sources 325, 620-629 (2016). dx.doi.org/10.1016/j.jpowsour.2016.06.056

  461. P. Oh, S.-M. Oh, W. Li, S. Myeong, J. Cho, and A. Manthiram, “High-performance Heterostructured Cathodes for Lithium-ion Batteries with a Ni-rich Layered Oxide Core and a Li-rich Layered Oxide Shell,” Advanced Science 3, 1600184: 1-8 (2016). dx.doi.org/10.1002/advs.201600184

  462. H. M. Kim, H.-H. Sun, I. Belharouak, A. Manthiram, and Y.-K. Sun, “An Alternative Approach to Enhance the Performance of High Sulfur-loading Electrodes for Li-S Batteries,” ACS Energy Letters 1, 136-141 (2016). dx.doi.org/10.1021/acsenergylett.6b00104

  463. H. Xu, L. Qie, and A. Manthiram, “An Integrally-designed, Flexible Polysulfide Host for High-performance Lithium-sulfur Batteries with Stabilized Lithium-metal Anode,” Nano Energy 26, 224-232 (2016). dx.doi.org/10.1016/j.nanoen.2016.05.028

  464. Z. Cui, C. Zu, W. Zhou, A. Manthiram, and J. B. Goodenough, “Mesoporous Titanium Nitride-enabled Highly Stable Lithium-Sulfur Batteries,” Advanced Materials 28, 6926-6931 (2016). dx.doi.org/10.1002/adma.201601382

  465. L. Qie and A. Manthiram, “High-energy-density Lithium-sulfur Batteries Based on a Blade-cast Pure Sulfur Electrodes,” ACS Energy Letters 1, 46-51 (2016). dx.doi.org/10.1021/acsenergylett.6b00033

  466. Z. Jiang, Z.-J. Jiang, T. Maiyalagan, and A. Manthiram, “Cobalt Oxide-coated N- and B-doped Graphene Hollow Spheres as a Bifunctional Electrocayalyst for Oxygen Reduction and Oxygen Evolution Reactions,” Journal of Materials Chemistry A 4, 5877-5889 (2016). dx.doi.org/10.1039/C6TA01349J

  467. C. Lai, J. Chen, J. C. Knight, A. Manthiram, and A. Navrotsky, “Thermodynamic Stability of Transition Metal Substituted LiMn2-xMxO4 (M = Cr, Fe, Co, and Ni) Spinels,” ChemPhysChem 17, 1973-1978 (2016). dx.doi.org/10.1002/cphc.201600120

  468. C. Zu, L. Li, J. Guo, S. Wang, D. Fan, and A. Manthiram, “Understanding the Redox Obstacles in High Sulfur-loading Li-S Batteries and Design of an Advanced Gel Cathode, ” Journal of Physical Chemistry Letters 7, 1392-1399 (2016). dx.doi.org/10.1021/acs.jpclett.6b00429

  469. Y. Li, M. P. Paranthaman, K. Akato, A. K. Naskar, A. M. Levine, R. J. Lee, S. O. Kim, J. Zhang, S. Dai, and A. Manthiram, “Tire-derived Carbon Composite Anodes for Sodium-ion Batteries,” Journal of Power Sources 316, 232-238 (2016). dx.doi.org/10.1016/j.jpowsour.2016.03.071

  470. P. Oh, B. Song, W. Li, and A. Manthiram, “Overcoming the Chemical Instability on Exposure to Air of Ni-rich Layered Oxide Cathodes by Coating with Spinel LiMn1.9Al0.1O4,” Journal of Materials Chemistry A 4, 5839-5841 (2016). dx.doi.org/10.1039/C6TA01061J

  471. X. Yu, J. Joseph, and A. Manthiram, “Suppression of the Polysulfide-shuttle Behavior in Li-S Batteries through the Development of a Facile Functional Group on the Polypropylene Separator,” Materials Horizons 3, 314-319 (2016). dx.doi.org/10.1039/C6MH00043F

  472. K. J. Kreder III, G. Assat, and A. Manthiram, “Aliovalent Substitution of V3+ for Co2+ in LiCoPO4 by a Low-temperature Microwave-assisted Solvothermal Process,” Chemistry of Materials 28, 1847-1853 (2016). dx.doi.org/10.1021/acs.chemmater.5b05042

  473. W. H. Kan, A. Huq, and A. Manthiram, “Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li-Ni-Mn-Co-O System,” Chemistry of Materials 28, 1832-1837 (2016). dx.doi.org/10.1021/acs.chemmater.5b04994

  474. S. O. Kim and A. Manthiram, “Facile Synthesis and Enhanced Sodium-storage Performance of Chemically Bonded CuP2/C Hybrid Anode,” Chemical Communications 52, 4337-4340 (2016). dx.doi.org/10.1039/C5CC10585D

  475. K. A. Jarvis, C.-C. Wang, J. C. Knight, L. Rabenberg, A. Manthiram, and P. J. Ferreira, “Formation and Effect of Orientation Domains in Layered Oxide Cathodes of Lithium-ion Batteries,” Acta Materialia 108, 264-270 (2016). dx.doi.org/10.1016/j.actamat.2016.02.034

  476. G. He, A. Huq, W. H. Kan, and A. Manthiram, “β-NaVOPO4 Obtained by a Low-temperature Synthesis Process: A New 3.3 V Cathode for Sodium-ion Batteries,” Chemistry of Materials 28, 1503-1512 (2016). dx.doi.org/10.1021/acs.chemmater.5b04992

  477. S.-H. Chung, P. Han, and A. Manthiram, “A Polysulfide-trapping Interface for Electrochemically Stable Sulfur Cathode Development,” ACS Applied Materials & Interfaces 8, 4709-4717 (2016). dx.doi.org/10.1021/acsami.5b12012

  478. C. A. Milroy and A. Manthiram, “Printed Microelectrodes for Scalable, High-areal-capacity Lithium-sulfur Batteries,” Chemical Communications 52, 4282-4285 (2016). dx.doi.org/10.1039/C5CC10503J

  479. X. Yu and A. Manthiram, “Performance Enhancement and Mechanistic Studies of Room-temperature Sodium-sulfur Batteries with a Carbon-coated Functional Nafion Separator and a Na2S/Activated Carbon Nanofiber Cathode,” Chemistry of Materials 28, 896-905 (2016). dx.doi.org/10.1021/acs.chemmater.5b04588

  480. W. H. Kan, K.-Y. Lai, A. Huq, and A. Manthiram, “Unravelling the Low Thermal Expansion Coefficient of Cation-substituted YBaCo4O7+δ,” Journal of Power Sources 307, 454-461 (2016). dx.doi.org/10.1016/j.jpowsour.2016.01.017

  481. J. Zheng, P. Yan, W. H. Kan, C. Wang, and A. Manthiram, “A Spinel-integrated P2-type Layered Composite: High-rate Cathode for Sodium-ion Batteries,” Journal of the Electrochemical Society 163, A584-A591 (2016). dx.doi.org/10.1149/2.0041605jes

  482. L. Qie, C. Zu, and A. Manthiram, “A High Energy Lithium-sulfur Battery with Ultrahigh-loading Lithium Polysulfide Cathode and Its Failure Mechanism,” Advanced Energy Materials 6 (2016). dx.doi.org/10.1002/aenm.201502459

  483. G. He, W. H. Kan, and A. Manthiram, “A 3.4 V Layered VOPO4 Cathode for Na-ion Batteries,” Chemistry of Materials 28, 682-688 (2016). dx.doi.org/10.1021/acs.chemmater.5b04605

  484. H. M. Kim, J. -Y. Hwang, A. Manthiram, Y.-K. Sun, “High-performance Lithium-sulfur Batteries with a Self-assembled MWCNT Interlayer and a Robust Electrode-electrolyte Interface,” ACS Applied Materials & Interfaces 8, 983-987 (2016). dx.doi.org/10.1021/acsami.5b10812

  485. J.-Y. Liao, B. De Luna, and A. Manthiram, “TiO2-B Nanowire Arrays Coated with Layered MoS2 Nanosheets for Lithium and Sodium Storage,” Journal of Materials Chemistry A 4, 801-806 (2016). dx.doi.org/10.1039/C5TA07064C

  486. S. Liu, L. Li, N. A. Patterson, and A. Manthiram, “Morphological Transformations during In-situ Electrochemical Generation of 2-Dimensional Co3O4 Hexagonal Nanoplates,” Journal of the Electrochemical Society 163, A150-A155 (2016). dx.doi.org/10.1149/2.0331602jes

  487. C.-H. Chang, S.-H. Chung, and A. Manthiram, “Effective Stabilization of High-loading Sulfur Cathode and Lithium-metal Anode in Li-S Batteries,” Small 12, 174-179 (2016). dx.doi.org/10.1002/smll.201502505

  488. G. Zhou, E. Paek, G. S. Hwang, and A. Manthiram, “High-performance Lithium-sulfur Batteries with a Self-supported, 3-dimensional Li2S-doped Graphene Aerogel Cathodes,” Advanced Energy Materials 6, 1501355: 1-9 (2016). dx.doi.org/10.1002/aenm.201501355

  489. Y. Li, M. P. Paranthaman, L. W. Gill, E. W. Hagaman, Y. Wang, A. P. Sokolov, S. Dai, C. Ma, M. Chi, G. M. Veith, A. Manthiram, and J. B. Goodnough, “Conduction below 100 °C in Nominal Li6ZnNb4O14,” Journal of Materials Science 51, 854-860 (2016). dx.doi.org/10.1007/s10853-015-9408-z

  490. J.-Y. Hwang, H. M. Kim, S.-K. Lee, J.-H. Lee, A. Abouimrane, M. A. Khaleel, I. Belharouak, A. Manthiram, and Y.-K. Sun, “High-energy, High-rate Lithium-sulfur Batteries: Synergetic Effect of Hollow TiO2-webbed Carbon Nanotubes and a Dual Functional Carbon-paper Interlayer,” Advanced Energy Materials 6, 1501480: 1-7 (2016). dx.doi.org/10.1002/aenm.201501480

  491. 2015

  492. A. Manthiram, S.-H. Chung, and C.-H. Chang, “Strategies for the Viability of Rechargeable Lithium-sulfur Batteries,” International Scientific Journal 75, 70-81 (2015).

  493. L. Li and A. Manthiram, “Long-life, High-voltage Acidic Zn-air Batteries,” Advanced Energy Materials 6, 1502054: 1-7 (2015). dx.doi.org/10.1002/aenm.201502054

  494. S.-H. Chung, C.-H. Chang, and A. Manthiram, “Robust, Ultra-tough Flexible Cathodes for High-energy Li-S Batteries,” Small 12, 939-950 (2015). dx.doi.org/10.1002/smll.201503167

  495. C. Zu, A. Dolocan, P. Xiao, S. Stauffer, G. Henkelman, and A. Manthiram, “Breaking Down the Crystallinity: The Path for Advanced Lithium Batteries,” Advanced Energy Materials 6, 1501933: 1-9 (2015). dx.doi.org/10.1002/aenm.20150193

  496. W. H. Kan, A. Huq, and A. Manthiram, “Low-temperature Synthesis, Structural Characterization, and Electrochemistry of Ni-rich Spinel-like LiNi2-yMnyO4 (0.4 ≤ y ≤ 1),” Chemistry of Materials 27, 7729-7733 (2015). dx.doi.org/10.1021/acs.chemmater.5b03360

  497. S. -H. Ahn and A. Manthiram, “Edge-oriented Tungsten Disulfide Catalyst Produced from Mesoporous WO3 for Highly Efficient Dye-sensitized Solar Cells,” Advanced Energy Materials 6, 1501814: 1-7 (2015). dx.doi.org/10.1002/aenm.201501814

  498. J.-H. Kim and A. Manthiram, “Layered LnBaCo2O5+δ Perovskite Cathodes for Solid Oxide Fuel Cells: An Overview and Perspective,” Journal of Materials Chemistry A 3, 24195-24210 (2015). dx.doi.org/10.1039/C5TA06212H

  499. Z. Moorhead-Rosenberg, A. Huq, J. B. Goodenough, and A. Manthiram, “Electronic and Electrochemical Properties of Li1-xMn1.5Ni0.5O4 Spinel Cathodes as a Function of Lithium Content and Cation Ordering,” Chemistry of Materials 27, 6934-6945 (2015). dx.doi.org/10.1021/acs.chemmater.5b01356

  500. N. P. W. Pieczonka, V. Borgel, B. Ziv, N. Leifer, V. Dargel, D. Aurbach, J.-H. Kim, Z. Liu, X. Huang, S. A. Krachkovskiy, G. R. Goward, I. Halalay, B. R. Powell, and A. Manthiram, “Lithium Polyacrylate (LiPAA) as an Advanced Binder and a Passivating Agent for High-voltage Li-ion Batteries,” Advanced Energy Materials 5, 1501008: 1-10 (2015). dx.doi.org/10.1002/aenm.201501008

  501. J. C. Knight, S. Therese, and A. Manthiram, “On the Utility of Spinel Oxide Hosts for Magnesium-ion Batteries,” ACS Applied Materials & Interfaces 7, 22953-22961 (2015). dx.doi.org/10.1021/acsami.5b06179

  502. G. Assat and A. Manthiram, “Rapid Microwave-assisted Solvothermal Synthesis of Non-olivine Cmcm Polymorphs of LiMPO4 (M = Mn, Fe, Co, and Ni) at Low Temperature and Pressure,” Inorganic Chemistry 54, 10015-10022 (2015). dx.doi.org/10.1021/acs.inorgchem.5b01787

  503. J. C. Knight and A. Manthiram, “Effect of Nickel Oxidation State on the Structural and Electrochemical Characteristics of Lithium-rich Layered Oxide Cathodes,” Journal of Materials Chemistry A 3, 22199-22207 (2015). dx.doi.org/10.1039/C5TA05703E

  504. E. Allcorn, S.-O. Kim, and A. Manthiram, “Lithium Diffusivity in Antimony-based Intermetallic and FeSb-TiC Composite Anodes as Measured by GITT,” Physical Chemistry Chemical Physics 17, 28837-28843 (2015). dx.doi.org/10.1039/C5CP04023J

  505. J.-Y. Liao and A. Manthiram, “High-performance Na2Ti2O5 Nanowire Arrays Coated with VS2 Nanosheets for Sodium-ion Storage,” Nano Energy 18, 20-27 (2015). dx.doi.org/10.1016/j.nanoen.2015.09.014

  506. A. Manthiram, J. C. Knight, S.-T. Myung, S.-M. Oh, and Y.-K. Sun, “Nickel-rich and Lithium-rich Layered Oxide Cathodes: Progress and Perspectives,” Advanced Energy Materials 6, 1501010: 1-23 (2015). dx.doi.org/10.1002/aenm.201501010

  507. L. Li, C.-L. Wang, J.-Y. Liao, and A. Manthiram, “Dual-template Synthesis of N-doped Macro/Mesoporous Carbon with an Open-pore Structure as a Metal-free Catalyst for Dye-sensitized Solar Cells,” Journal of Power Sources 300, 254-260 (2015). dx.doi.org/10.1016/j.jpowsour.2015.09.076

  508. D. Yoon and A. Manthiram, “Ni-M (M = Sn and Sb) Intermetallic-based Catalytic Functional Layer as a Built-in Safeguard for Hydrocarbon-fueled Solid Oxide Fuel Cells,” Journal of Materials Chemistry A 3, 21824-21831 (2015). dx.doi.org/10.1039/C5TA05498B

  509. J. C. Knight, S. Therese, and A. Manthiram, “Chemical Extraction of Zn from ZnMn2O4-based Spinels,” Journal of Materials Chemistry A 5, 21077-21082 (2015). dx.doi.org/10.1039/C5TA06482A

  510. G. He, C. A. Bridges, and A. Manthiram, “Crystal Chemistry of Electrochemically and Chemically Lithiated Layered αI-LiVOPO4,” Chemistry of Materials 27, 6699-6707 (2015). dx.doi.org/10.1021/acs.chemmater.5b02609

  511. V. Augustyn and A. Manthiram, “Effects of Chemical versus Electrochemical Delithiation on the Oxygen Evolution Reaction Activity of Nickel-rich Layered LiMO2,” Journal of Physical Chemistry Letters 6, 3787-3791 (2015). dx.doi.org/10.1021/acs.jpclett.5b01538

  512. L. Li, C. Liu, G. He, D. Fan, and A. Manthiram, “Hierarchical Pore-in-pore and Wire-in-wire Catalysts for Rechargeable Zn- and Li-air Batteries with Ultra-long Cycle Life and High Cell Efficiency,” Energy & Environmental Science 8, 3274-3282 (2015). dx.doi.org/10.1039/C5EE02616D

  513. E. Allcorn, S. O. Kim, and A. Manthiram, “Thermal Stability of Active/Inactive Nanocomposite Anodes based on Cu2Sb in Lithium-ion Batteries,” Journal of Power Sources 299, 501-508 (2015). dx.doi.org/10.1016/j.jpowsour.2015.09.020

  514. Y. Zhao and A. Manthiram, “Bi0.94Sb1.06S3 Nanorod Cluster Anodes for Sodium-ion Batteries: Enhanced Reversibility by the Synergistic Effect of the Bi2S3–Sb2S3 Solid Solution,” Chemistry of Materials 27, 6139-6145 (2015). dx.doi.org/10.1021/acs.chemmater.5b02833

  515. C.-H. Chang, S.-H. Chung, and A. Manthiram, “Ultra-lightweight PANiNF/MWCNT-functionalized Separators with Synergistic Suppression of Polysulfide Migration for Li-S Batteries with Pure Sulfur Cathodes,” Journal of Materials Chemistry A 3, 18829-18834 (2015). dx.doi.org/10.1039/C5TA05053G

  516. K. J. Kreder III, G. Assat, and A. Manthiram, “Microwave-assisted Solvothermal Synthesis of Three Polymorphs of LiCoPO4 and Their Electrochemical Properties,” Chemistry of Materials 27, 5543-5549 (2015). dx.doi.org/10.1021/acs.chemmater.5b01670

  517. V. Augustyn, S. Therese, T. C. Turner, and A. Manthiram, “Nickel-Rich Layered LiNi1-xMxO2 (M = Mn, Fe, and Co) Electrocatalysts with High Oxygen Evolution Reaction Activity,” Journal of Materials Chemistry 3, 16604-16612 (2015). dx.doi.org/10.1039/C5TA04637H

  518. X. Yu, Z. Bi, F. Zhao, and A. Manthiram, “Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte,” ACS Applied Materials & Interfaces 7, 16625-16631 (2015). dx.doi.org/10.1021/acsami.5b04209

  519. Y. Zhao and A. Manthiram, “Amorphous Sb2S3 Embedded in Graphite: A High-rate, Long-life Anode Material for Sodium-ion Batteries,” Chemical Communications 51, 13205-13208 (2015). dx.doi.org/10.1039/C5CC03825A

  520. J. Leibowitz, E. Allcorn, and A. Manthiram, “FeSn2-TiC Nanocomposite Alloy Anodes for Lithium Ion Batteries,” Journal of Power Sources 295, 125-130 (2015). dx.doi.org/10.1016/j.jpowsour.2015.06.144

  521. X. Yu, J. Joseph, and A. Manthiram, “Polymer Lithium-Sulfur Batteries with a Nafion Membrane and an Advanced Sulfur Electrode,” Journal of Materials Chemistry A 3, 15683-15691 (2015). dx.doi.org/10.1039/C5TA04289E

  522. S.-O. Kim and A. Manthiram, “High-performance Zn–TiC–C Nanocomposite Alloy Anode with Exceptional Cycle Life for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 7, 14801-14807 (2015). dx.doi.org/10.1021/acsami.5b03110

  523. G. He, L. Li, and A. Manthiram, “VO2/rGO Nanorods as a Potential Anode for Sodium- and Lithium-ion Batteries,” Journal of Materials Chemistry A 3, 14750-14758 (2015). dx.doi.org/10.1039/C5TA03188E

  524. C. Zu, N. Azimi, Z. Zhang, and A. Manthiram, “Insight into Lithium-metal Anode in Lithium-Sulfur Batteries with a Fluorinated Ether Electrolyte,” Journal of Materials Chemistry A 3, 14864-14870 (2015). dx.doi.org/10.1039/C5TA03195H

  525. G. Zhou, E. Paek, G. S. Hwang, and A. Manthiram, “Long-life Li/polysulphide Batteries with High Sulphur Loading Enabled by Lightweight Three-dimensional Nitrogen and Sulphur Co-doped Graphene Sponge,” Nature Communications 6, 7760: 1-11 (2015). dx.doi.org/10.1038/ncomms8760

  526. S.-H. Chung, P. Han, R. Singhal, V. Kalra, and A. Manthiram, “Electrochemically Stable Rechargeable Lithium-Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide,” Advanced Energy Materials 5 (2015). dx.doi.org/10.1002/aenm.201500738

  527. E. Allcorn and A. Manthiram, “Thermal Stability of Sb and Cu2Sb Anodes in Lithium-Ion Batteries,” Journal of the Electrochemical Society 162, A1778-A1786 (2015). dx.doi.org/10.1149/2.0331509jes

  528. X. Xiang, J. C. Knight, W. Li, and A. Manthiram, “Sensitivity and Intricacy of Cationic Substitutions on the First Charge/Discharge Cycle of Lithium-rich Layered Oxide Cathodes,” Journal of the Electrochemical Society 162, A1662-A1666 (2015). dx.doi.org/10.1149/2.1061508jes

  529. S.-H. Chung, R. Singhal, V. Kalra, and A. Manthiram, “A Porous Carbon Mat as an Electrochemical Testing Platform for Investigating the Polysulfide Retention of Various Cathode Configurations in Li-S Cells,” Journal of Physical Chemistry Letters 6, 2163-2169 (2015). dx.doi.org/10.1021/acs.jpclett.5b00927

  530. Z. Cui, L. Li, A. Manthiram, and J. B. Goodenough, “Enhanced Cycling Stability of Hybrid Li-Air Batteries Enabled by Ordered Pd3Fe Intermetallic Electrocatalyst,” Journal of the American Chemical Society 137, 7278-7281 (2015). dx.doi.org/10.1021/jacs.5b03865

  531. W. H. Kan, A. Huq, and A. Manthiram, “First Fe-based Na+-ion Cathode with Two Distinct Types of Polyanions: Fe3P5SiO19,” Chemical Communications 51, 10447-10450 (2015). dx.doi.org/10.1039/C5CC03070F

  532. S. Liu, L. Li, H. S. Ahn, and A. Manthiram, “Delineating the Roles of Co3O4 and N-doped Carbon Nanoweb (CNW) in Bifunctional Co3O4/CNW Catalysts for Oxygen Reduction and Oxygen Evolution Reactions,” Journal of Materials Chemistry A 3, 11615-11623 (2015). dx.doi.org/10.1039/C5TA00661A

  533. M. Prabu, P. Ramakrishnan, A. Manthiram, and S. Shanmugam, “LaTi0.65Fe0.35O3-δ Nanoparticle-decorated Carbon Nanorods as an Advanced Hierarchical Air Electrode for Rechargeable Metal-Air Batteries,” Nano Energy 15, 92-103 (2015). dx.doi.org/10.1016/j.nanoen.2015.04.005

  534. Y. Zhao and A. Manthiram, “High-capacity, High-rate Bi-Sb Alloy Anodes for Lithium-ion and Sodium-ion Batteries,” Chemistry of Materials 27, 3096-3101 (2015). dx.doi.org/10.1021/acs.chemmater.5b00616

  535. X. Yu and A. Manthiram, “Ambient-temperature Sodium-Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber-Activated Carbon Composite Electrode,” Advanced Energy Materials 5, 1500350: 1-6 (2015). dx.doi.org/10.1002/aenm.201500350

  536. B. Reeja-Jayan, K. A. Koen, R. J. Ono, D. A. Vanden Bout, C. W. Bielawski, and A. Manthiram, “Oligomeric Interface Modifiers in Hybrid Polymer Solar Cell Prototypes Investigated by Fluorescence Voltage Spectroscopy,” Physical Chemistry Chemical Physics 17, 10640-10647 (2015). dx.doi.org/10.1039/C5CP00012B

  537. J. Zheng, W. H. Kan, and A. Manthiram, “Role of Mn Content on the Electrochemical Properties of Nickel-rich Layered LiNi0.8-xCo0.1Mn0.1+xO2 (0.1 ≤ x ≤ 0.18) Cathodes for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 7, 6926-6934 (2015). dx.doi.org/10.1021/acsami.5b00788

  538. C. Zu, L. Li, L. Qie, and A. Manthiram, “Expandable-graphite-derived Graphene for Next-generation Battery Chemistries,” Journal of Power Sources 284, 60-67 (2015). dx.doi.org/10.1016/j.jpowsour.2015.03.009

  539. X. Yu and A. Manthiram, “MnNiCoO4/N-MWCNT Nanocomposite Catalysts with High Selectivity in Membraneless Direct Formate Fuel Cells and Bifunctional Activity for Rechargeable Metal-air Batteries,” Catalysis Science & Technology 5, 2072-2075 (2015). dx.doi.org/10.1039/C4CY01702A

  540. J.-Y. Liao and A. Manthiram, “Surface-modified Concentration-gradient Ni-rich Layered Oxide Cathodes for High-energy Lithium-ion Batteries,” Journal of Power Sources 282, 429-436 (2015). dx.doi.org/10.1016/j.jpowsour.2015.02.078

  541. I.-T. Kim, E. Allcorn, and A. Manthiram, “Cu6Sn5-TiC-C Nanocomposite Anodes for High-performance Sodium-ion Batteries,” Journal of Power Sources 281, 11-17 (2015). dx.doi.org/10.1016/j.jpowsour.2015.01.163

  542. M. West and A. Manthiram, “Synthesis of 3-Dimensional Silver Networks and their Application in Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy 40, 4234-4240 (2015). dx.doi.org/10.1016/j.ijhydene.2015.01.125

  543. G. Zhou, Y. Zhao, and A. Manthiram, “Dual-confined Flexible Sulfur Cathodes Encapsulated in Nitrogen-doped Double-shelled Hollow Carbon Spheres and Wrapped with Graphene for Li-S Batteries,” Advanced Energy Materials 5, 1402263: 1-10 (2015). dx.doi.org/10.1002/aenm.201402263

  544. N. Colligan, V. Augustyn, and A. Manthiram, “Evidence of Localized Lithium Removal in Layered and Lithiated Spinel Li1-xCoO2 (0 ≤ x ≤ 0.9) under Oxygen Evolution Reaction Conditions,” Journal of Physical Chemistry C 119, 2335-2340 (2015). dx.doi.org/10.1021/jp511176j

  545. R. Singhal, S.-H. Chung, A. Manthiram, and V. Kalra, “Free-standing Carbon Nanofiber Interlayer for High-performance Lithium-Sulfur Batteries,” Journal of Materials Chemistry A 3, 4530-4538 (2015). dx.doi.org/10.1039/C4TA06511E

  546. A. Manthiram, S.-H. Chung, and C. Zu, “Lithium-sulfur Batteries: Progress and Prospective,” Advanced Materials 27, 1980-2006 (2015). dx.doi.org/10.1002/adma.201405115

  547. J. Leibowitz, E. Allcorn, and A. Manthiram, “SnSb-TiC-C Nanocomposite Alloy Anodes for Lithium-ion Batteries,” Journal of Power Sources 279, 549-545 (2015). dx.doi.org/10.1016/j.jpowsour.2015.01.055

  548. E. Allcorn and A. Manthiram, “High-rate, High-density FeSb-TiC-C Nanocomposite Anodes for Lithium-ion Batteries,” Journal of Materials Chemistry A 3, 3891-3900 (2015). dx.doi.org/10/1039/C4TA06869F

  549. C.-L. Wang, J.-Y. Liao, Y. Zhao, and A. Manthiram, “Template-free TiO2 Hollow Submicrospheres Embedded with SnO2 Nanobeans as a Versatile Scattering Layer for Dye-sensitized Solar Cells,” Chemical Communications 51, 2848-2850 (2015). dx.doi.org/10.1039/C4CC07700H

  550. L. Qie and A. Manthiram, “A Facile Layer-by-Layer Approach for High-Areal-Capacity Sulfur Cathodes,” Advanced Materials 27, 1694-1700 (2015). dx.doi.org/10.1002adma.201405698

  551. G. Zhou, Y. Zhao, C. Zu, and A. Manthiram, “Free-Standing TiO2 Nanowire-Embedded Graphene Hybrid Membrane for Advanced Li/Dissolved Polysulfide Batteries,” Nano Energy 12, 240-249 (2015). dx.doi.org/10/1016/j.nanoen.2014.12.029

  552. X. Yu and A. Manthiram, “Na2S-Carbon Nanotube Fabric Electrodes for Room Temperature Sodium-Sulfur Batteries,” Chemistry – A European Journal 21, 4233-4237 (2015). dx.doi.org/10.1002/chem.201405344

  553. J. C. Knight, S. Therese, and A. Manthiram, “Delithiation Mechanisms in Acid of Spinel LiMn2-xMxO4,” Journal of the Electrochemical Society 162, A426-A431 (2015). dx.doi.org/10.1149/2.0661503jes

  554. A. Manthiram and X. Yu, “Ambient-temperature Sodium-Sulfur Batteries,” Small 11, 2108-2114 (2015). dx.doi.org/10/1002/smll.201403257

  555. S.-O. Kim and A. Manthiram, “A Facile, Low-cost Synthesis of High-performance Silicon-based Composite Anodes with High Tap Density for Lithium-Ion Batteries,” Journal of Materials Chemistry A 3, 2399-2406 (2015). dx.doi.org/10.1039/C4TA06113F

  556. J. C. Knight, P. Nandakumar, W. H. Kan, and A. Manthiram, “Effect of Ru Substitution on the First Charge-Discharge Cycle of Lithium-rich Layered Oxides,” Journal of Materials Chemistry A 3, 2006-2011 (2015). dx.doi.org/10.1039/C4TA05178E

  557. X. Yu and A. Manthiram, “A Class of Polysulfide Catholytes for Lithium-Sulfur Batteries: Energy Density, Cyclability, and Voltage Enhancement,” Physical Chemistry Chemical Physics 17, 2127-2136 (2015). dx.doi.org/10.1039/C4CP04895D

  558. M. West, C. Ortiz, and A. Manthiram, “High-performance Y0.9In0.1BaCo3(Zn,Fe)O7+δ Swedenborgite-type Oxide Cathodes for Reduced Temperature Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy 40, 1186-1194 (2015). dx.doi.org/10.1016/j.ijhydene.2014.11.027

  559. A. Manthiram and L. Li, “Hybrid and Aqueous Lithium-air Batteries,” Advanced Energy Materials 5, 1401302: 1-17 (2015). dx.doi.org/10.1002/aenm.201401302

  560. L. Li, S. Liu, and A. Manthiram, “Co3O4 Nanocrystals Coupled with O- and N-doped Carbon Nanoweb as a Synergistic Catalyst for Hybrid Li-air Batteries,” Nano Energy 12, 852-860 (2015). dx.doi.org/10.1016/j.nanoen.2014.10.036

  561. C.-L. Wang, J.-Y. Liao, S.-H. Chung, and A. Manthiram, “Carbonized Eggshell Membranes as a Natural and Abundant Counter Electrode for Efficient Dye-sensitized Solar Cells,” Advanced Energy Materials 5, 1401524: 1-4 (2015). dx.doi.org/10.1002/aenm.201401524

  562. V. Augustyn and A. Manthiram, “Characterization of Layered LiMO2 Oxides for the Oxygen Evolution Reaction in Metal-air Batteries,” ChemPlusChem 80, 422-427 (2015). dx.doi.org/10.1002/cplu.201402107R1

  563. 2014

  564. J. B. Goodenough and A. Manthiram, “A Perspective on Electrical Energy Storage,” MRS Communications 4, 135-142 (2014). dx.doi.org/10.1557/mrc.2014.36

  565. C. Zu, M. Klein, and A. Manthiram, “Activated Li2S as a High-performance Cathode for Rechargeable Lithium-sulfur Batteries,” Journal of Physical Chemistry Letters 5, 3986-3991 (2014). dx.doi.org/10.1021/jz5021108

  566. Z. Moorhead-Rosenberg, E. Allcorn, and A. Manthiram, “In-situ Mitigation of First-cycle Anode Irreversibility in a New Spinel / FeSb Lithium-Ion Cell Enabled via a Microwave-assisted Chemical Lithiation Process,” Chemistry of Materials 26, 5905-5913 (2014). dx.doi.org/10.1021/cm5024426

  567. X. Yu and A. Manthiram, “Catalyst-selective, Scalable Membraneless Alkaline Direct Formate Fuel Cells,” Applied Catalysis B: Environmental 165, 63-67 (2014). dx.doi.org/10.1016/j.apcatb.2014.09.069

  568. X. Xiang, J. C. Knight, W. Li, and A. Manthiram, “Understanding the Influence of Composition and Synthesis Temperature on Oxygen Loss, Reversible Capacity, and Electrochemical Behavior of xLi2MnO3-(1-x)LiCoO2 Cathodes in the First Cycle,” Journal of Physical Chemistry C 118, 23553-23558 (2014). dx.doi.org/10.1021/jp507687h

  569. M. West and A. Manthiram, “Improved Phase Stability and Electrochemical Performance of (Y,In,Ca)BaCo3ZnO7+δ Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy 39, 19722-19730 (2014). dx.doi.org/10.1016/j.ijhydene.2014.09.091

  570. X. Yu and A. Manthiram, “Room-Temperature Sodium-Sulfur Batteries with Liquid-Phase Sodium Polysulfide Catholytes and Binder-Free Multi-wall Carbon Nanotube (MWCNT) Fabric Electrodes,” Journal of Physical Chemistry C 118, 22952-22959 (2014). dx.doi.org/10.1021/jp507655u

  571. S.-H. Chung and A. Manthiram, “Eggshell-membrane-derived Polysulfide Absorbents for Highly Stable and Reversible Lithium-Sulfur Cells,” ACS Sustainable Chemistry & Engineering 2, 2248-2252 (2014). dx.doi.org/10.1021/sc500452j

  572. X. Xiang, J. C. Knight, W. Li, and A. Manthiram, “Understanding the Effect of Co3+ Substitution on the Electrochemical Properties of Lithium-Rich Layered Oxide Cathodes for Lithium-Ion Batteries,” Journal of Physical Chemistry C 118, 21826-21833 (2014). dx.doi.org/10.1021/jp506731v

  573. D. Yoon and A. Manthiram, “Hydrocarbon-fueled Solid Oxide Fuel Cells with Surface-modified, Hydroxylated Sn/Ni-Ce0.8Gd0.2O1.9 Heterogeneous Catalyst Anode,” Journal of Materials Chemistry A 2, 17041-17046 (2014). dx.doi.org/10.1039/C4TA02662D

  574. S.-H. Chung and A. Manthiram, “A Polyethylene Glycol-Wrapped Microporous Carbon Coating as a Polysulfide Trap for Utilizing Pure Sulfur Cathodes in Lithium-Sulfur Batteries,” Advanced Materials 26, 7352-7357 (2014). dx.doi.org/10.1002/adma.201402893

  575. M. West, S.-J. Sher, and A. Manthiram, “Effects of In Substitution in Y1-xInxBaCo3ZnO7+δ (0 ≤ x ≤ 0.5) Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Power Sources 271, 252-261 (2014). dx.doi.org/10.1016/j.jpowsour.2014.08.006

  576. I.-T. Kim, S.-O. Kim, and A. Manthiram, “Effect of TiC Addition on SnSb-C Composite Anodes for Sodium-ion Batteries,” Journal of Power Sources 269, 848-854 (2014). dx.doi.org/10.1016/j.jpowsour.2014.07.081

  577. D. Yoon and A. Manthiram, “Hydrogen Tungsten Bronze as a Decoking Agent for Long-Life, Natural Gas-fueled Solid Oxide Fuel Cells,” Energy & Environmental Science 7, 3069-3076 (2014). dx.doi.org/10.1039/C4EE01455C

  578. L. Li, Y.-Z. Fu, and A. Manthiram, “Imidazole-buffered Acidic Catholytes for Hybrid Li-air Batteries with High Practical Energy Density,” Electrochemistry Communications 47, 67-70 (2014). dx.doi.org/10.1016/j.elecom.2014.07.027

  579. A. Gutierrez and A. Manthiram, “Microwave-assisted Solvothermal Synthesis of Spinel AV2O4 (M = Mg, Mn, Fe, and Co),” Inorganic Chemistry 53, 8570-8576 (2014). dx.doi.org/10.1021/ic5011506

  580. Y.-S. Su and A. Manthiram, “Sulfur/Lithium-insertion Compound Composite Cathodes for Li-S Batteries,” Journal of Power Sources 270, 101-105 (2014). dx.doi.org/10.1016/j.jpowsour.2014.07.099

  581. C. Zu and A. Manthiram, “Stabilized Lithium-metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries,” Journal of Physical Chemistry Letters 5, 2522-2527 (2014). dx.doi.org/10.1021/jz501352e

  582. C. Zu and A. Manthiram, “High-performance Li/dissolved Polysulfide Batteries with an Advanced Cathode Structure Containing High Sulfur Loading,” Advanced Energy Materials 4, 1400897: 1-6 (2014). dx.doi.org/10.1002/aenm.201400897

  583. L. Li and A. Manthiram, “Decoupled Bifunctional Air Electrodes for High-performance Hybrid Lithium-air Batteries,” Nano Energy 9, 94-100 (2014). dx.doi.org/10.1016/j.nanoen.2014.07.002

  584. J.-H. Kim, A. Huq, M. Chi, N. P. W. Pieczonka, E. Lee, C. A. Bridges, M. Tessema, A. Manthiram, K. A. Persson, and B. R. Powell, “Integrated Nano-Domains of Disordered and Ordered Spinel Phases in LiNi0.5Mn1.5O4 for Li-Ion Batteries,” Chemistry of Materials 26, 4377-4386 (2014). dx.doi.org/10.1021/cm501203r

  585. A. Manthiram, Y.-Z. Fu, S.-H. Chung, C. Zu, and Y.-S. Su, “Rechargeable Lithium-Sulfur Batteries,” Chemical Reviews 114, 11751-11787 (2014). dx.doi.org/10.1021/cr500062v

  586. L. Li, S.-H. Chai, S. Dai, and A. Manthiram, “Advanced Hybrid Li-air Batteries with High-performance Mesoporous Nanocatalysts,” Energy & Environmental Science 7, 2630-2636 (2014). dx.doi.org/10.1039/C4EE00814F

  587. X. Yu and A. Manthiram, “Capacity Enhancement and Discharge Mechanisms of Room-temperature Sodium-Sulfur Batteries,” ChemElectroChem 1, 1275-1280 (2014). dx.doi.org/10.1002/celc.201402112

  588. S.-H. Chung and A. Manthiram, “High-performance Li-S Batteries with an Ultra-lightweight MWCNT-coated Separator,” Journal of Physical Chemistry Letters 5, 1978-1983 (2014). dx.doi.org/10.1021/jz5006913

  589. K. L. Harrison, C. A. Bridges, C. U. Segre, C. D. Varnado Jr., D. Applestone, C. W. Bielawski, M. P. Paranthaman, and A. Manthiram, “Chemical and Electrochemical Lithiation of LiVOPO4 Cathodes for Lithium-ion Batteries,” Chemistry of Materials 26, 3489-3861 (2014). dx.doi.org/10.1021/cm501588j

  590. X. Yu and A. Manthiram, “Highly Reversible Room-temperature Sulfur/Long-chain Sodium Polysulfide Batteries,” Journal of Physical Chemistry Letters 5, 1943-1947 (2014). dx.doi.org/10.1021/jz500848x

  591. I.-T. Kim, E. Allcorn, and A. Manthiram, “High-performance FeSb-TiC-C Nanocomposite Anodes for Sodium-ion Batteries,” Physical Chemistry Chemical Physics 16, 12884-12889 (2014). dx.doi.org/10.1039/C4CP01240B

  592. J.-Y. Liao and A. Manthiram, “Mesoporous TiO2-Sn/C Core-shell Nanowire Arrays as High-performance 3D Anodes for Li-ion Batteries,” Advanced Energy Materials 4, 1400403: 1-8 (2014). dx.doi.org/10.1002/aenm.201400403

  593. A. Gutierrez, R. Qiao, L. Wang, W. Yang, F. Wang, and A. Manthiram, “High-capacity, Aliovalently Doped Olivine LiMn1-3x/2Vx☐x/2PO4 Cathodes without Carbon Coating,” Chemistry of Materials 26, 3018-3026 (2014). dx.doi.org/10.1021/cm500924n

  594. S.-H. Chung and A. Manthiram, “Bifunctional Separator with a Light-weight Carbon-coating for Dynamically and Statically Stable Lithium-Sulfur Batteries,” Advanced Functional Materials 24, 5299-5306 (2014). dx.doi.org/10.1002/adfm.201400845

  595. T. Maiyalagan, K. A. Jarvis, S. Therese, P. J. Ferreira, A. Manthiram, “Spinel-type Lithium Cobalt Oxide as a Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions,” Nature Communications 5, 3949: 1-8 (2014). dx.doi.org/10.1038/ncomms4949

  596. F. R. Beck, Y. Q. Cheng, Z. Bi, M. Feygenson, C. A. Bridges, Z. Moorhead-Rosenberg, A. Manthiram, J. B. Goodenough, M. P. Paranthaman, and A. Manivannan, “Neutron Diffraction and Electrochemical Studies of Na0.79CoO2 and Na0.79Co0.7Mn0.3O2 Cathodes for Sodium-Ion Batteries,” Journal of the Electrochemical Society 161, A1-A8 (2014). dx.doi.org/10.1149/2.025406jes

  597. G. He and A. Manthiram, “Nanostructured Li2MnSiO4/C Cathodes with Hierarchical Macro/Meso Porosity for Lithium-ion Batteries,” Advanced Functional Materials 24, 5277-5283 (2014). dx.doi.org/10.1002/adfm.201400610

  598. I.-T. Kim, J. C. Knight, H. Celio, and A. Manthiram, “Enhanced Electrochemical Performances of Li-rich Layered Oxides by Surface Modification with Reduced Graphene Oxide/AlPO4 Hybrid Coating,” Journal of Materials Chemistry A 2, 8696-8704 (2014). dx.doi.org/10.1039/C4TA00898G

  599. E. Allcorn and A. Manthiram, “FeSb2-Al2O3 Nanocomposite Anodes for Lithium-ion Batteries,” ACS Applied Materials & Interfaces 6, 10886-10891 (2014). dx.doi.org/10.1021/am500448f 

  600. S.-H. Chung and A. Manthiram, “A Hierarchical Carbonized Paper with Controllable Thickness as a Modulable Interlayer System for High Performance Li-S Batteries,” Chemical Communications 50, 4184-4187 (2014). dx.doi.org/10.1039/C4CC00850B

  601. S.-H. Chung and A. Manthiram, “A Natural Carbonized Leaf as a Polysulfide Inhibitor for High-performance Lithium-Sulfur Cells,” ChemSusChem 7, 1665-1661 (2014). dx.doi.org/10.1002/cssc.201301287

  602. L. Li and A. Manthiram, “O- and N-doped Carbon Nanoweb as Metal-Free Catalysts for Hybrid Li-Air Batteries,” Advanced Energy Materials 4, 1301795: 1-7 (2014). dx.doi.org/10.1002/aenm.201301795

  603. Q. Su, W. Gong, D. Yoon, C. Jacob, Q. Jia, A. Manthiram, A. J. Jacobson, and H. Wang, “Interlayer Effects on Oxygen Reduction Kinetics in Porous Electrodes of La0.5Sr0.5CoO3-δ,” Journal of the Electrochemical Society 161, F1-F8 (2014). dx.doi.org/10.1149/2.026404jes

  604. C.-L.Wang and A. Manthiram, “Low-cost CZTSSe Solar Cells Fabricated with Low Band Gap CZTSe Nanocrystals, Environmentally Friendly Binder, and Nonvacuum Processes,” ACS Sustainable Chemistry & Engineering 2, 561-568 (2014). dx.doi.org/10.1021/sc400465m

  605. E.-S. Lee and A. Manthiram, “Smart Design of Lithium-rich Layered Oxide Cathode Compositions with Suppressed Voltage Decay,” Journal of Materials Chemistry A 2, 3932-3939 (2014). dx.doi.org/10.1039/c3ta14975g

  606. E. Allcorn and A. Manthiram, “NiSb-Al2O3-C Nanocomposite Anodes with Long Cycle Life for Li-ion Batteries,” Journal of Physical Chemistry C 118, 811-822 (2014). dx.doi.org/10.1021/jp409223c

  607. T. Maiyalagan, K.R. Chemelewski, and A. Manthiram, “Role of the Morphology and Surface Planes on the Catalytic Activity of Spinel LiMn1.5Ni0.5O4 for Oxygen Evolution Reaction,” ACS Catalysis 4, 421-425 (2014). dx.doi.org/10.1021/cs400981d

  608. A. Manthiram, K. Chemelewski, and E.-S. Lee, “A Perspective on the High-voltage LiMn1.5Ni0.5O4 Spinel Cathode for Lithium-ion Batteries,” Energy & Environmental Science 7, 1339-1350 (2014). dx.doi.org/10.1039/c3ee42981d

  609. W. Li, X. Zhao, and A. Manthiram, “Room-temperature Synthesis of Pd/C Cathode Catalysts with Superior Performance for Direct Methanol Fuel Cells,” Journal of Materials Chemistry A 2, 3468-3476 (2014). dx.doi.org/10.1039/c3ta14193d

  610. T. Maiyalagan, X. Wang, and A. Manthiram, “Highly Active Pd and Pd-Au Nanoparticles Supported on Functionalized Graphene Nanoplatelets for Enhanced Formic Acid Oxidation,” RSC Advances 4, 4028-4033 (2014). dx.doi.org/10.1039/C3RA45262J

  611. K. A. Jarvis, C.-C. Wang, A. Manthiram, and P. J. Ferreira, “The Role of Composition on the Atomic Structure, Oxygen Loss, and Capacity of Layered Li−Mn−Ni Oxide Cathodes,” Journal of Materials Chemistry A 2, 1353-1362 (2014). dx.doi.org/10.1039/C3TA12440A

  612. S.-H. Chung and A. Manthiram, “Low-Cost, Porous Carbon Current Collector with High Sulfur Loading for Lithium-sulfur Batteries,” Electrochemistry Communications 38, 91-95 (2014). dx.doi.org/10.1016/j.elecom.2013.11.008

  613. C. D. Varnado Jr., X. Zhao, M. Ortiz, Z. Zuo, Z. Jiang, A. Manthiram, and C. W. Bielawski, “Pyridine- and Pyrimidine-Functionalized Poly(sulfone)s: Performance-Enhancing Crosslinkers for Acid/Base Blend Proton Exchange Membranes Used in Direct Methanol Fuel Cells,” RSC Advances 4, 2167-2176 (2014). dx.doi.org/10.1039/C3RA44851G

  614. Y.-Z. Fu, Y.-S. Su, and A. Manthiram, “Li2S-Carbon Sandwiched Electrodes with Superior Performance for Lithium-Sulfur Batteries,” Advanced Energy Materials 4, 1-5 (2014). dx.doi.org/10.1002/aenm.201300655

  615. S.-H. Chung and A. Manthiram, “Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Li-S Batteries,” Advanced Materials 26, 1360-1365 (2014). dx.doi.org/10.1002/adma.201304365

  616. C. Liao, K. S. Han, L. Baggetto, D. A. Hilleshim, R. Custelcean, E.-S. Lee, B. Guo, Z. Bi, D.-E. Jiang, G. M. Veith, E. W. Hagaman, G. M. Brown, C. A. Bridges, M. P. Paranthaman, A. Manthiram, S. Dai, and X.-G. Sun, “Synthesis and Characterization of Lithium Bis(fluoromalonato)borate for Lithium-Ion Battery Applications,” Advanced Energy Materials 4, 1301368: 1-12 (2014). dx.doi.org/10.1002/aenm.201301368

  617. 2013

  618. J.-H.  Kim, Y. N.  Kim, Z. Bi, A. Manthiram, M. P. Paranthaman, and A. Huq, “Overcoming Phase Instability of RBaCo2O5+δ (R = Y and Ho) by Sr Substitution for Application as Cathodes in Solid Oxide Fuel Cells,” Solid State Ionics 253, 81-87 (2013). dx.doi.org/10.1016/j.ssi.2013.09.001

  619. J. Wu, G. K. P. Dathar, C. Sun, M. G. Theivanayagam, D. Applestone, A. G. Dylla, A. Manthiram, G. Henkelman, J. B. Goodenough, and K. J. Stevenson, “In situ Raman Spectroscopy of LiFePO4: Size and Morphology Dependence during Charge and Self-discharge,” Nanotechnology 24, 424009: 1-9 (2013). dx.doi.org/10.1088/0957-4484/24/42/424009

  620. J.-G. Cheng, K. E. Kweon, J.-S. Zhou, J. A. Alonso, P.-P. Kong, Y. Liu, C. Jin, J. Wu, J.-F. Lin, S.A. Larregola, W. Yang, G. Shen, A. H. MacDonald, A. Manthiram, G. S. Hwang, and J.B. Goodenough, “Anomalous Perovskite PbRuO3 Stabilized under High Pressure,” Proceedings of the National Academy of Sciences 110, 20003-20007 (2013). dx.doi.org/10.1073/pnas.1318494110

  621. Y.-S. Su, Y.-Z. Fu, T.Cochell, and A. Manthiram, “A Strategic Approach to Recharging Lithium-sulphur Batteries for Long Cycle Life,” Nature Communications 4, 2985: 1-8 (2013). dx.doi.org/10.1038/ncomms3985

  622. Y.-Z. Fu, C. Zu, and A. Manthiram, “In Situ-formed Li2S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries,” Journal of the American Chemical Society 135, 18044-18047 (2013) dx.doi.org/10.1021/ja409705u

  623. K. R. Chemelewski, W. Li, A. Gutierrez, and A. Manthiram, “High-voltage Spinel Cathodes for Lithium-ion Batteries: Controlling the Growth of Preferred Crystallographic Planes through Cation Doping,” Journal of Materials Chemistry A 1, 15334-15341 (2013). dx.doi.org/10.1039/C3TA13265J

  624. Z. Moorhead-Rosenberg, T. Turner, K. L. Harrison, and A. Manthiram, “A Rapid Microwave-assisted Solvothermal Approach to Lower-valent Transition-metal Oxides,”Inorganic Chemistry 52, 13087-13093 (2013). dx.doi.org/10.1021/ic401943r

  625. Q. Su, D. Yoon, Z. Sisman, F. Khatkhatay, Q. Jia, A. Manthiram, and H. Wang, “Vertically Aligned Nanocomposite La0.8Sr0.2MnO3-δ/Zr0.92Y0.08O1.96 Thin Films as Electrode/Electrolyte Interfacial Layer for Solid Oxide Reversible Fuel Cells,” International Journal of Hydrogen Energy 38, 16320-16327 (2013). dx.doi.org/10.1016/j.ijhydene.2013.09.128

  626. N. P. W. Pieczonka, L. Yang, M. P. Balogh, B. Powell, K. Chemelewski, A. Manthiram, A. Krachkovskiy, G. R. Goward, M. Liu, and  J.-H. Kim, “Impact of Lithium Bis-Oxalate Borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries,”Journal of Physical Chemistry C 117, 22603-22612 (2013). dx.doi.org/10.1021/jp408717x

  627. A. Gutierrez, N. A. Benedek, and A. Manthiram, “A Crystal-chemical Guide for Understanding Redox Energy Variations of the M2+/3+ Couples in Polyanion Cathodes for Lithium-ion batteries,” Chemistry of Materials 25, 4010-4016 (2013). dx.doi.org/10.1021/cm401949n

  628. Y.-Z. Fu and A. Manthiram, “Silicon Nanoparticles Supported on Graphitic Carbon Paper as a Hybrid Anode for Li-ion Batteries,” Nano Energy 2, 1107-1112 (2013). dx.doi.org/10.1016/j.nanoen.2013.09.004

  629. Z. Zuo, Z. Jiang, and A. Manthiram, “Porous B-doped Graphene Inspired by Fried-ice for Supercapacitors and Metal-free Catalysts,” Journal of Materials Chemistry A 1, 13476-13483 (2013). dx.doi.org/ 10.1039/C3TA13049E

  630. C.-L. Wang, C.-C. Wang, B. Reeja-Jayan, and A. Manthiram, “Low-cost, Mo(S,Se)2-free Superstrate-type Solar Cells Fabricated with Tunable Band Gap Cu2ZnSn(S1-xSex)4 Nanocrystal-based Inks and the Effect of Sulfurization,” RSC Advances 3, 19946-19951(2013). dx.doi.org/10.1039/C3RA42624F

  631. L. Baggetto, E. Allcorn, R. R. Unocic, A. Manthiram, and G. M. Veith, “Mo3Sb7 as a Very Fast Anode Material for Lithium-ion and Sodium-ion Batteries,” Journal of Materials Chemistry A 1, 11163-11169 (2013). dx.doi.org/10.1039/C3TA12040F

  632. F. Cheng, J. Chen, H. Zhou, and A. Manthiram, “Structural and Electrochemical Characterization of (NH4)2HPO4-treated Lithium-rich Layered Li1.2Ni0.2Mn0.6O2 Cathodes for Lithium-ion Batteries,” Journal of the Electrochemical Society 160, A1661-A1667 (2013). dx.doi.org/10.1149/2.023310jes

  633. C. A. Bridges, K. L. Harrison, R. R. Unocic, J. Idrobo, M. P. Paranthaman, and A. Manthiram, “Defect Chemistry of Phospho-olivine Nanoparticles Synthesized by a Microwave-assisted Solvothermal Process,” Journal of Solid State Chemistry 205, 197-204 (2013). dx.doi.org/10.1016/j.jssc.2013.07.011

  634. Y.-Z. Fu and and A. Manthiram, “Electrochemical Properties of Cu2S with Ether-based Electrolyte in Li-ion Batteries,” Electrochimica Acta 109, 716-719 (2013). dx.doi.org/10.1016/j.electacta.2013.07.160

  635. Z. Moorhead-Rosenberg, K. R. Chemelewski, J. B. Goodenough, and A. Manthiram, “Magnetic Measurements as a Viable Tool to Assess the Relative Degrees of Cation Ordering and Mn3+ Content in Doped LiMn1.5Ni0.5O4 Spinel Cathodes,” Journal of Materials Chemistry A 1, 10745-10752 (2013). dx.doi.org/10.1039/C3TA12021J

  636. C.-C. Wang, K. A. Jarvis, P. J. Ferreira, and A. Manthiram, “Effect of Synthesis Conditions on the First Charge and Reversible Capacity of Lithium-rich Layered Oxide Cathodes,” Chemistry of Materials 25, 3267-3275 (2013). dx.doi.org/10.1021/cm402181f

  637. D. Yoon, Q. Su, H. Wang, and A. Manthiram, “Superior Power Density Solid Oxide Fuel Cells by Enlarging the Three-Phase Boundary Region of aNiO-Ce0.8Gd0.2O1.9 Composite Anode through Optimized Surface Structure,”Physical Chemistry Chemical Physics 15, 14966-14972 (2013). dx.doi.org/10.1039/C3CP52679H

  638. C. Zu, Y.-Z. Fu, and A. Manthiram, “Highly Reversible Li/dissolved Polysulfide Batteries with Binder-free Carbon Nanofiber Electrodes,” Journal of Materials Chemistry A 1, 10362-10367 (2013). dx.doi.org/10.1039/C3TA11958K

  639. S.-H. Chung and A. Manthiram, “Nano-cellular Carbon Current Collectors with Stable Cyclability for Li-S Batteries,”Journal of Materials Chemistry A 1, 9590-9596 (2013). dx.doi.org/10.1039/C3TA11819C

  640. K. R. Chemelewski, E.-S. Lee, W. Li, and A. Manthiram, “Factors Influencing the Electrochemical Properties of High-voltage Spinel Cathodes: Relative Impact of Morphology and Cation Ordering,” Chemistry of Materials 25, 2890-2897 (2013). dx.doi.org/10.1021/cm401496k

  641. C.-C. Wang and A. Manthiram, “Influence of Cationic Substitutions on the First Charge and Reversible Capacities of Lithium-rich Layered Oxide Cathodes,” Journal of Materials Chemistry A 1, 10209-10217 (2013). dx.doi.org/10.1039/C3TA11703K

  642. Z. Zuo, W. Li, and A. Manthiram, “N-Heterocycles Tethered Graphene as Efficient Metal-Free Catalysts for Oxygen Reduction Reaction in Fuel Cells,” Journal of Materials Chemistry A 1, 10166-10172 (2013). dx.doi.org/10.1039/C3TA11794D

  643. S.-H. Chung and A. Manthiram, “Lithium-sulfur Batteries with Superior Cycle Stability by Employing Porous Current Collectors,” Electrochimica Acta 107, 569-576 (2013). dx.doi.org/10.1016/j.electacta.2013.06.034

  644. I.-T. Kim, E. Allcorn, and A. Manthiram, “High-performance MxSb-Al2O3-C (M = Fe, Ni, and Cu) Nanocomposite Alloy Anodes for Sodium-ion Batteries,” Energy Technology 1, 319-326 (2013). dx.doi.org/10.1002/ente.201300023

  645. Q. Su, D. Yoon, A. Chen, F. Khatkhatay, A. Manthiram, and H. Wang, “Vertically Aligned Nanocomposite Electrolytes with Superior Out-of-plane Ionic Conductivity for Solid Oxide Fuel Cells,” Journal of Power Sources 242, 455-463 (2013). dx.doi.org/10.1016/j.jpowsour.2013.05.137

  646. K. R. Chemelewski and A. Manthiram, “Origin of Site Disorder and Oxygen Non-stoichiometry in LiMn1.5Ni0.5-xMxO4 (M = Cu and Zn) Cathodes with Divalent Dopant Ions,” Journal of Physical Chemistry C 117, 12465-12471 (2013). dx.doi.org/10.1021/jp404496j

  647. J. Pan, Y. Sun, W. Li, J. Knight, and A. Manthiram, “A Green Lead Hydrometallurgical Process Based on a Hydrogen-lead Oxide Fuel Cell,” Nature Communications 4, 2178: 1-6 (2013). dx.doi.org/10.1038/ncomms3178

  648. Z. Jiang, B. Pei, and A. Manthiram, “Randomly Stacked Holey Graphene Anodes for Lithium Ion Batteries with Enhanced Electrochemical Performance,” Journal of Materials Chemistry A 1, 7775-7781 (2013). dx.doi.org/10.1039/C3TA10457E

  649. B. Reeja-Jayan, N. Folse, and A. Manthiram, “Development of Scalable, Low-cost Polymer Solar Cell Test Platform,” Journal of Solar Energy Engineering 135, 041004: 1-8 (2013). dx.doi.org/10.1115/1.4024246

  650. K.-S. Lee, H.-Y. Park, H. C. Ham, S. J. Yoo, H.-J. Kim, E. Cho, A. Manthiram, and J. H. Jang, “Reversible Surface Segregation of Pt in Pt3Au/C Catalyst and its Effect on the Oxygen Reduction Reaction,” Journal of Physical Chemistry 117, 9164-9170 (2013). dx.doi.org/10.1021/jp403135k

  651. Y.-Z. Fu, Y.-S. Su, and A. Manthiram, “Highly Reversible Lithium/Dissolved Polysulfide Batteries with Carbon Nanotube Electrodes,” Angewandte Chemie 52, 6930-6935 (2013). dx.doi.org/10.1002/anie.201301250

  652. C. Zu and A. Manthiram, “Hydroxylated Graphene-sulfur Nanocomposites for High-rate Lithium-sulfur Batteries,” Advanced Energy Materials 3, 1008 – 1012 (2013). dx.doi.org/10.1002/aenm.201201080

  653. Y.-S. Su, Y. Fu, B. Guo, S. Dai, and A. Manthiram, “Fast, Reversible Lithium Storage with Sulfur/Long-Chain Polysulfide Redox Couple,” Chemistry – A European Journal 19, 8621-8626 (2013). dx.doi.org/10.1002/chem.201300886

  654. X. Zhao, W. Li, A. Murthy, Z. Jiang, Z. Zuo, and A. Manthiram, “A DMFC Stack Operating with Hydrocarbon Blend Membranes and Pt-Ru-Sn-Ce/C and Pd-Co/C Electrocatalysts,” International Journal of HydrogenEnergy 38, 7448-7457 (2013). dx.doi.org/10.1016/j.ijhydene.2013.04.013

  655. A. Gutierrez and A. Manthiram, “Understanding the Effects of Cationic and Anionic Substitutions in Spinel Cathodes of Lithium-ion Batteries,” Journal of the Electrochemical Society 160, A901-A905 (2013). dx.doi.org/10.1149/2.117306jes

  656. E.-S. Lee, A. Huq, and A. Manthiram, “Understanding the Effect of Synthesis Temperature on the Structural and Electrochemical Characteristics of Layered-Spinel Composite Cathodes for Lithium-ion Batteries,” Journal of Power Sources 240, 193-203 (2013). dx.doi.org/10.1016/j.jpowsour.2013.04.010

  657. B. Pei, Z. Jiang, W. Zhang, Z. Yang, and A. Manthiram, “Nanostructured Li3V2(PO4)3 Cathode Supported on Reduced Graphene Oxide for Lithium-ion Batteries,” Journal of Power Sources 239, 475-482 (2013). dx.doi.org/10.1016/j.jpowsour.2013.03.171

  658. X. Zhao, Y.-Z. Fu, W. Li, and A. Manthiram, “Effect of Non-Active Area on the Performance of Subgasketed MEAs in Fuel Cells,” International Journal of Hydrogen Energy 38, 7400-7406 (2013). dx.doi.org/10.1016/j.ijhydene.2013.03.160

  659. A. Manthiram, Y.-Z. Fu, and Y.-S. Su, “In Charge of the World: Electrochemical Energy Storage,” Journal of Physical Chemistry Letters 4, 1295-1297 (2013). dx.doi.org/10.1021/jz4006652

  660. K. L. Harrison and A. Manthiram, “Microwave-assisted Solvothermal Synthesis and Characterization of Various Polymorphs of LiVOPO4,” Chemistry of Materials 25, 1751-1760 (2013). dx.doi.org/10.1021/cm400227j

  661. Z. Zuo, X. Zhao, and A. Manthiram, “High-Performance Blend Membranes Composed of An Amphoteric Copolymer Containing Supramolecular Nanosieves for Direct Methanol Fuel Cells,” RSC Advances 3, 6759-6762 (2013). dx.doi.org/10.1039/C3RA23229H

  662. Z. Jiang, X. Zhao, and A. Manthiram, “Sulfonated Poly(ether ether ketone) Membranes with Sulfonated Graphene Oxide Fillers for Direct Methanol Fuel Cells,” International Journal of Hydrogen Energy38, 5875-5884 (2013). dx.doi.org/10.1016/j.ijhydene.2013.02.129

  663. L. Li and A. Manthiram, “Dual-electrolyte Lithium-air Batteries: Influence of Catalyst, Temperature, and Solid-electrolyte Conductivity on the Efficiency and Power Density,” Journal of Materials Chemistry A 1, 5121-5127 (2013). dx.doi.org/10.1039/C3TA01241G

  664. K. L. Harrison, C. Bridges, M. P. Paranthaman, C. U. Segre, J. Katsoudas, V. A. Maroni, J. C. Idrobo, J. B. Goodenough, and A. Manthiram, “Temperature Dependence of Aliovalent-vanadium Doping in LiFePO4 Cathodes,” Chemistry of Materials 25, 768-781 (2013). dx.doi.org/10.1021/cm303932m

  665. B. Reeja-Jayan and A. Manthiram, “Effects of Bifunctional Metal Sulfide Interlayers on Photovoltaic Properties of Organic-inorganic Hybrid Solar Cells,” RSC Advances 3, 5412-5421 (2013). dx.doi.org/10.1039/C3RA23055D

  666. B. Reeja-Jayan, T. Adachi, R .J. Ono, D. A. Vanden Bout, C. W. Bielawski, and A. Manthiram, “Effect of Interfacial Dipoles on Charge Traps in Organic-Inorganic Hybrid Solar Cells,” Journal of Materials Chemistry 1, 3258-3262 (2013). dx.doi.org/10.1039/C3TA01509B

  667. J. Cheng, W. Tian, J. Zhou, V. M. Lynch, H. Steinfink, A. Manthiram, A. F. May, V. O. Garlea, J. C. Neuefeind, and J. Yan, “Crystal and Magnetic Structures and Physical Properties of a New Pyroxene NaMnGe2O6 Synthesized under High Pressure,” Journal of the American Chemical Society 135, 2776-2786 (2013). dx.doi.org/10.1021/ja312038g

  668. W. Li, T. Cochell, and A. Manthiram, “Activation of Aluminum as an Effective Reducing Agent by Pitting Corrosion for Wet-chemical Synthesis,” Scientific Reports 3, 1229: 1-7 (2013). dx.doi.org/10.1038/srep01229

  669. T. Cochell, W. Li, and A. Manthiram, “Effects of Pt Coverage in Pt@PdCu5/C Core-Shell Electrocatalysts on the Oxygen Reduction Reaction and Methanol Tolerance,”Journal of Physical Chemistry C 117, 3865-3873 (2013). dx.doi.org/10.1021/jp3126522

  670. K. Chemelewski, D. W. Shin, W. Li, and A. Manthiram, “Octahedral and Truncated High-voltage Spinel Cathodes: Role of Morphology and Surface Planes on Electrochemical Properties,” Journal of Materials Chemistry 1, 3347-3354 (2013). dx.doi.org/10.1039/C3TA00682D

  671. E.-S. Lee and A. Manthiram, “Influence of Doping on the Cation Ordering and Charge-Discharge Behavior of LiMn1.5Ni0.5-xMxO4 (M = Cr, Fe, Co, and Ga) Spinels between 5.0 and 2.0 V,” Journal of Materials Chemistry A 1, 3118-3126 (2013). dx.doi.org/10.1039/C2TA01171A

  672. M. West and A. Manthiram, “Layered LnBa1-xSrxCoCuO5+δ (Ln = Nd and Gd) Perovskite Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy 38, 3364-3372 (2013). dx.doi.org/10.1016/j.ijhydene.2012.12.133

  673. S. Wang and A. Manthiram, “Graphene Ribbon-supported Pd Nanoparticles as Highly Durable, Efficient Electrocatalysts for Formic Acid Oxidation,” Electrochimica Acta 88, 565-570 (2013). dx.doi.org/10.1016/j.electacta.2012.10.125

  674. W. Li, X. Zhao, T. Cochell, and A. Manthiram, “Liquid-solid heterogeneous synthesis of highly dispersed and PdPt surface enriched PdPtCu/C as methanol tolerant oxygen reduction reaction catalysts,” Applied Catalysis B: Environmental 129, 426-436 (2013). dx.doi.org/10.1016/j.apcatb.2012.09.044

  675. C. Zu, Y.-S. Su, Y.-Z. Fu, and A. Manthiram, “Improved Lithium-Sulfur Cells with a Treated Carbon Paper Interlayer,” Physical Chemistry Chemical Physics 15, 2291-2297 (2013). dx.doi.org/10.1039/C2CP43394J

  676. A. Manthiram, Y.-Z. Fu, and Y.-S. Su, “Challenges and Prospects of Lithium-Sulfur Batteries,” Accounts of Chemical Research 46, 1125-1134 (2013). dx.doi.org/10.1021/ar30017

  677. 2012

  678. B. Reeja-Jayan, K. L. Harrison, K. Yang, C.-L. Wang, A. E. Yilmaz, and A. Manthiram, “Microwave-assisted Low-temperature Growth of Thin Films in Solution,” Scientific Reports 2, 1003: 1-8 (2012). dx.doi.org/10.1038/srep01003

  679. L. Baggetto, E. Allcorn, A. Manthiram, and G. M. Veith, “Cu2Sb Thin Films as Anode for Na-ion Batteries,” Electrochemistry Communications 27, 168–171 (2012). dx.doi.org/10.1016/j.elecom.2012.11.030

  680. Y.-Z. Fu, Y.-S. Su, and A. Manthiram, “Sulfur-Carbon Nanocomposite Cathodes Improved by an Amphiphilic Block Copolymer for High Rate Lithium-Sulfur Batteries,” ACS Applied Materials & Interfaces 4, 6046–6052 (2012). dx.doi.org/10.1021/am301688h

  681. P. Xiao, Z. Q. Deng, A. Manthiram, and G. Henkelman, “Calculations of Oxygen Stability in Lithium-rich Layered Cathodes,”Journal of Physical Chemistry 116, 23201–23204 (2012). dx.doi.org/10.1021/jp3058788

  682. Z. Jiang, X. Zhao, Y.-Z. Fu, and A. Manthiram, “Composite Membranes Based on Sulfonated Poly(ether ether ketone) and SDBS-adsorbed Graphene Oxide for Direct Methanol Fuel Cells,” Journal of Materials Chemistry 22, 24862-24869 (2012). dx.doi.org/10.1039/C2JM35571J

  683. Y.-S. Su, and A. Manthiram, “Lithium–Sulphur Batteries with a Microporous Carbon Paper as a Bi-functional Interlayer,” Nature Communications 3, 1166: 1-6 (2012). dx.doi.org/10.1038/ncomms2163

  684. Z. Zuo, Y.-Z. Fu, and A. Manthiram, “Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells,” Polymers 4, 1627-1644 (2012). dx.doi.org/10.3390/polym4041627

  685. Y.-S. Su, Y.-Z. Fu, and A. Manthiram, “Self-Weaving Sulfur–Carbon Composite Cathodes for High Rate Lithium–Sulfur Batteries,” Physical Chemistry and Chemical Physics 14, 14495-14499 (2012). dx.doi.org/10.1039/C2CP42796F

  686. D. W. Shin, C. A. Bridges, A. Huq, M. P. Paranthaman, and A. Manthiram, “Role of Cation Ordering and Surface-segregation in High-voltage Spinel LiMn1.5Ni0.5−xMxO4 (M = Cr, Fe, and Ga) Cathodes for Lithium-Ion Batteries,” Chemistry of Materials 24, 3720-3731 (2012). dx.doi.org/10.1021/cm301844w

  687. E.-S. Lee, K.-W. Nam, E. Hu, and A. Manthiram, “Influence of Cation Ordering and Lattice Distortion on the Charge-Discharge Behavior of LiMn1.5Ni0.5O4 Spinel between 5.0 and 2.0 V,”Chemistry of Materials 24, 3610-3620 (2012). dx.doi.org/10.1021/cm3020836

  688. S. Wang, T. Cochell, and A. Manthiram, “Boron-doped Carbon Nanotube-supported Pt Nanoparticles with Improved CO Tolerance for Methanol Electro-oxidation,” Physical Chemistry and Chemical Physics 14, 13910-13913 (2012). dx.doi.org/10.1039/C2CP42414B

  689. S. Wang, X. Zhao, T. Cochell, and A. Manthiram, “Nitrogen-doped Carbon Nanotube/Graphite Felt as Advanced Electrode Materials for Vanadium Redox Flow Batteries,” Journal of Physical Chemistry Letters 3, 2164-2167 (2012). dx.doi.org/10.1021/jz3008744

  690. L. Li, X. Zhao, Y.-Z. Fu, and A. Manthiram, “Polyprotic Acid Catholyte for High Capacity Dual-Electrolyte Li-air Batteries,” Physical Chemistry and Chemical Physics 14, 12737-12740 (2012). dx.doi.org/10.1039/C2CP42250F

  691. Y.-Z. Fu and A. Manthiram, “Enhanced Cyclability of Lithium-Sulfur Batteries by a Polymer Acid-Doped Polypyrrole Mixed Ionic-Electronic Conductor,” Chemistry of Materials 24, 3081-3087 (2012). dx.doi.org/10.1021/cm301661y

  692. J. Song, D. W. Shin, Y. Lu, C. D. Amos, A. Manthiram, and J. B. Goodenough, “Role of Oxygen Vacancies on the Performance of Li[Ni0.5-xMn1.5+x]O4 (x = 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries,” Chemistry of Materials 24, 3101-3109 (2012). dx.doi.org/10.1021/cm301825h

  693. Y.-S. Su and A. Manthiram, “A New Approach to Improve Cycle Performance of Rechargeable Lithium-Sulfur Batteries by Inserting a Free-Standing MWCNT Interlayer,” Chemical Communications 48, 8817-8819 (2012). dx.doi.org/10.1039/C2CC33945E

  694. Q. Su, D. Yoon, Y. N. Kim, W. Gong, A. Chen, S. Cho, A. Manthiram, A. J. Jacobson, and H. Wang, “Effect of Interlayer Thickness on the Electrochemical Properties of Bi-layer Cathodes for Solid Oxide Fuel Cells,” Journal of Power Sources 218, 261-267 (2012). dx.doi.org/10.1016/j.jpowsour.2012.06.094

  695. Y.-Z. Fu, Y.-S. Su, and A. Manthiram, “Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries,” Journal of the Electrochemical Society 159, A1420-A1424 (2012). dx.doi.org/10.1149/2.027209jes

  696. Y.-S. Su and A. Manthiram, “A Facile In Situ Sulfur Deposition Route to Obtain Carbon-wrapped Sulfur Composite Cathodes for Lithium-Sulfur Batteries,” Electrochimica Acta 77, 272-278 (2012). dx.doi.org/10.1016/j.electacta.2012.06.002

  697. D. Applestone and A. Manthiram, “Symmetric Cell Evaluation of the Effects of Electrolyte Additives on Cu2Sb-Al2O3-C Nanocomposite Anodes,” Journal of Power Sources 217, 1-5 (2012). dx.doi.org/10.1016/j.jpowsour.2012.05.119

  698. Y.-Z. Fu and A. Manthiram, “Core-shell Structured Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries,” RSC Advances 2, 5927-5929 (2012). dx.doi.org/10.1039/C2RA20393F

  699. Z. Moorhead-Rosenberg, D. W. Shin, K. R. Chemelewski, J. B. Goodenough, and A. Manthiram, “Quantitative Determination of Mn3+ Content in LiMn1.5Ni0.5O4 Spinel Cathodes by Magnetic Measurements,” Applied Physics Letters 100, 213909: 1-5 (2012). dx.doi.org/10.1063/1.4722927

  700. X. Zhao, Y.-Z. Fu, W. Li, and A. Manthiram, “Hydrocarbon Blend Membranes with Suppressed Chemical Crossover for Redox Flow Batteries,” RSC Advances 2, 5554-5556 (2012). dx.doi.org/10.1039/C2RA20668D

  701. Y.-Z. Fu and A. Manthiram, “Orthorhombic Bipyramidal Sulfur Coated with Polypyrrole Nanolayers as Cathode Material for Lithium-Sulfur Batteries,” Journal of Physical Chemistry C 116, 8910-8915 (2012). dx.doi.org/10.1021/jp300950m

  702. Y. N. Kim, J.-H. Kim, A. Huq, M. P. Paranthaman, and A. Manthiram, “(Y0.5In0.5)Ba(Co,Zn)4O7 Cathodes with Superior High-temperature Phase Stability for Solid Oxide Fuel Cells,” Journal of Power Sources 214 7-14 (2012). dx.doi.org/10.1016/j.jpowsour.2012.03.050

  703. X. Zhao, W. Li, Y.-Z. Fu, and A. Manthiram, “Influence of Ionomer Content on the Proton Conduction and Oxygen Transport in the Carbon-supported Catalyst Layers in DMFC,” International Journal of Hydrogen Energy 37, 9845-9852 (2012). dx.doi.org/10.1016/j.ijhydene.2012.03.107

  704. K. Jarvis, Z. Deng, L. Allard, A. Manthiram, and P. Ferreira, “Understanding Structural Defects in Lithium-rich Layered Oxide Cathodes,” Journal of Materials Chemistry 22, 11550-11555 (2012). dx.doi.org/10.1039/C2JM30575E

  705. A. Murthy, E. Lee, and A. Manthiram, “Electrooxidation of Methanol on Highly Active and Stable Pt-Sn-Ce/C Catalyst for Direct Methanol Fuel Cells,” Applied Catalysis B: Environmental 121-122, 154-161 (2012). dx.doi.org/10.1016/j.apcatb.2012.03.030

  706. Y. N. Kim and A. Manthiram, “La1.85Sr1.15Cu2-xCoxO6+δ Intergrowth Oxides as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Electrochimica Acta 70, 375-381 (2012). dx.doi.org/10.1016/j.electacta.2012.03.087

  707. D. Applestone and A. Manthiram, “Cu6Sn5-TiC-C Nanocomposite Alloy Anodes with High Volumetric Capacity for Lithium-Ion Batteries,” RSC Advances 2, 5411-5417 (2012). dx.doi.org/10.1039/C2RA20325A

  708. D. A. Slanac, L. Li, A. Mayoral, M. José Yacaman, A. Manthiram, K. J. Stevenson, and K. P. Johnston, “Atomic Resolution Structural Insights into PdPt Nanoparticle-carbon Interactions for the Design of Highly Active and Stable Electrocatalysts,” Electrochimica Acta 64, 35-46 (2012). dx.doi.org/10.1016/j.electacta.2011.12.062

  709. A. Cao and A. Manthiram, “Shape-controlled Synthesis of High Tap Density Cathode Oxides for Lithium-Ion Batteries,” Physical Chemistry and Chemical Physics 14, 6724-6728 (2012). dx.doi.org/10.1039/C2CP40209B

  710. S. Yoon, E. Lee, and A. Manthiram, “Microwave-solvothermal Synthesis of Various Polymorphs of Nanostructured TiO2 in Different Alcohol Media and Their Lithium-Ion Storage Properties,” Inorganic Chemistry 51, 3505-3512 (2012). dx.doi.org/10.1021/ic202239n

  711. J. Ma and A. Manthiram, “Precursor-directed Formation of Hollow Co3O4 Nanospheres Exhibiting Superior Lithium Storage Properties,” RSC Advances 2, 3187-3189 (2012). dx.doi.org/ 10.1039/C2RA20092A

  712. A. Murthy and A. Manthiram, “Application of Derivative Voltammetry in the Analysis of Methanol Oxidation Reaction,” Journal of Physical Chemistry 116, 3827-3832 (2012). dx.doi.org/10.1021/jp2092829

  713. T. Cochell and A. Manthiram, “Pt@PdxCuy/C Core-Shell Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Langmuir 28, 1579-1587 (2012). dx.doi.org/10.1021/la202610z

  714. E.-S. Lee, A. Huq, H.-Y. Chang, and A. Manthiram, “High-voltage, High-energy Layered-Spinel Composite Cathodes with Superior Cycle Life for Lithium-Ion Batteries,” Chemistry of Materials 24, 600-612 (2012). dx.doi.org/10.1021/cm2034992

  715. D. Applestone, S. Yoon, and A. Manthiram, “Cu2Sb-Al2O3-C Nanocomposite Alloy Anodes with Exceptional Cycle Life for Lithium-Ion Batteries,” Journal of Materials Chemistry 22, 3242-3248 (2012). dx.doi.org/10.1039/C2JM13479A

  716. L. Li, X. Zhao, and A. Manthiram,“A Dual-electrolyte Rechargeable Li-Air Battery with Phosphate Buffer Catholyte,” Electrochemistry Communications 14, 78-81 (2012). dx.doi.org/10.1016/j.elecom.2011.11.007

  717. X. Zhao, W. Li, and A. Manthiram, “Comparison of the Membrane-Electrode Assembly Conditioning Procedures for Direct Methanol Fuel Cells,” Journal of Power Sources 201, 37-42 (2012). dx.doi.org/10.1016/j.jpowsour.2011.10.098

  718. S. Cho, Y. N. Kim, J. H. Lee, A. Manthiram, and H. Wang, “Microstructure and Electrochemical Properties of PrBaCo2O5+δ/Ce0.9Gd0.1O1.95 Vertically Aligned Nanocomposite Thin Film as Interlayer for Thin Film Solid Oxide Fuel Cells,” Electrochemica Acta 62, 147-152 (2012). dx.doi.org/10.1016/j.electacta.2011.12.008

  719. 2011

  720. K. A. Jarvis, Z. Deng, L. Allard, A. Manthiram, and P. Ferreira, “Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution,” Chemistry of Materials 23, 3614-3621 (2011). dx.doi.org/10.1021/cm200831c

  721. Y. S. Jung, A. S. Cavanagh, Y. Yan, S. M. George, and A. Manthiram, “Effects of Atomic Layer Deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 Cathode for Lithium-Ion Batteries,” Journal of the Electrochemical Society 158, A1298-A1302 (2011). dx.doi.org/10.1149/2.030112jes

  722. Y. Li, Y. N. Kim, J. Cheng, J. A. Alonso, Z. Hu, Y.-Y. Chin, T. Takami, M. T. Fernandez-Diaz, H.-J. Lin, C.-T. Chen, L. H. Tjeng, A. Manthiram, and J. Goodenough, “Oxygen-Deficient Perovskite Sr0.7Y0.3CoO2.65-δ as a Cathode for Intermediate-Temperature Solid Oxide Fuel Cells,” Chemistry of Materials 23, 5037-5044 (2011). dx.doi.org/10.1021/cm202542q

  723. Y. N. Kim, J.-H. Kim, and A. Manthiram, “Characterization of (Y1-xCax)BaCo4-yZnyO7  as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy 36, 15295-15303 (2011). dx.doi.org/10.1016/j.ijhydene.2011.08.089

  724. D. Applestone, S. Yoon, and A. Manthiram, “Mo3Sb7-C Composite Anodes for Lithium-Ion Batteries,” The Journal of Physical Chemistry 115, 18909-18915. dx.doi.org/10.1021/jp206012v

  725. D. W. Shin and A. Manthiram, “Surface-segregated, High-voltage Spinel LiMn1.5Ni0.42Ga0.08O4 Cathodes with Superior High-temperature Cyclability for Lithium-Ion Batteries,” Electrochemistry Communications 13, 1213-1216 (2011). dx.doi.org/10.1016/j.elecom.2011.08.041

  726. Z. Q. Deng and A. Manthiram, “Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-rich Layered Oxide Cathodes,” The Journal of Physical Chemistry C 115, 7097-7103 (2011). dx.doi.org/10.1021/jp200375d

  727. Y. Zhu, S. Zieren, and A. Manthiram, “Novel Crosslinked Membranes Based on Sulfonated Poly(ether ether ketone) for Direct Methanol Fuel Cells,” Chemical Communications 47, 7410-7412 (2011). dx.doi.org/10.1039/C1CC11474C

  728. A. Murthy and A. Manthiram, “Highly Water-dispersible, Mixed Ionic-electronic Conducting, Polymer Acid-doped Polyanilines as Ionomers for Direct Methanol Fuel Cells,” Chemical Communications 47, 6882-6884 (2011). dx.doi.org/10.1039/C1CC11473E

  729. J.-H. Kim, Y. N. Kim, Z. Bi, A. Manthiram, M. P. Paranthaman, and A. Huq, “High Temperature Phase Stabilities and Electrochemical Properties of InBaCo4-xZnxO7 Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Electrochimica Acta 56, 5740-5745 (2011). dx.doi.org/10.1016/j.electacta.2011.04.047

  730. Y. N. Kim and A. Manthiram, “Electrochemical Properties of Ln(Sr,Ca)3(Fe,Co)3O10 + Gd0.2Ce0.8O1.9 Composite Cathodes for Solid Oxide Fuel Cells,” Journal of the Electrochemical Society 158, B1206-B1210 (2011). dx.doi.org/10.1149/1.3621718

  731. W. C. West, J. Soler, M. C. Smart, B. V. Ratnakumar, S. Firdosy, V. Ravi, M. S. Anderson, J. Hrbacek, E.-S. Lee, and A. Manthiram, “Electrochemical Behavior of Layered Solid Solution Li2MnO3-LiMO2 (M=Ni, Mn, Co)Li-Ion Cathodes with and without Alumina Coatings,” Journal of The Electrochemical Society 158, A883-A889 (2011). dx.doi.org/10.1149/1.3597319

  732. B. Reeja Jayan and A. Manthiram, “Understanding the Improved Stability of Hybrid Polymer Solar Cells Fabricated with Copper Electrodes,” ACS Applied Materials & Interfaces 3, 1492-1501 (2011). dx.doi.org/10.1021/am200067d

  733. A. Manthiram, J.-H. Kim, Y. N. Kim, and K.-T. Lee, “Crystal Chemistry and Properties of Mixed Ionic-Electronic Conductors,” Journal of Electroceramics 27, 93-107 (2011). dx.doi.org/10.1007/s10832-011-9635-x

  734. S. Yoon and A. Manthiram, “Microwave-hydrothermal Synthesis of W0.4Mo0.6O3 and Carbon-decorated WOx-MoO2 Nanorod Anodes for Lithium-Ion Batteries,” Journal of Materials Chemistry 21, 4082-4085 (2011). dx.doi.org/10.1039/C0JM04571C

  735. Y. Zhu and A. Manthiram, “Synthesis and Characterization of Polysulfone-containing Sulfonated Side Chains for Direct Methanol Fuel Cells,” Journal of Power Sources 196, 7481-7487 (2011). dx.doi.org/10.1016/j.jpowsour.2011.05.019

  736. K. L. Harrison and A. Manthiram, “Microwave-assisted Solvothermal Synthesis and Characterization of Metastable LiFe1-x(VO)xPO4 Cathodes,” Inorganic Chemistry 50, 3613-3620 (2011). dx.doi.org/10.1021/ic1025747

  737. K. R. Stroukoff and A. Manthiram, “Thermal Stability of Spinel Li1.1Mn1.9-yMyO4-zFz (M = Ni, Al, and Li, 0 ≤ y ≤ 0.3, and 0 ≤ z ≤ 0.2) Cathodes for Lithium-Ion Batteries,” Journal of Materials Chemistry 21, 10165-10170 (2011). dx.doi.org/10.1039/C0JM04228E

  738. S. Cho, Y. N. Kim, J.-H. Kim, A. Manthiram, and H. Wang, “High Power Density Thin Film SOFCs with YSZ/GDC Bilayer Electrolyte,” Electrochimica Acta 56, 5472-5477 (2011). dx.doi.org/10.1016/j.electacta.2011.03.039

  739. A. Manthiram, “Materials Challenges and Opportunities of Lithium-Ion Batteries,” Journal of Physical Chemistry Letters 2, 176-184 (2011). dx.doi.org/10.1021/jz1015422

  740. Y. N. Kim and A. Manthiram, “Layered LnBaCo2-xCuxO5+δ (0 ≤ x ≤ 1.0) Perovskite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells,” Journal of the Electrochemical Society 158, B276-B282 (2011). dx.doi.org/10.1149/1.3527006

  741. S. Yoon and A. Manthiram, “Nanostructured Sn-Ti-C Composite Anodes for Lithium-Ion Batteries,” Electrochimica Acta 56, 3029-3035 (2011). dx.doi.org/10.1016/j.electacta.2010.12.100

  742. J.-H. Kim, K.-T. Lee, Y. N. Kim, and A. Manthiram, “Crystal Chemistry and Electrochemical Properties of Ln(Sr,Ca)3(Fe,Co)3O10 Intergrowth Oxide Cathodes for Solid Oxide Fuel Cells,” Journal of Materials Chemistry 21, 2482-2488 (2011). dx.doi.org/10.1039/C0JM03230A

  743. J. Zhao, K. Jarvis, P. J. Ferreira, and A. Manthiram, “Performance and Stability of Pd–Pt–Ni Nanoalloy Electrocatalysts in Proton Exchange Membrane Fuel Cells,” Journal of Power Sources 196, 4515-4523 (2011). dx.doi.org/10.1016/j.jpowsour.2011.01.026

  744. S. Yoon and A. Manthiram, “Hollow Core-Shell Mesoporous TiO2 Spheres for Lithium-Ion Storage,” Journal of Physical Chemistry C 115, 9410-9416 (2011). dx.doi.org/10.1021/jp1123184

  745. E. Lee, A. Murthy, and A. Manthiram, “Carbon-supported Pt Nanoparticles Prepared by a Modified Borohydride Reduction Method: Effect on the Particle Morphology and Catalytic Activity for COad and Methanol Electro-oxidation,” Electrochemistry Communications 13, 480-483 (2011). dx.doi.org/10.1016/j.elecom.2011.02.026

  746. A. Murthy and A. Manthiram, “Direct Kinetic Evidence for the Electronic Effect of Ruthenium in PtRu on the Dissociative Adsorption of Methanol,” Electrochemistry Communications 13, 310-313 (2011). dx.doi.org/10.1016/j.elecom.2011.01.010

  747. J. Zhao and A. Manthiram, “Preleached Pd-Pt-Ni and Binary Pd-Pt Electrocatalysts for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells,” Applied Catalysis B: Environmental 101, 660-668 (2011). dx.doi.org/10.1016/j.apcatb.2010.11.007

  748. J. Zhao and A. Manthiram, “In situ Electrochemical Characterization of Proton Exchange Membrane Fuel Cells Fabricated with Pd-Pt-Ni Cathode Catalysts,” Journal of the Electrochemical Society 158, B208-B214 (2011). dx.doi.org/10.1149/1.3519246

  749.  E. Lee, A. Murthy, and A. Manthiram, “Comparison of the Activities and Stabilities of Pt/C, Pt-Ru/C, and Pt3-Sn/C Electrocatalysts Synthesized by a Polyol Method for Methanol Electro-oxidation Reaction,” Journal of Electroanalytical Chemistry 659, 168-175 (2011). dx.doi.org/10.1016/j.jelechem.2011.05.022

  750. F. Prado, J.-H. Kim, and A. Manthiram, “Effects of Ga Substitution on the High Temperature Properties of the n = 3 Ruddlesden Popper System LaSr3Fe1.5-x/2Co1.5-x/2GaxO10-δ (0 ≤ x ≤ 0.8),” Solid State Ionics 192, 241-244 (2011). dx.doi.org/10.1016/j.ssi.2010.05.056

  751. S. Cho, J. Yoon, J.-H. Kim, X. Zhang, A. Manthiram, and H. Wang, “Microstructural and Electrical Properties of Ce0.9Gd 0.1O1.95 (GDC) Thin-film Electrolyte in Solid-oxide Fuel Cells,” Journal of Materials Research 26, 854-859 (2011). dx.doi.org/10.1557/jmr.2010.72

  752. E. Lee and A. Manthiram, “One-Step Reverse Microemulsion Synthesis of Pt-CeO2/C Catalysts with Improved Nanomorphology and Their Effect on Methanol Electrooxidation Reaction,” Journal of Physical Chemistry C 114, 21833-21839 (2011). dx.doi.org/10.1021/jp107639u

  753. E. S. Lee and A. Manthiram, “High Capacity Li[Li0.2Mn0.54 Ni0.13Co0.13]O2 – VO2(B) Composite Cathodes with Controlled Irreversible Capacity Loss for Lithium-Ion Batteries,” Journal of the Electrochemical Society 158, A47-A0 (2011). dx.doi.org/10.1149/1.3515900

  754. A. Murthy and A. Manthiram, “Electrocatalytic Oxidation of Methanol to Soluble Products on Polycrystalline Platinum: Application of Convolution Potential Sweep Voltammetry in the Estimation of Kinetic Parameters,” Electrochimica Acta 56, 6078-6083 (2011). dx.doi.org/10.1016/j.electacta.2011.04.078

  755. E. Lee, A. Murthy, and A. Manthiram, “Effect of Mo Addition on the Electrocatalytic Activity of Pt-Sn-Mo/C for Direct Ethanol Fuel Cells,” Electrochimica Acta 56, 1611-1618 (2011). dx.doi.org/10.1016/j.electacta.2010.10.086

  756. 2010

  757. T. Muraliganth, K.R. Stroukoff, and A. Manthiram, “Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries,” Chemistry of Materials 22, 5754-5761 (2010). dx.doi.org/10.1021/cm102058n

  758. B. C. Norris, W. Li, E. Lee, A. Manthiram, and C. W. Bielawski, “‘Click’-Functionalization of Poly(sulfone)s and a Study of Their Utilities as Proton Conductive Membranes in Direct Methanol Fuel Cells,” Polymer 51, 5352-5358 (2010). dx.doi.org/10.1016/j.polymer.2010.09.041

  759. T. Muraliganth and A. Manthiram, “Understanding the Shifts in the Redox Potentials of Olivine LiM1-yMyPO4 (M = Fe, Mn, Co, and Mg) Solid Solution Cathodes,” Journal of Physical Chemistry C 114, 15530-15540 (2010). dx.doi.org/10.1021/jp1055107

  760. I.-S. Park, W. Li, and A. Manthiram, “Fabrication of Catalyst-coated Membrane-electrode Assemblies by Doctor Blade Method and Their Performance in Fuel Cells,” Journal of Power Sources 195, 7078-7082 (2010). dx.doi.org/10.1016/j.jpowsour.2010.05.004

  761. J. Liu, B. Reeja Jayan, and A. Manthiram, “Conductive Surface Modification with Aluminum of High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathodes,” Journal of Physical Chemistry C 114, 9528-9533 (2010). dx.doi.org/10.1021/jp102050s

  762. J. Liu, Q. Wang, B. Reeja Jayan, and A. Manthiram, “Carbon-Coated High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode,” Electrochemistry Communications 12, 750-753 (2010). dx.doi.org/10.1016/j.elecom.2010.03.024

  763. J.-H. Kim, Y. N. Kim, S. Cho, H. Wang, and A. Manthiram, “Electrochemical Characterization of YBaCo3ZnO7 + Gd0.2Ce0.8O1.9 Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Electrochimica Acta 55, 5312-5317 (2010). dx.doi.org/10.1016/j.electacta.2010.04.058

  764. W. Li, A. Manthiram, M. D. Guiver, and B. Liu, “High Performance Direct Methanol Fuel Cells Based on Acid-Base Blend Membranes Containing Benzotriazole,” Electrochemistry Communications 12, 607-610 (2010). dx.doi.org/10.1016/j.elecom.2010.02.011

  765. W. Li, A. Manthiram, and M. D. Guiver, “Acid-base Blend Membranes Consisting of Sulfonated Poly(ether ether ketone) and 5-amino-benzotriazole Tethered Polysulfone for DMFC,” Journal of Membrane Science 362, 289-297 (2010). dx.doi.org/10.1016/j.memsci.2010.06.059

  766. Y. N. Kim, J.-H. Kim, and A. Manthiram, “Effect of Fe Substitution on the Structure and Properties of LnBaCo2-xFexO5+δ (Ln = Nd and Gd) Cathodes,” Journal of Power Sources 195, 6411-6419 (2010). dx.doi.org/10.1016/j.jpowsour.2010.03.100

  767. B. Reeja Jayan and A. Manthiram, “Influence of Polymer-metal Interface on the Photovoltaic Properties and Long-term Stability of nc-TiO2-P3HT Hybrid Solar Cells,” Solar Energy Materials and Solar Cells 94, 907-914 (2010). dx.doi.org/10.1016/j.solmat.2010.01.021

  768. J. Liu and A. Manthiram, “Functional Surface Modifications of High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode,” Journal of Materials Chemistry 20, 3961-3967 (2010). dx.doi.org/10.1039/B925711J

  769. A. Sarkar and A. Manthiram, “Synthesis of Pt@Cu Core-Shell Nanoparticles by Galvanic Displacement of Cu by Pt4+ Ions and Their Application as Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Journal of Physical Chemistry C 114, 4725-4732 (2010). dx.doi.org/10.1021/jp908933r

  770. J. Liu, W. Li, and A. Manthiram, “Dense Core-shell Structured SnO2/C Composites as High Performance Anodes for Lithium-Ion Batteries,” Chemical Communications 46, 1437-1439 (2010). dx.doi.org/10.1039/B918501A

  771. E. Lee, I.-S. Park, and A. Manthiram, “Synthesis and Characterization of Pt-Sn-Pd/C Catalysts for Ethanol Electro-Oxidation Reaction,” Journal of Physical Chemistry 114, 10634-10640 (2010). dx.doi.org/10.1021/jp101843h

  772. A. Sarkar, A. Vadivel Murugan, and A. Manthiram, “Rapid Microwave-Assisted Solvothermal Synthesis of Methanol Tolerant Pt-Pd-Co Nanoalloy Electrocatalysts,” Fuel Cells 10, 375-383 (2010). dx.doi.org/10.1002/fuce.200900139

  773. N. Kalaiselvi and A. Manthiram, “One-pot, Glycine-assisted Combustion Synthesis and Characterization of Nanoporous LiFePO4/C Composite Cathodes for Lithium-Ion Batteries,” Journal of Power Sources 195, 2894-2899 (2010). dx.doi.org/10.1016/j.jpowsour.2009.11.054

  774. J. Zhao, A. Sarkar, and A. Manthiram, “Synthesis and Characterization of Pd-Ni Nanoalloy Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Electrochimica Acta 55, 1756-1765 (2010). dx.doi.org/10.1016/j.electacta.2009.10.061

  775. A. Sarkar, A. Vadivel Murugan, and A. Manthiram, “Pt-Encapsulated Pd-Co Nanoalloy Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Langmuir 26, 2894-2903 (2010). dx.doi.org/10.1021/la902756j

  776. J.-H. Kim and A. Manthiram, “Low Thermal Expansion RBa(Co,M)4O7 Cathode Materials Based on Tetrahedral-Site Cobalt Ions for Solid Oxide Fuel Cells,” Chemistry of Materials 22, 822-831 (2010). dx.doi.org/10.1021/cm9015244

  777. I.-S. Park, E. Lee, and A. Manthiram, “Electrocatalytic Properties of Indium Tin Oxide (ITO)-supported Pt Nanoparticles for Methanol Electro-oxidation,” Journal of the Electrochemical Society 157, B251-B255 (2010). dx.doi.org/10.1149/1.3268126

  778. S. Yoon and A. Manthiram, “Nanoengineered Sn-TiC-C Anode for Lithium-Ion Batteries,” Journal of Materials Chemistry 20, 236-239 (2010). dx.doi.org/10.1039/B919116J

  779. 2009

  780. J. Yoon, S. Cho, J.-H. Kim, Z. Bi, A. Serquis, X. Zhang, A. Manthiram, and H. Wang, “Vertically Aligned Nanocomposite Thin Films as a Cathode/Electrolyte Interface Layer for Thin-Film Solid Oxide Fuel Cells,” Advanced Functional Materials 19, 3868-3873 (2009). dx.doi.org/10.1002/adfm.200901338

  781. A. Vadivel Murugan, T. Muraliganth, and A. Manthiram, “Rapid, Facile Microwave-solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Storage,” Chemistry of Materials 21, 5004-5006 (2009). dx.doi.org/10.1021/cm902413c

  782. T. Muraliganth, A. Vadivel Murugan, and A. Manthiram, “Facile Synthesis of Carbon-decorated Single-crystalline Fe3O4 Nanowires and Their Application as High Performance Anode in Lithium- Ion Batteries,” Chemical Communications 7360-7362 (2009). dx.doi.org/10.1039/B916376J

  783. J.-H. Kim and A. Manthiram, “Characterization of Sr2.7Ln0.3Fe1.4Co0.6O7 (Ln = La, Nd, Sm, Gd) Intergrowth Oxides as Cathodes for Solid Oxide Fuel Cells,” Solid State Ionics 180, 1478-1483 (2009). dx.doi.org/10.1016/j.ssi.2009.09.007

  784. W. Li, A. Manthiram, and M. D. Guiver, “Blend Membranes Consisting of Sulfonated Poly(ether ether ketone) and 1H-Perimidine Tethered Polysulfone for Direct Methanol Fuel Cells,” Electrochemical and Solid State Letters 12, B180-B184 (2009). dx.doi.org/10.1149/1.3243465

  785. J.-H. Kim and A. Manthiram, “Layered NdBaCo2-xNixO5+δ Perovskite Oxides as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Electrochimica Acta 54, 7551-7557 (2009). dx.doi.org/10.1016/j.electacta.2009.08.021

  786. W. Li and A. Manthiram, “Sulfonated Poly(arylene ether sulfone) as a Methanol-barrier Layer in Multilayer Membranes for Direct Methanol Fuel Cells,” Journal of Power Sources 195, 962-968 (2009). dx.doi.org/10.1016/j.jpowsour.2009.08.096

  787. J. Liu and A. Manthiram, “Kinetics Study of the 5 V Spinel Cathode LiMn1.5Ni0.5O4 before and after Surface Modifications,” Journal of the Electrochemical Society 156, A833-A838 (2009). dx.doi.org/10.1149/1.3206590

  788. J.-H. Kim, L. Mogni, F. Prado, A. Caneiro, J. A. Alonso, and A. Manthiram, “High Temperature Crystal Chemistry and Oxygen Permeation Properties of the Mixed Ionic-Electronic Conductors LnBaCo2O5+δ(Ln = lanthanide),” Journal of the Electrochemical Society 156, B1376-B1381 (2009). dx.doi.org/10.1149/1.3231501

  789. S. Yoon and A. Manthiram, “Sb-MOx-C (M = Al, Ti, or Mo) Nanocomposite Anodes for Lithium-Ion Batteries,” Chemistry of Materials 21, 3898-3904 (2009). dx.doi.org/10.1021/cm901495h

  790. W. Li, B. C. Norris, P. Snodgrass, K. Prasad, A. S. Stockett, V. Pryamitsyn, V. Ganesan, C. W. Bielawski, and A. Manthiram, “Evaluating the Role of Additive pKa on the Proton Conductivities of Blended Sulfonated Poly (Ether Ether Ketone) Membranes,” Journal of Physical Chemistry B 113, 10063-10067 (2009). dx.doi.org/10.1021/jp904192t

  791. J. Liu and A. Manthiram, “Understanding the Improved Electrochemical Performances of Fe-substituted 5 V Spinel Cathode LiMn1.5Ni0.5O4,” Journal of Physical Chemistry C 113, 15073-15079 (2009). dx.doi.org/10.1021/jp904276t

  792. S. Yoon and A. Manthiram, “Superior Capacity Retention Sn-Ni-Fe-C Composite Anodes for Lithium-Ion Batteries,” Electrochemical and Solid State Letters 12, A190-A193 (2009). dx.doi.org/10.1149/1.3158060

  793. A. Manthiram, “Materials and Manufacturing Challenges of Direct Methanol Fuel Cells,” The WSTIAC Quarterly 9, 69-74 (2009). https://apps.dtic.mil/docs/citations/ADA519964

  794. J. Gao and A. Manthiram, “Eliminating the Irreversible Capacity Loss of High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode by Blending with Other Lithium Insertion Hosts,” Journal of Power Sources 191, 644-647 (2009). dx.doi.org/10.1016/j.jpowsour.2009.02.005

  795. J. Liu and A. Manthiram, “Understanding the Improvement in the Electrochemical Properties of Surface Modified 5 V LiMn1.42Ni0.42Co0.16O4 Spinel Cathodes in Lithium-Ion Cells,” Chemistry of Materials 21, 1695-1707 (2009). dx.doi.org/10.1021/cm9000043

  796. Q. Y. Wang, J. Liu, A. Vadivel Murugan, and A. Manthiram, “High Capacity Double-layer Surface Modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode with Improved Rate Capability,” Journal of Materials Chemistry 19, 4965-4972 (2009). dx.doi.org/10.1039/B823506F

  797. A. Manthiram, “Phospho-Olivine Cathodes for Lithium-Ion Batteries,”Electrochemical Society Interface 18, 44-47 (2009). www.electrochem.org/dl/interface/spr/spr09/if_spr09.htm

  798. J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. Rolison, T. Sands, L. Shi. D. Sholl, and Y. Wu, “Nanoscale Design to Enable the Revolution in Renewable Energy,” Energy & Environmental Science 2, 559-588 (2009). dx.doi.org/10.1039/B821698C

  799. J. K. Lee, W. Li, and A. Manthiram, “Poly(arylene ether sulfone)s Containing Pendant Sulfonic Acid Groups as Membrane Materials for Direct Methanol Fuel Cells,” Journal of Membrane Science 330, 73-79 (2009). dx.doi.org/10.1016/j.memsci.2008.12.043

  800. Q. Luo, T. Muraliganth, and A. Manthiram, “On the Incorporation of Fluorine into the Manganese Spinel Cathode Lattice,” Solid State Ionics 180, 703-707 (2009). dx.doi.org/10.1016/j.ssi.2009.03.012

  801. H. Liu, W. Li, and A. Manthiram, “Factors Influencing the Electrocatalytic Activity of Pd100-xCox (0 ≤ x ≤ 50) Nanoalloys for Oxygen Reduction Reaction in Fuel Cells,” Applied Catalysis B: Environmental 90, 184-194 (2009). dx.doi.org/10.1016/j.apcatb.2009.03.008

  802. C. Torres-Garibay, D. Kovar, and A. Manthiram, “Ln0.6Sr0.4Co1-yFeyO3-δ (Ln = La and Nd; y = 0 and 0.5) Cathodes with Thin YSC Electrolytes for Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Power Sources 187, 480-486 (2009). dx.doi.org/10.1016/j.jpowsour.2008.11.025

  803. W. Li, Y.-Z. Fu, A. Manthiram, and M. D. Guiver, “Blend Membranes Consisting of Sulfonated Poly(ether ether ketone) and Polysulfone Bearing 4-nitro-benzimidazole for Direct Methanol Fuel Cells,” Journal of the Electrochemical Society 156, 258-263 (2009). dx.doi.org/10.1149/1.3040242

  804. A. Vadivel Murugan, T. Muraliganth, P. J. Ferreira, and A. Manthiram, “Dimensionally Modulated, Single-crystalline LiMPO4 (M = Mn, Fe, Co, and Ni) with Nano Thumb-like Shapes for High Power Energy Storage,” Inorganic Chemistry 48, 946-952 (2009). dx.doi.org/10.1021/ic8015723

  805. Y. Wu and A. Manthiram, “Effect of Surface Modifications on the Layered Solid Solution Cathodes (1-z) Li[Li1/3Mn2/3]O2 – (z) Li[Mn0.5-yNi0.5-yCo2y]O2,” Solid State Ionics 180, 50-56 (2009). dx.doi.org/10.1016/j.ssi.2008.11.002

  806. A. Sarkar, A. Vadivel Murugan, and A. Manthiram, “Low cost Pd-W Nanoalloy Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Journal of Materials Chemistry 19, 159-165 (2009). dx.doi.org/10.1039/B812722K

  807. H. Liu and A. Manthiram, “Controlled Synthesis and Characterization of Carbon-supported Pd4Co Nanoalloy Electrocatalysts for Oxygen Reduction Reaction,” Energy & Environmental Science 2, 124-132 (2009). dx.doi.org/10.1039/B814708F

  808. J. K. Lee, W. Li, A. Manthiram, and M. D. Guiver, “Blend Membranes Based on Acid-Base Interactions for Operation at High Methanol Concentrations,” Journal of the Electrochemical Society 156, B46-B50 (2009). dx.doi.org/10.1149/1.3005984

  809. Q. Luo and A. Manthiram, “Effect of Low Temperature Fluorine Doping on the Properties of Spinel LiMn2-2yLiyMyO4-ηFη (M = Fe, Co, and Zn) Cathodes,” Journal of the Electrochemical Society 156, A84-A88 (2009). dx.doi.org/10.1149/1.3028317

  810. A. Vadivel Murugan, T. Muraliganth, and A. Manthiram, “One-Pot Microwave-Hydrothermal Synthesis and Characterization of Carbon-Coated LiMPO4 (M = Mn, Fe, and Co) Cathodes,” Journal of the Electrochemical Society 156, A79-A83 (2009). dx.doi.org/10.1149/1.3028304

  811. J. Liu and A. Manthiram, “Improved Electrochemical Performance of the 5 V Spinel Cathode LiMn1.5Ni0.42Zn0.08O4 by Surface Modification,” Journal of the Electrochemical Society 156, A66-A72 (2009). dx.doi.org/10.1149/1.3028318

  812. J. Gao, J. Kim, and A. Manthiram, “High Capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2 – V2O5 Composite Cathodes with Low Irreversible Capacity Loss for Lithium-Ion Batteries,” Electrochemistry Communications 11, 84-86 (2009). dx.doi.org/10.1016/j.elecom.2008.10.036

  813. 2008

  814. T. Muraliganth, A. Vadivel Murugan, and A. Manthiram, “Nanoscale Networking of LiFePO4 Nanorods Prepared by a Microwave-solvothermal Route with Carbon Nanotubes for Lithium-Ion Batteries,” Journal of Materials Chemistry 18, 5661-5668 (2008). dx.doi.org/10.1039/B812165F

  815. A. Manthiram, A. Vadivel Murugan, A. Sarkar, and T. Muraliganth, “Nanostructured Electrode Materials for Electrochemical Energy Storage and Conversion,” Energy & Environmental Science 1, 621-638 (2008). dx.doi.org/10.1039/B811802G

  816. A. Vadivel Murugan, T. Muraliganth, and A. Manthiram, “Comparison of Microwave Assisted Solvothermal and Hydrothermal Syntheses of LiFePO4/C Nanocomposite Cathodes for Lithium-Ion Batteries,” Journal of Physical Chemistry C 112, 14665-14671 (2008). dx.doi.org/10.1021/jp8053058

  817. J.-H. Kim, F. Prado, and A. Manthiram, “Characterization of GdBa1-xSrxCo2O5+δ (0 ≤ x ≤ 1.0) Double Perovskites as Cathodes for Solid Oxide Fuel Cells,” Journal of the Electrochemical Society 155, B1023-B1028 (2008). dx.doi.org/10.1149/1.2839028

  818. Y. Wu, A. Vadivel Murugan, and A. Manthiram, “Surface Modification of High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathodes by AlPO4,” Journal of the Electrochemical Society 155, A635-A641 (2008). dx.doi.org/10.1149/1.2948350

  819. A. Sarkar, A. Vadivel Murugan, and A. Manthiram, “Synthesis and Characterization of Nanostructured Pd-Mo Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Journal of Physical Chemistry C 112, 12037-12043 (2008). dx.doi.org/10.1021/jp801824g

  820. Y. Wu and A. Manthiram, “Structural Stability of Chemically Delithiated Layered (1-z) Li[Li1/3Mn2/3]O2 – z Li[Mn0.5-yNi0.5-yCo2y]O2 Solid Solution Cathodes,” Journal of Power Sources 183, 749-754 (2008). dx.doi.org/10.1016/j.jpowsour.2008.05.028

  821. A. Vadivel Murugan, T. Muraliganth, and A. Manthiram, “Rapid Microwave-Solvothermal Synthesis of Phospho-olivine Nanorods and Their Coating with a Mixed Conducting Polymer for Lithium-Ion Batteries,” Electrochemistry Communications 10, 903-906 (2008). dx.doi.org/10.1016/j.elecom.2008.04.004

  822. W. Li, A. Bellay, Y.-Z. Fu, and A. Manthiram, “N,N’-Bis-(1H-benzimidazol-2-yl)-isophthalamide as an Additive in Sulfonated Polymer Membranes for Direct Methanol Fuel Cells,” Journal of Power Sources 180, 719-723 (2008). dx.doi.org/10.1016/j.jpowsour.2008.02.067

  823. S. W. Choi, Y.-Z. Fu, Y. R. Ahn, S. M. Jo, and A. Manthiram, “Nafion-impregnated Electrospun Polyvinylidene Fluoride Composite Membranes for Direct Methanol Fuel Cells,” Journal of Power Sources 180, 167-171 (2008). dx.doi.org/10.1016/j.jpowsour.2008.02.042

  824. J. K. Lee, W. Li, and A. Manthiram, “Sulfonated Poly(ether ether ketone) as an Ionomer for Direct Methanol Fuel Cell Electrodes,” Journal of Power Sources 180, 56-62 (2008). dx.doi.org/10.1016/j.jpowsour.2008.02.015

  825. H. Liu and A. Manthiram, “Tuning the Electrocatalytic Activity and Durability of Low Cost Pd70Co30 Nanoalloy for Oxygen Reduction Reaction in Fuel Cells,” Electrochemistry Communications 10, 740-744 (2008). dx.doi.org/10.1016/j.elecom.2008.02.022

  826. J.-H. Kim and A. Manthiram, “LnBaCo2O5+δ Oxides as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells,” Journal of the Electrochemical Society 155, B385-B390 (2008). dx.doi.org/10.1149/1.2839028

  827. T. A. Arunkumar, E. Alvarez, and A. Manthiram, “Chemical and Structural Instability of the Chemically Delithiated (1-z) Li[Li1/3Mn2/3]O2 · (z) Li[Co1-yNiy]O2 (0 ≤ y ≤ 1 and  0 ≤ z ≤ 1) Solid Solution Cathodes,” Journal of Materials Chemistry 18, 190-198 (2008). dx.doi.org/10.1039/B713326J

  828. Y.-Z. Fu, W. Li, and A. Manthiram, “Sulfonated Polysulfone with 1,3-1H-dibenzimidazole-benzene Additive as a Membrane for Direct Methanol Fuel Cells,” Journal of Membrane Science 310, 262-267 (2008). dx.doi.org/10.1016/j.memsci.2007.10.050

  829. 2007

  830. W. Choi and A. Manthiram, “Influence of Fluorine Substitution on the Electrochemical Performance of 3 V Spinel Li4Mn5O12-ηFη Cathodes,” Solid State Ionics 178, 1541-1545 (2007). dx.doi.org/10.1016/j.ssi.2007.10.003

  831. A. Manthiram and W. Choi, “Suppression of Mn Dissolution in Spinel Cathodes by Trapping the Protons within Layered Oxide Cathodes,” Electrochemical and Solid State Letters 10, A228-A231 (2007). dx.doi.org/10.1149/1.2754387

  832. W. Choi and A. Manthiram, “Factors Controlling the Fluorine Content and the Electrochemical Performance of Spinel Oxyfluoride Cathodes,” Journal of the Electrochemical Society 154, A792-A797 (2007). dx.doi.org/ 10.1149/1.2746767

  833. T. A. Arunkumar, Y. Wu, and A. Manthiram, “Factors Influencing the Irreversible Oxygen Loss and Reversible Capacity in Layered Li[Li1/3Mn2/3]O2 – Li[M]O2 (M = Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) Solid Solutions,” Chemistry of Materials 19, 3067-3073 (2007). dx.doi.org/10.1021/cm070389q

  834. T. A. Arunkumar, E. Alvarez, and A. Manthiram, “Structural, Chemical, and Electrochemical Characterization of Layered Li[Li0.17Mn0.33Co0.5-yNiy]O2 Cathodes,” Journal of the Electrochemical Society 154, A770-A775 (2007). dx.doi.org/10.1149/1.2745635

  835. K. T. Lee and A. Manthiram, “Effect of Cation Doping on the Physical Properties and Electrochemical Performance of Nd0.6Sr0.4Co0.8M0.2O3-δ (M = Ti, Cr, Mn, Fe, Co, and Cu) Cathodes,” Solid State Ionics 178, 995-1000 (2007). dx.doi.org/10.1016/j.ssi.2007.04.010

  836. W. Choi and A. Manthiram, “Influence of Fluorine on the Electrochemical Performance of Spinel LiMn2-y-zLiyZnzO4-ηFη Cathodes,” Journal of the Electrochemical Society 154, A614-A618 (2007). dx.doi.org/10.1149/1.2732169

  837. Y. Wu and A. Manthiram, “Effect of Al3+ and F– Doping on the Irreversible Oxygen Loss from Layered Li[Li0.17Mn0.58Ni0.25]O2 Cathodes,” Electrochemical and Solid State Letters 10, A151-A154 (2007). dx.doi.org/10.1149/1.2720637

  838. Y.-Z. Fu, A. Manthiram, and M. D. Guiver, “Acid-Base Blend Membranes Based on 2-Amino-benzimidazole and Sulfonated Poly(ether ether ketone) for Direct Methanol Fuel Cells,” Electrochemistry Communications 9, 905-910 (2007). dx.doi.org/10.1016/j.elecom.2006.12.001

  839. Y.-Z. Fu, A. Manthiram, and M. D. Guiver, “Blend Membranes Based on Sulfonated Poly(ether ether ketone) and Polysulfone Bearing Benzimidazole Side Groups for Direct Methanol Fuel Cells,” Electrochemical and Solid State Letters 10, B70-B73 (2007). dx.doi.org/10.1149/1.2434205

  840. Y.-Z. Fu and A. Manthiram, “Nafion-Imidazole-H3PO4 Composite Membranes for Proton Exchange Membrane Fuel Cells,” Journal of the Electrochemical Society 154, B8-B12 (2007). dx.doi.org/10.1149/1.2364850

  841. 2006

  842. V. Raghuveer and A. Manthiram, “Role of TiB2 and Bi2O3 Additives on the Rechargeability of MnO2 in Alkaline Cells,” Journal of Power Sources 163, 598-603 (2006). dx.doi.org/10.1016/j.jpowsour.2006.09.029

  843. J. Choi and A. Manthiram, “Comparison of the Chemical and Structural Instabilities of Na0.75-xCoO2 and Li1-xCoO2,” Physical Review B 74, 205114: 1-7 (2006). dx.doi.org/10.1103/PhysRevB.74.205114

  844. J. Choi and A. Manthiram, “Crystal Chemistry and Electrochemical Characterization of Layered LiNi0.5-yCo0.5-yMn2yO2 and LiCo0.5-yMn0.5-yNi2yO2 (0 ≤ 2y ≤ 1) Cathodes,” Journal of Power Sources 162, 667-672 (2006). dx.doi.org/10.1016/j.jpowsour.2006.06.031

  845. A. Manthiram, J. Choi, and W. Choi, “Factors Limiting the Electrochemical Performance of Oxide Cathodes,” Solid State Ionics 177, 2629-2634 (2006). dx.doi.org/10.1016/j.ssi.2006.02.041

  846. L. Mogni, F. Prado, A. Caneiro, and A. Manthiram, “High Temperature Properties of the n = 2 Ruddlesden-Popper Phases (La,Sr)3(Fe,Ni)2O7-δ,” Solid State Ionics 177, 1807-1810 (2006). dx.doi.org/10.1016/j.ssi.2006.03.050

  847. K. T. Lee and A. Manthiram, “Electrochemical Performance of Nd0.6Sr0.4Co0.5Fe0.5O3-δ-Ag Composite Cathodes in Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Power Sources 160, 903-908 (2006). dx.doi.org/10.1016/j.jpowsour.2006.02.027

  848. A. M. Kannan and A. Manthiram, “Low Temperature Synthesis and Electrochemical Behavior of LiV3O8 Cathode,” Journal of Power Sources 159, 1405-1408 (2006). dx.doi.org/10.1016/j.jpowsour.2005.12.026

  849. V. Raghuveer and A. Manthiram, “Improved Rechargeability of Manganese Oxide Cathodes in Alkaline Cells in the Presence of TiB2 and TiS2,” Journal of Power Sources 159, 1468-1473 (2006). dx.doi.org/10.1016/j.jpowsour.2005.12.005

  850. A. Manthiram and J. Choi, “Chemical and Structural Instabilities of Lithium-Ion Battery Cathodes,” Journal of Power Sources 159, 249-253 (2006). dx.doi.org/10.1016/j.jpowsour.2006.04.028

  851. K. T. Lee and A. Manthiram, “Synthesis and Characterization of Nd0.6Sr0.4Co1-yMnyO3-δ (0 ≤ y ≤ 1.0) Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Power Sources 158, 1202-1208 (2006). dx.doi.org/10.1016/j.jpowsour.2005.10.021

  852. Y.-Z. Fu, A. Manthiram, and M. D. Guiver, “Blend Membranes Based on Sulfonated Poly (ether ether ketone) and Polysulfone Bearing Benzimidazole Side Groups for Proton Exchange Membrane Fuel Cells,” Electrochemistry Communications 8, 1386-1390 (2006). dx.doi.org/10.1016/j.elecom.2006.06.018

  853. W. Choi and A. Manthiram, “Comparison of Metal Ion Dissolutions from Lithium-Ion Battery Cathodes,” Journal of the Electrochemical Society 153, A1760-A1764 (2006). dx.doi.org/10.1149/1.2219710

  854. V. Raghuveer, P. J. Ferreira, and A. Manthiram, “Comparison of Pd-Co-Au Electrocatalysts Prepared by Conventional Borohydride and Microemulsion Methods for Oxygen Reduction in Fuel Cells,” Electrochemistry Communications 8, 807-814 (2006). dx.doi.org/10.1016/j.elecom.2006.03.022

  855. C. Yang, T. A. Arunkumar, and A. Manthiram, “Synthesis and Characterization of Layered Li(Ni0.5Co0.5)1-yFeyO2 (0 ≤ (1-x) ≤ 1 and 0 ≤ y ≤ 0.2) Cathodes,” Solid State Ionics 177, 863-868 (2006). dx.doi.org/10.1016/j.ssi.2006.02.020

  856. J. Choi and A. Manthiram, “Factors Influencing the Crystal Chemistry of Chemically Delithiated Layered HxNi1-y-zMnyCozO2,” Journal of Materials Chemistry 16, 1726-1733 (2006). dx.doi.org/10.1039/B600529B

  857. K. T. Lee, D. M. Bierschenk, and A. Manthiram, “Sr3-xLaxFe2-yCoyO7-δ (0.3 ≤ x ≤ 0.6 and 0 ≤ y ≤ 0.6) Intergrowth Oxide Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Journal of the Electrochemical Society 153, A1255-A1260 (2006). dx.doi.org/10.1149/1.2195835

  858. W. Choi and A. Manthiram, “Superior Capacity Retention Spinel Oxyfluoride Cathodes for Lithium-Ion Batteries,” Electrochemical and Solid State Letters 9, A245-A248 (2006). dx.doi.org/10.1149/1.2186022

  859. J. Choi, E. Alvarez, T. A. Arunkumar, and A. Manthiram, “Proton Insertion into Oxide Cathodes during Chemical Delithiation,” Electrochemical and Solid State Letters 9, A241-A244 (2006). dx.doi.org/10.1149/1.2184495

  860. Y.-Z. Fu and A. Manthiram, “Synthesis and Characterization of Sulfonated Polysulfone Membranes for Direct Methanol Fuel Cells,” Journal of Power Sources 157, 222-225 (2006). dx.doi.org/10.1016/j.jpowsour.2005.08.007

  861. K. T. Lee and A. Manthiram, “LaSr3Fe3-yCoyO10-δ (0 ≤ y ≤ 1.5) Intergrowth Oxide Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” Chemistry of Materials 18, 1621-1626 (2006). dx.doi.org/10.1021/cm052645+

  862. Y. Wu and A. Manthiram, “High Capacity, Surface Modified Layered Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 Cathodes with Low Irreversible Capacity Loss,” Electrochemical and Solid State Letters 9, A221-A224 (2006). dx.doi.org/10.1149/1.2180528

  863. K. T. Lee and A. Manthiram, “Comparison of Ln0.6Sr0.4CoO3-δ (Ln = La, Pr, Nd, Sm, and Gd) as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells,” Journal of the Electrochemical Society 153, A794-A798 (2006). dx.doi.org/10.1149/1.2172572

  864. B. Yang and A. Manthiram, “Comparison of the Small Angle X-ray Scattering Study of Sulfonated Poly(etheretherketone) and Nafion Membranes for Direct Methanol Fuel Cells,” Journal of Power Sources 153, 29-35 (2006). dx.doi.org/10.1016/j.jpowsour.2005.03.185

  865. 2005

  866. V. Raghuveer and A. Manthiram, “Effect of Ba0.6K0.4BiO3 and BaBiO3 Additives on the Rechargeability of Manganese Oxide Cathodes in Alkaline Cells,” Electrochemistry Communications 7, 1329-1332 (2005). dx.doi.org/10.1016/j.elecom.2005.09.012

  867. V. Raghuveer, A. Manthiram, and A. J. Bard, “Pd-Co-Mo Electrocatalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells,” Journal of Physical Chemistry B 109, 22909-22912 (2005). dx.doi.org/10.1021/jp054815b

  868. J. L. Fernández, V. Raghuveer, A. Manthiram, and A. J. Bard, “Pd-Ti and Pd-Co-Au Electrocatalysts as a Replacement for Platinum for Oxygen Reduction in Proton Exchange Membrane Fuel Cells,” Journal of the American Chemical Society 127, 13100-13101 (2005). dx.doi.org/10.1021/ja0534710

  869. T. A. Arunkumar and A. Manthiram, “Influence of Chromium Doping on the Electrochemical Performance of the 5 V Spinel Cathode LiMn1.5Ni0.5O4,” Electrochimica Acta 50, 5568-5572 (2005). dx.doi.org/10.1016/j.electacta.2005.03.033

  870. J. Choi and A. Manthiram, “Structural and Electrochemical Characterization of the Layered LiNi0.5-yMn0.5-yCo2yO2 (0 ≤ 2y ≤ 1) Cathodes” Solid State Ionics 176, 2251-2256 (2005). dx.doi.org/10.1016/j.ssi.2005.06.004

  871. M. Wang, A. Navrotsky, S. Venkatraman, and A. Manthiram, “Enthalpy of Formation of LixCoO2 (0.5 ≤ x ≤ 1.0),” Journal of the Electrochemical Society 152, J82-J84 (2005). dx.doi.org/10.1149/1.1931292

  872. J. Choi and A. Manthiram, “Role of Chemical and Structural Stabilities on the Electrochemical Properties of Layered LiNi1/3Mn1/3Co1/3O2 Cathodes,” Journal of the Electrochemical Society 152, A1714-A1718 (2005). dx.doi.org/10.1149/1.1954927

  873. J. Choi and A. Manthiram, “Investigation of the Irreversible Capacity Loss in the Layered LiNi1/3Mn1/3Co1/3O2 Cathodes,” Electrochemical and Solid State Letters 8, C102-C105 (2005). dx.doi.org/10.1149/1.1943567

  874. V. Raghuveer and A. Manthiram, “Mesoporous Carbons with Controlled Porosity as an Electrocatalytic Support for Methanol Oxidation,” Journal of the Electrochemical Society 152, A1504-A1510 (2005). dx.doi.org/10.1149/1.1940767

  875. K. T. Lee and A. Manthiram, “Characterization of Nd0.6Sr0.4Co1-yFeyO3-δ (0 ≤ y ≤ 0.5) Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells,” Solid State Ionics 176, 1521-1527 (2005). dx.doi.org/10.1016/j.ssi.2005.05.002

  876. S. K. Aghara, S. Venkatraman, A. Manthiram, and E. Alvarez II, “Investigation of Hydrogen Content in Chemically Delithiated Lithium-Ion Battery Cathodes using Prompt Gamma-ray Activation Analysis,” Journal of Radioanalytical and  Nuclear Chemistry 265, 321-328 (2005). dx.doi.org/10.1007/s10967-005-0828-0

  877. T. A. Arunkumar and A. Manthiram, “Influence of Lattice Parameter Differences on the Electrochemical Performance of the 5 V Spinel LiMn1.5-yNi0.5-zMy+zO4 (M = Li, Mg, Fe, Co, and Zn),” Electrochemical and Solid State Letters 8, A403-A405 (2005). dx.doi.org/10.1149/1.1945369

  878. L. Mogni, F. Prado, H. Ascolani, M. Abbate, M. S. Moreno, A. Manthiram, and A. Caneiro, “Synthesis, Crystal Chemistry, and Physical Properties of the Ruddlesden-Popper Phases Sr3Fe2-xNixO7-δ (0 ≤ x ≤ 1.0),” Journal of Solid State Chemistry 178, 1559-1568 (2005). dx.doi.org/10.1016/j.jssc.2005.02.018

  879. L. Xiong and A. Manthiram, “High Performance Membrane-Electrode Assemblies with Ultra-low Pt Loading for Proton Exchange Membrane Fuel Cells,” Electrochimica Acta 50, 3200-3204 (2005). dx.doi.org/10.1016/j.electacta.2004.11.049

  880. L. Xiong and A. Manthiram, “Nanostructured Pt-M/C (M = Fe and Co) Catalysts Prepared by a Microemulsion Method for Oxygen Reduction in Proton Exchange Membrane Fuel Cells,” Electrochimica Acta 50, 2323-2329 (2005). dx.doi.org/10.1016/j.electacta.2004.10.046

  881. L. Xiong and A. Manthiram, “Effect of Atomic Ordering on the Catalytic Activity of Carbon Supported PtM (M = Fe, Co, Ni, and Cu) Alloys for Oxygen Reduction in PEMFCs,” Journal of the Electrochemical Society 152, A697-A703 (2005). dx.doi.org/10.1149/1.1862256

  882. K. T. Lee and A. Manthiram, “Characterization of Nd1-xSrxCoO3-δ (0 ≤ x ≤ 0.5) Cathode Materials for Intermediate Temperature SOFCs,” Journal of the Electrochemical Society 152, A197-A204 (2005). dx.doi.org/10.1149/1.1828243

  883. L. Xiong and A. Manthiram, “Catalytic Activity of Pt-Ru Alloys Synthesized by a Microemulsion Method in Direct Methanol Fuel Cells,” Solid State Ionics 176, 385-392 (2005). dx.doi.org/10.1016/j.ssi.2004.08.005

  884. S. Venkatraman and A. Manthiram, “Comparison of the Phase Relationships of Chemically Delithiated Layered Li1-xCo1-yMyO2 (M = Al and Mg) Oxides,” Solid State Ionics 176, 291-298 (2005). dx.doi.org/10.1016/j.ssi.2004.07.017

  885. 2004

  886. B. Yang, Y.-Z. Fu, and A. Manthiram, “Operation of Thin Nafion-based Self-humidifying Membranes in Proton Exchange Membrane Fuel Cells with Dry H2 and O2,” Journal of Power Sources 139, 170-175 (2004). dx.doi.org/10.1016/j.jpowsour.2004.07.010

  887. S. Venkatraman and A. Manthiram, “Investigation of the Possible Incorporation of Protons into Oxide Cathodes during Chemical Delithiation,” Journal of Solid State Chemistry 177, 4244-4250 (2004). dx.doi.org/10.1016/j.jssc.2004.08.019

  888. B. Yang and A. Manthiram, “Hydrous Ta2O5·nH2O Modified Membrane-Electrode Assemblies for PEMFCs,” Journal of the Electrochemical Society 151, A2120-A2125 (2004). dx.doi.org/10.1149/1.1815155

  889. J. Choi and A. Manthiram, “Comparison of the Electrochemical Behaviors of Stoichiometric LiNi1/3Co1/3Mn1/3O2 and Lithium Excess Li1.03(Ni1/3Co1/3Mn1/3)0.97O2,” Electrochemical and Solid State Letters 7, A365-A368 (2004). dx.doi.org/10.1149/1.1792271

  890. V. Raghuveer and A. Manthiram, “Mesoporous Carbon with Larger Pore Diameter as an Electrocatalyst Support for Methanol Oxidation,” Electrochemical and Solid State Letters 7, A336-A339 (2004). dx.doi.org/10.1149/1.1792264

  891. S. Venkatraman, J. Choi, and A. Manthiram, “Factors Influencing the Chemical Lithium Extraction Rate from Layered LiNi1-y-zCoyMnzO2 Cathodes,” Electrochemistry Communications 6, 832-837 (2004). dx.doi.org/10.1016/j.elecom.2004.06.004

  892. L. Xiong and A. Manthiram, “Synthesis and Characterization of Methanol Tolerant Pt/TiOx/C Nanocomposites for Oxygen Reduction in Direct Methanol Fuel Cells,” Electrochimica Acta 49, 4163-4170 (2004). dx.doi.org/10.1016/j.electacta.2004.04.011

  893. F. Prado, N. Grunbaum, A. Caneiro, and A. Manthiram, “Effect of La3+ Doping on the Perovskite to Brownmillerite Transformation in Sr1-xLaxCo0.8Fe0.2O3-δ (0 ≤ x ≤ 0.4),” Solid State Ionics 167, 147-154 (2004). dx.doi.org/10.1016/j.ssi.2003.12.006

  894. B. Yang and A. Manthiram, “Multilayered Membranes with Suppressed Fuel Crossover for Direct Methanol Fuel Cells,” Electrochemistry Communications 6, 231-236 (2004). dx.doi.org/10.1016/j.elecom.2003.12.005

  895. L. Xiong and A. Manthiram, “Influence of Atomic Ordering on the Electrocatalytic Activity of Pt-Co Alloys in Proton Exchange Membrane Fuel Cells,” Journal of Materials Chemistry 14, 1454-1460 (2004). dx.doi.org/10.1039/B400968C

  896. A. Singhal, G. Skandan, G. Amatucci, F. Badway, N. Ye, A. Manthiram, H. Ye, and J. J. Xu, “Nanostructured Electrodes for Next Generation Rechargeable Electrochemical Devices,” Journal of Power Sources 129, 38-44 (2004). dx.doi.org/10.1016/j.jpowsour.2003.11.010

  897. Y. Shin and A. Manthiram, “Influence of Microstructure on the Electrochemical Performance of LiMn2-y-zLiyNizO4 Spinel Cathodes in Rechargeable Lithium Batteries,” Journal of Power Sources 126, 169-174 (2004). dx.doi.org/10.1016/j.jpowsour.2003.09.059

  898. Y. Shin and A. Manthiram, “Factors Influencing the Capacity Fade of Spinel Lithium Manganese Oxides,” Journal of the Electrochemical Society 151, A204-A208 (2004). dx.doi.org/10.1149/1.1634274

  899. 2003

  900. S. Venkatraman and A. Manthiram, “Structural and Chemical Characterization of Layered Li1-xNi1-yMnyO2-δ (y = 0.25 and 0.5 and 0 ≤ (1-x) ≤ 1) Oxides,” Chemistry of Materials 15, 5003-5009 (2003). dx.doi.org/10.1021/cm034757b

  901. D. Im, A. Manthiram, and B. Coffey, “Manganese (III) Chemistry in KOH Solutions in Presence of Bi- or Ba-Containing Compounds and its Implications on the Rechargeability of γ-MnO2 in Alkaline Cells,” Journal of the Electrochemical Society 150, A1651-A1659 (2003). dx.doi.org/10.1149/1.1622960

  902. Y. Shin and A. Manthiram, “Origin of the Capacity of Spinel LiMn2-yLiyO4±δ (0 ≤ y ≤ 0.15) in the 5 V Region,” Electrochemical and Solid State Letters 6, A249-A251 (2003). dx.doi.org/10.1149/1.1619368

  903. B. Yang and A. Manthiram, “Sulfonated Poly(ether ether ketone) Membranes for Direct Methanol Fuel Cells” Electrochemical and Solid State Letters 6, A229-A231 (2003). dx.doi.org/10.1149/1.1613073

  904. Y. Shin and A. Manthiram, “Origin of the High Voltage (> 4.5 V) Capacity of Spinel Lithium Manganese Oxides,” Electrochimica Acta 48, 3583-3592 (2003). dx.doi.org/10.1016/S0013-4686(03)00478-X

  905. Y. Shin and A. Manthiram, “Influence of the Lattice Parameter Difference between the Two Cubic Phases Formed in the 4 V Region on the Capacity Fading of Spinel Manganese Oxides,” Chemistry of Materials 15, 2954-2961 (2003). dx.doi.org/10.1021/cm0341787

  906. A. M. Kannan and A. Manthiram, “Synthesis and Electrochemical Evaluation of High Capacity Nanostructured VO2 Cathodes,” Solid State Ionics 159, 265-271 (2003). dx.doi.org/10.1016/S0167-2738(03)00099-7

  907. A. M. Kannan and A. Manthiram, “Synthesis and Electrochemical Properties of High Capacity V2O5-δ Cathodes,” Journal of the Electrochemical Society 150, A990-A993 (2003). dx.doi.org/10.1149/1.1581261

  908. L. Vayssieres and A. Manthiram, “2-D Mesoparticulate Arrays of α-Cr2O3,” Journal of Physical Chemistry 107, 2623-2625 (2003). dx.doi.org/10.1021/jp026933u

  909. D. Im and A. Manthiram, “Nanostructured Lithium Manganese Oxide Cathodes Obtained by a Reduction of Lithium Permanganate with Hydrogen,” Journal of the Electrochemical Society 150, A742-A746 (2003). dx.doi.org/10.1149/1.1570820

  910. B. Yang, A. M. Kannan and A. Manthiram, “Stability of the Dry Proton Conductor CsHSO4 in Hydrogen Atmosphere,” Materials Research Bulletin 38, 691-698 (2003). dx.doi.org/10.1016/S0025-5408(03)00008-4

  911. D. Im and A. Manthiram, “Lithium Manganese Oxide–Conductive Carbon Nanocomposite Cathodes for Lithium-Ion Batteries,” Solid State Ionics 159, 249-255 (2003). dx.doi.org/10.1016/S0167-2738(02)00888-3

  912. A. M. Kannan and A. Manthiram, “Structural Stability of Li1-xNi0.85Co0.15O2 and Li1-xNi0.85Co0.12Al0.03O2 Cathodes at Elevated Temperatures,” Journal of the Electrochemical Society 150, A349-A353 (2003). dx.doi.org/10.1149/1.1553766

  913. Y. Shin and A. Manthiram, “High Rate, Superior Capacity Retention LiMn2-2yLiyNiyO4 Spinel Cathodes for Lithium-Ion Batteries,” Electrochemical and Solid State Letters 6, A34-A36 (2003). dx.doi.org/10.1149/1.1535751

  914. A. M. Kannan, L. Rabenberg, and A. Manthiram, “High Capacity Surface Modified LiCoO2 Cathodes for Lithium-Ion Batteries,” Electrochemical and Solid State Letters 6, A16-A18 (2003). dx.doi.org/10.1149/1.1526782

  915. S. Venkatraman, Y. Shin, and A. Manthiram, “Phase Relationships and Structural and Chemical Stabilities of Charged Li1-xCoO2-δ and Li1-xNi0.85Co0.15O2-δ,” Electrochemical and Solid State Letters 6, A9-A12 (2003). dx.doi.org/10.1149/1.1525430

  916. D. Im and A. Manthiram, “Role of Bismuth and Factors Influencing the Formation of Mn3O4 in Rechargeable Alkaline Batteries Based on Bismuth-containing Manganese Oxides,” Journal of the Electrochemical Society 150, A68-A73 (2003). dx.doi.org/10.1149/1.1524611

  917. 2002

  918. J. W. Allen, L. Brus, P. C. Burns, R. J. Cava, G. Ceder, C. Chidsey, W. Clegg, E. Coronado, H. Dai, M. W. Deem, F. J. DiSalvo, K. R. Dunbar, B. S. Dunn, G. Galli, C. Gorman, S. M. Haile, L. V. Interrante, A. J. Jacobson, A. Manthiram, M. Mrksich, J. Musfeldt, A. Navrotsky, D. Nelson, D. Norris, A. Nozik, R. Nuzzo, X. Peng, W. E. Pickett, C. Rawn, D. Rolison, D. Singh, B. Toby, U. B. Wiesner, A. P. Wilkinson, P. Woodward, and P. Yang, “Future Directions in Solid State Chemistry:  Report of the NSF-Sponsored Workshop,” Progress in Solid State Chemistry 30, 1-101 (2002). dx.doi.org/10.1016/S0079-6786(02)00010-9

  919. L. Xiong, A. M. Kannan, and A. Manthiram, “Pt-M (M = Fe, Co, Ni, and Cu) Electrocatalysts Synthesized by an Aqueous Route for Proton Exchange Membrane Fuel Cells,” Electrochemistry Communications 4, 898-903 (2002). dx.doi.org/10.1016/S1388-2481(02)00485-X

  920. L. Vayssieres, L. Rabenberg, and A. Manthiram, “Aqueous Chemical Route to Ferromagnetic Three-Dimensional Arrays of Iron Nanorods,” Nano Letters 2, 1393-1395 (2002). dx.doi.org/10.1016/S1388-2481(02)00485-X

  921. Y. U. Jeong and A. Manthiram, “Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes,” Journal of the Electrochemical Society 149, A1419-A1422 (2002). dx.doi.org/10.1149/1.1511188

  922. S. Venkatraman and A. Manthiram, “Synthesis and Characterization of P3-type CoO2-δ,” Chemistry of Materials 14, 3907-3912 (2002). dx.doi.org/10.1021/cm0203621

  923. A. Manthiram, F. Prado, and T. Armstrong, “Oxygen Separation Membranes Based on Intergrowth Structures,” Solid State Ionics 152-153, 647-655 (2002). dx.doi.org/10.1016/S0167-2738(02)00404-6

  924. F. Prado, K. Gurunathan, and A. Manthiram, “Synthesis, Crystal Chemistry, and Electrical, Oxygen Permeation, and Magnetic Properties of LaSr3GaFe2-xCoxO10-δ (0 ≤ x ≤ 2 and 0 ≤ δ ≤ 2),” Journal of Materials Chemistry 12, 2390-2395 (2002). dx.doi.org/10.1039/B203778E

  925. S. Choi and A. Manthiram, “Factors Influencing the Layered to Spinel-like Phase Transition in Layered Oxide Cathodes,” Journal of the Electrochemical Society 149, A1157-A1163 (2002). dx.doi.org/ 10.1149/1.1497171

  926. D. Im and A. Manthiram, “Nanostructured Lithium Manganese Oxide Cathodes Obtained by Reducing Lithium Permanganate with Methanol,” Journal of the Electrochemical Society 149, A1001-A1007 (2002). dx.doi.org/10.1149/1.1490355

  927. A. M. Kannan and A. Manthiram, “Surface/Chemically Modified LiMn2O4 Cathodes for Lithium-Ion Batteries,” Electrochemical and Solid State Letters 5, A167-A169 (2002). dx.doi.org/10.1149/1.1482198

  928. M. C. Tucker, J. A. Reimer, E. J. Cairns, S. Choi, and A. Manthiram, “7Li NMR Studies of Chemically Delithiated Li1-xCoO2,” Journal of Physical Chemistry 106, 3842-3847 (2002). dx.doi.org/10.1021/jp0133541

  929. A. M. Kannan, S. Bhavaraju, F. Prado, M. Manivel Raja, and A. Manthiram, “Characterization of the Bismuth Modified Manganese Dioxide Cathodes in Rechargeable Alkaline Cells,” Journal of the Electrochemical Society 149, A483-A492 (2002). dx.doi.org/10.1149/1.1459713

  930. S. Choi and A. Manthiram, “Chemical Synthesis and Properties of Spinel Li1-xCo2O4-δ,” Journal of Solid State Chemistry 164, 332-338 (2002). dx.doi.org/10.1006/jssc.2001.9480

  931. S. Choi and A. Manthiram, “Synthesis and Electrode Properties of Nanocrystalline Lithium Copper Iron Oxide Cathodes,” Journal of the Electrochemical Society 149, A570-A573 (2002). dx.doi.org/10.1149/1.1466855

  932. S. Choi and A. Manthiram, “Synthesis and Electrochemical Properties of LiCo2O4 Spinel Cathodes,” Journal of the Electrochemical Society 149, A162-A166 (2002). dx.doi.org/10.1149/1.1431574

  933. R. V. Chebiam, F. Prado, and A. Manthiram, “Comparison of the Chemical Stability of Li1-xCoO2 and Li1-xNi0.85Co0.15O2 Cathodes,” Journal of Solid State Chemistry 163, 5-9 (2002). dx.doi.org/10.1006/jssc.2001.9404

  934. Y. Shin and A. Manthiram, “Microstrain and Capacity Fade in Spinel Manganese Oxides,” Electrochemical and Solid State Letters 5, A55-A58 (2002). dx.doi.org/10.1149/1.1450063

  935. 2001

  936. R. V. Chebiam, A. M. Kannan, F. Prado, and A. Manthiram, “Comparison of the Chemical Stability of High Energy Density Cathodes of Lithium-Ion Batteries,” Electrochemistry Communications 3, 624-627 (2001). dx.doi.org/10.1016/S1388-2481(01)00232-6

  937. R. V. Chebiam, F. Prado, and A. Manthiram, “Soft Chemistry Synthesis and Characterization of Layered Li1-xNi1-yCoyO2-δ (0 ≤ x ≤ 1 and 0 ≤ y ≤ 1),” Chemistry of Materials 13, 2951-2957 (2001). dx.doi.org/10.1021/cm0102537

  938. P. Fulmer, M. Manivel Raja, and A. Manthiram, “Chemical Synthesis, Processing, and Characterization of Nanostructured Fe-B for the Magnetically Assisted Chemical Separation of Hazardous Waste,” Chemistry of Materials 13, 2160-2168 (2001). dx.doi.org/10.1021/cm010014j

  939. F. Prado and A. Manthiram, “Synthesis, Crystal Chemistry, and Electrical and Magnetic Properties of Sr3Fe2-xCoxO7-δ (0 ≤ x ≤ 0.8),” Journal of Solid State Chemistry 158, 307-314 (2001). dx.doi.org/10.1006/jssc.2001.9111

  940. T. Armstrong, F. Prado, and A. Manthiram, “Synthesis, Crystal Chemistry, and Oxygen Permeation Properties of LaSr3Fe3-xCoxO10 (0 ≤ x ≤ 1.5),” Solid State Ionics 140, 89-96 (2001). dx.doi.org/10.1016/S0167-2738(01)00696-8

  941. F. Prado, T. Armstrong, A. Caneiro, and A. Manthiram, “Structural Stability and Oxygen Permeation Properties of Sr3-xLaxFe2-yCoyO7-δ (0 ≤ x ≤ 0.3 and 0 ≤ y ≤ 1.0),” Journal of the Electrochemical Society 148, J7-J14 (2001). dx.doi.org/10.1149/1.1354605

  942. Y. U. Jeong and A. Manthiram, “Amorphous Tungsten Oxide/Ruthenium Oxide Composites for Electrochemical Capacitors,” Journal of the Electrochemical Society 148, A189-A193 (2001). dx.doi.org/ 10.1149/1.1345869

  943. Y. U. Jeong and A. Manthiram, “Synthesis of Nickel Sulfides in Aqueous Solutions Using Sodium Dithionite,” Inorganic Chemistry 40, 73-77 (2001). dx.doi.org/10.1021/ic000819d

  944. J. Stolk, M. Gross, D. Stolk, and A. Manthiram, “Synthesis and Processing of Nanocrystalline Ag-Fe-Ni for Low Thermal Expansion – High Conductivity Thermal Management Applications,” Journal of Materials Research 16, 340-343 (2001). dx.doi.org/10.1557/JMR.2001.0053

  945. Y. U. Jeong and A. Manthiram, “Synthesis of NaxMnO2+δ by a Reduction of Aqueous Sodium Permanganate with Sodium Iodide,” Journal of Solid State Chemistry 156, 331-338 (2001). dx.doi.org/10.1006/jssc.2000.9003

  946. A. Manthiram, J. Kim, and D. Im, “Amorphous Manganese Oxides for Lithium-Ion Batteries,” ITE Letters on Batteries, New Technologies & Medicine 2, 318-325 (2001).

  947. R. V. Chebiam, F. Prado, and A. Manthiram, “Structural Instability of Delithiated Li1-xNi1-yCoyO2 Cathodes,” Journal of the Electrochemical Society 148, A49-A53 (2001). dx.doi.org/10.1149/1.1339029

  948. 2000

  949. J. Stolk and A. Manthiram, “Chemical Synthesis and Characterization of Low Thermal Expansion – High Conductivity Cu-Mo and Ag-Mo Composites,” Metallurgical and Materials Transactions A 31, 2396-2398 (2000). dx.doi.org/10.1007/s11661-000-0159-2

  950. M. S. Shaarawi, J. M. Sanchez, H. Kan, and A. Manthiram, “Modeling of Laser-Induced Chemical Vapor Deposition of Silicon Carbide Rods from Tetramethylsilane,” Journal of the American Ceramic Society 83, 1947-1952 (2000). dx.doi.org/10.1111/j.1151-2916.2000.tb01495.x

  951. J. P. Tang, R. Dass, and A. Manthiram, “Comparison of the Crystal Chemistry and Electrical Properties of La2-xAxNiO4 (A = Ca, Sr, and Ba),” Materials Research Bulletin 35, 411-424 (2000). dx.doi.org/10.1016/S0025-5408(00)00234-8

  952. S. Choi and A. Manthiram, “Synthesis and Electrode Properties of Metastable Li2Mn4O9-δ Spinel Oxides,” Journal of the Electrochemical Society 147, 1623-1629 (2000). dx.doi.org/10.1149/1.1393408

  953. Y. Xia, T. Armstrong, F. Prado, and A. Manthiram, “Sol-gel Synthesis, Phase Relationships, and Oxygen Permeation Properties of Sr4Fe6-xCoxO13+δ (0 ≤ x ≤ 3),” Solid State Ionics 130, 81-90 (2000). dx.doi.org/10.1016/S0167-2738(00)00284-8

  954. Y. U. Jeong and A. Manthiram, “Amorphous Ruthenium-Chromium Oxides for Electrochemical Capacitors,” Electrochemical and Solid State Letters 3, 205-208 (2000). dx.doi.org/10.1149/1.1391003

  955. T. Armstrong, F. Prado, Y. Xia, and A. Manthiram, “Role of Perovskite Phase on the Oxygen Permeation Properties of the Sr4Fe6-xCoxO13+δ System,” Journal of the Electrochemical Society 147, 435-438 (2000). dx.doi.org/10.1149/1.1393214

  956. C. R. Horne, U. Bergmann, J. Kim, K. A. Streibel, A. Manthiram, S. F. Cramer, and E. J. Cairns, “Structural Investigations of Li1.5+xNa0.5MnO2.85I0.12 Electrodes by Mn X-ray Absorption Near Edge Spectroscopy,” Journal of the Electrochemical Society 147, 395-398 (2000). dx.doi.org/10.1149/1.1393208

  957. 1999

  958. J. Kim and A. Manthiram, “Synthesis and Lithium Intercalation Properties of Nanocrystalline Lithium Iron Oxides,” Journal of the Electrochemical Society 146, 4371-4374 (1999). dx.doi.org/10.1149/1.1392645

  959. A. Manthiram, J. P. Tang, and V. Manivannan, “Factors Influencing the Stabilization of Ni+ in Perovskite-Related Oxides,” Journal of Solid State Chemistry 148, 499-507 (1999). dx.doi.org/10.1006/jssc.1999.8487

  960. A. Manthiram and Y. U. Jeong,  “Ambient Temperature Synthesis of Spinel Ni3S4: An Itinerant Electron Ferrimagnet,” Journal of Solid State Chemistry 147, 679-681 (1999). dx.doi.org/10.1006/jssc.1999.8492

  961. T. Armstrong, S. Guggilla, and A. Manthiram, “Oxygen Permeation Studies of Sr4Fe6-xCoxO13,” Materials Research Bulletin 34, 837-844 (1999). dx.doi.org/10.1016/S0025-5408(99)00082-3

  962. Y. U. Jeong and A. Manthiram, “Synthesis and Lithium Intercalation Properties of Na0.5-xLixMnO2+δ and Na0.5-xMnO2+δ Cathodes,” Electrochemical and Solid State Letters 2, 421-424 (1999). dx.doi.org/10.1149/1.1390858

  963. A. Manthiram and J. Kim, “Manganese Oxides for Rechargeable Lithium Batteries,” Transactions of the Society for the Advancement of Electrochemical Science and Technology 34, 1-5 (1999).

  964. S. Guggilla, T. Armstrong, and A. Manthiram, “Synthesis, Crystal Chemistry and Electrical Properties of the Intergrowth Oxides Sr4-xCaxFe6-yCoyO13+δ,” Journal of Solid State Chemistry 145, 260-266 (1999). dx.doi.org/10.1006/jssc.1999.8261

  965. J. Stolk and A. Manthiram, “Chemical Synthesis and Properties of Nanocrystalline Cu-Fe-Ni Alloys,” Materials Science and Engineering B 60, 112-117 (1999). dx.doi.org/10.1016/S0921-5107(99)00022-7

  966. J. Kim, P. Fulmer, and A. Manthiram, “Synthesis of LiCoO2 Cathodes by an Oxidation Reaction in Solution and Their Electrochemical Properties,” Materials Research Bulletin 34, 571-579 (1999). dx.doi.org/10.1016/S0025-5408(99)00049-5

  967. J. Kim and A. Manthiram, “Amorphous Manganese Oxyiodides Exhibiting High Lithium Intercalation Capacity at Higher Current Density,” Electrochemical and Solid State Letters 2, 55-57 (1999). dx.doi.org/ 10.1149/1.1390732

  968. 1998

  969. J. Kim and A. Manthiram, “Nanocomposite Manganese Oxides for Rechargeable Lithium Batteries,” Electrochemical and Solid State Letters 1, 207-209 (1998). dx.doi.org/10.1149/1.1390686

  970. A. Manthiram and J. Kim, “Low Temperature Synthesis of Insertion Oxides for Lithium Batteries,” Chemistry of Materials 10, 2895-2909 (1998). dx.doi.org/10.1021/cm980241u

  971. Y. T. Zhu, P. S. Baldonado, E. J. Peterson, Y. S. Park, A. Manthiram, D. P. Butt, D. E. Peterson, and F. M. Mueller, “Variation of Oxygen Content and Crystal Chemistry of YBa4Cu3O8.5+δ,” Physica C 298, 29-36 (1998). dx.doi.org/10.1016/S0921-4534(98)00013-6

  972. C. Tsang, J. Kim, and A. Manthiram, “Synthesis of Reduced Vanadium Oxides in Aqueous Solutions,” Journal of Materials Chemistry 8, 425-428 (1998). dx.doi.org/10.1039/A706273G

  973. C. Tsang, J. Kim, and A. Manthiram, “Synthesis of Manganese Oxides by Reduction of KMnO4 with KBH4 in Aqueous Solutions,” Journal of Solid State Chemistry 137, 28-32 (1998). dx.doi.org/10.1006/jssc.1997.7656

  974. J. Kim and A. Manthiram, “Low Temperature Synthesis and Electrode Properties of Li4Mn5O12,” Journal of the Electrochemical Society 145, L53-L55 (1998). dx.doi.org/10.1149/1.1838412

  975. 1997

  976. J. Kim and A. Manthiram, “A Manganese Oxyiodide Cathode for Rechargeable Lithium Batteries,” Nature 390, 265-267 (1997). dx.doi.org/10.1038/36812

  977. J. Kim and A. Manthiram, “Synthesis, Characterization, and Electrochemical Properties of Amorphous CrO2-δ (0 ≤ δ ≤ 0.5) Cathodes,” Journal of the Electrochemical Society 144, 3077-3081 (1997). dx.doi.org/10.1149/1.1837962

  978. S. Guggilla and A. Manthiram, “Crystal Chemical Characterization of the Mixed Conductor Sr(Fe, Co) 1.5Oy Exhibiting Unusually High Oxygen Permeability,” Journal of the Electrochemical Society 144, L120-L122 (1997). dx.doi.org/10.1149/1.1837631

  979. C. Tsang and A. Manthiram, “Synthesis of Lower Valent Molybdenum Oxides in Aqueous Solutions by Reducing Na2MoO4 by NaBH4,” Journal of Materials Chemistry 7, 1003-1006 (1997). dx.doi.org/10.1039/A606389F

  980. C. Tsang, S. Y. Lai, and A. Manthiram, “Reduction of Aqueous Na2WO4 by NaBH4 at Ambient Temperatures to Obtain Lower Valent Tungsten Oxides,” Inorganic Chemistry 36, 2206-2210 (1997). dx.doi.org/10.1021/ic9610039

  981. L. Zhang and A. Manthiram, “Synthesis and Characterization of Chains Composed of Nanometer Size Fe-Cr-B Particles,” Journal of Magnetism and Magnetic Materials 168, 85-93 (1997). dx.doi.org/10.1016/S0304-8853(96)00662-2

  982. L. Zhang and A. Manthiram, “Chains Composed of Nanosize Metal Particles and Identifying the Factors Driving Their Formation,” Applied Physics Letters 70, 2469-2471 (1997). dx.doi.org/10.1063/1.118859

  983. A. Manthiram, “Electrode Materials for Rechargeable Lithium Batteries,” JOM 49, 43-46 (1997). dx.doi.org/10.1007%2FBF02914656

  984. C. Tsang and A. Manthiram, “Synthesis of Nanocrystalline VO2 and Its Electrode Behavior in Lithium Batteries,” Journal of the Electrochemical Society 144, 520-524 (1997). dx.doi.org/ 10.1149/1.1837442

  985. L. Zhang and A. Manthiram, “Chemical Synthesis, Microstructure and Magnetic Properties of Chains Composed of Ultrafine Fe-Co-B Particles,” Journal of Applied Physics 80, 4534-4540 (1996). dx.doi.org/10.1063/1.363434

  986. L. Zhang and A. Manthiram, “Fabrication and Magnetic Properties of Chains Composed of Spherical Iron Particles,” IEEE Transactions on Magnetics 32, 4481-4483 (1996). dx.doi.org/10.1109/20.538904

  987. S. Guggilla and A. Manthiram, “Ambient Temperature Synthesis and Magnetic Properties of Aluminum Borate – Fe Nanocomposites,” Materials Science and Engineering B40, 191-197 (1996). dx.doi.org/10.1016/0921-5107(96)01592-9

  988. 1996

  989. L. Zhang and A. Manthiram, “An Experimental Study of Ferromagnetic Chains Composed of Nanosize Fe Spheres,” Physical Review B 54, 3462-3467 (1996). dx.doi.org/10.1103/PhysRevB.54.3462

  990. A. Manthiram and C. Tsang, “Synthesis of Amorphous MoO2+δ and Its Electrode Performance in Lithium Batteries,” Journal of the Electrochemical Society 143, L143-L145 (1996). dx.doi.org/10.1149/1.1836955

  991. A. Manthiram and C. Tsang, “Electrode Materials for Rechargeable Lithium Batteries,” Anales Asociacion Quimica Argentina 84, 265-270 (1996).

  992. C. Tsang and A. Manthiram, “A New Route for the Synthesis of LiMn2O4 Cathode: Variation of Composition, Microstructure, and Electrochemical Behavior with Synthesis Temperature,” Solid State Ionics 89, 305-312 (1996). dx.doi.org/10.1016/0167-2738(96)00350-5

  993. Y. T. Zhu and A. Manthiram, “Influence of Processing Parameters on the Formation of WC-Co Nanocomposite Powder using Polymer as Carbon Source,” Composites 27B, 407-413 (1996). dx.doi.org/10.1016/1359-8368(96)00004-2

  994. L. Zhang and A. Manthiram, “Ambient Temperature Synthesis of Fine Metal Particles in Montmorillonite Clay and Their Magnetic Properties,” Nanostructured Materials 6, 437-451 (1996). dx.doi.org/10.1016/0965-9773(96)00015-3

  995. L. Zhang and A. Manthiram, “Generation of Magnetic Metal Particles in Zeolite by Borohydride Reduction at Ambient Temperature,” Journal of Materials Chemistry 7, 999-1004 (1996). dx.doi.org/10.1039/JM9960600999

  996. R. Gupta and A. Manthiram, “Chemical Extraction of Lithium from Layered LiCoO2,” Journal of Solid State Chemistry 121, 483-491 (1996). dx.doi.org/10.1006/jssc.1996.0067

  997. C. Tsang, A. Dananjay, J. Kim, and A. Manthiram, “Synthesis of Lower Valent Molybdenum Oxides by an Ambient Temperature Reduction of Aqueous K2MoO4 with KBH4,” Inorganic Chemistry 35, 504-509 (1996). dx.doi.org/10.1021/ic950955w

  998. 1995

  999. Y. T. Zhu, Y. P. Gao, J. H. Devletian, and A. Manthiram, “Differential Thermal Analysis of Solid Zirconium,” Journal of Testing and Evaluation 23, 431-435 (1995). dx.doi.org/10.1520/JTE11431J

  1000. L. Zhang and A. Manthiram, “Fine Magnetic Particles in Layered Silicates and Zeolites,” IEEE Transactions on Magnetics 31, 3784-3786 (1995). dx.doi.org/10.1109/20.489771

  1001. J. P. Zhou, S. M. Savoy, R. K. Lo, J. Zhao, M. Arendt, Y. T. Zhu, A. Manthiram, and J. T. McDevitt, “Improved Corrosion Resistance of Cation Substituted YBa2Cu3O7-δ,” Applied Physics Letters 66, 2900-2902 (1995). dx.doi.org/dx.doi.org/10.1063/1.113467

  1002. Y. T. Zhu and A. Manthiram, “A Thermogravimetric Study of the Influence of Internal Stresses on Oxygen Variations in Ln2-xCexCuO4,” Journal of Solid State Chemistry 114, 491-498 (1995). dx.doi.org/10.1006/jssc.1995.1074

  1003. M. K. Agarwala, D. L. Bourell, A. Manthiram, B. R. Birmingham, and H. L. Marcus, “High Tc Dual Phase Ag-YBa2Cu3O7-x Composites by Selective Laser Sintering and Infiltration,” Journal of Materials Science 30, 459-464 (1995). dx.doi.org/10.1007/BF00354412

  1004. Y. T. Zhu, J. H. Devletian, S. J. Chen, and A. Manthiram, “On the Nonuniform Distributions of Temperature and Thermal Stress in DTA Testing,” Journal of Testing and Evaluation 23, 63-66 (1995). dx.doi.org/10.1520/JTE10401J

  1005. 1994

  1006. J. P. Zhou, S. M. Savoy, J. Zhao, D. R. Riley, Y. T. Zhu, A. Manthiram, R. K. Lo, D. Borich, and J. T. McDevitt, “Chemically Tailored Corrosion Resistant High-Tc Phases,” Journal of the American Chemical Society 116, 9389-9390 (1994). dx.doi.org/10.1021/ja00099a090

  1007. A. Manthiram, A. Dananjay, and Y. T. Zhu, “A New Route to Reduced Transition Metal Oxides,” Chemistry of Materials 6, 1601-1602 (1994). dx.doi.org/10.1021/cm00046a006

  1008. Y. T. Zhu and A. Manthiram, “A New Route for the Synthesis of Tungsten Carbide-Cobalt Nanocomposites,” Journal of the American Ceramic Society 77, 2777-2778 (1994). dx.doi.org/10.1111/j.1151-2916.1994.tb04678.x

  1009. B. Cho, W. Win, A. Manthiram, and R. M. Walser, “Coexistence of Antiferromagnetic and Ferromagnetic Clusters in Compositionally Modulated Amorphous FexZr100-x (66 < x < 85) Thin Films,” IEEE Transactions on Magnetics 30, 4443-4445 (1994). dx.doi.org/10.1109/20.334114

  1010. Y. T. Zhu, G. Zong, A. Manthiram, and Z. Eliezer, “Strength Analysis of Random Short Fiber Reinforced Metal Matrix Composite Materials,” Journal of Materials Science 29, 6281-6286 (1994). dx.doi.org/10.1007/BF00354572

  1011. A. Manthiram and Y. T. Zhu, “On the Absence of Superconductivity in Gd2-xCexCuO4,” Physica C 226, 165-169 (1994). dx.doi.org/10.1016/0921-4534(94)90492-8

  1012. Y. T. Zhu and A. Manthiram, “Role of Oxygen in Ln2-xCexCuO4 Superconductors,” Physica C 224, 256-262 (1994). dx.doi.org/10.1016/0921-4534(94)90262-3

  1013. Y. T. Zhu and A. Manthiram, “A New Route for the Synthesis of Tungsten Oxide Bronzes,” Journal of Solid State Chemistry 110, 187-189 (1994). dx.doi.org/10.1006/jssc.1994.1156

  1014. Y. T. Zhu, J. H. Devletian, and A. Manthiram, “Application of Differential Thermal Analysis to Solid-solid Transitions in Phase Diagram Determination,” Journal of Phase Equilibria 15, 37-41 (1994). dx.doi.org/10.1007/BF02667680

  1015. Y. T. Zhu and A. Manthiram, “Role of Bond Length Mismatch in L2-xCexCuO4 (L = Lanthanide),” Physical Review B 49, 6293-6298 (1994). dx.doi.org/10.1103/PhysRevB.49.6293

  1016. K. S. Nanjundaswamy, A. Manthiram, and J. B. Goodenough, “Thallium Solubility Range in Tl2-yBa2Can-1CunO2n+4-x Superconductors,” Journal of Materials Chemistry 4, 1627-1633 (1994). dx.doi.org/10.1039/JM9940401627

  1017. K. S. Nanjundaswamy, A. Manthiram, and J. B. Goodenough, “On the Question of Overlap between Tl:6s and Cu:3d Bands in the Tl1-yLaBa1-zSrzCuO5-x System,”  Journal of Solid State Chemistry 111, 83-88 (1994). dx.doi.org/10.1006/jssc.1994.1201

  1018. 1993

  1019. A. Manthiram, D. L. Bourell, and H. L. Marcus, “Nanophase Materials in Solid Freeform Fabrication,” JOM 45, 66-70 (1993). dx.doi.org/10.1007/BF03222493

  1020. J. P. Zhou, D. R. Riley, A. Manthiram, M. Arendt, M. Schmerling, and J. T.  McDevitt, “Environmental Reactivity Characteristics of Copper Oxide Superconductors,” Applied Physics Letters 63, 548-550 (1993). dx.doi.org/10.1063/1.110000

  1021. A. Manthiram and Y. T. Zhu, “Chemistry of Electron Doped Ln2-xCexCuO4 Superconductors,” Journal of Electronic Materials 22, 1195-1198 (1993). dx.doi.org/10.1007/BF02818060

  1022. A. Manthiram, J. F. Kuo, and J. B. Goodenough, “Characterization of Oxygen-Deficient Perovskites as Oxide-ion Electrolytes,” Solid State Ionics 62, 225-234 (1993). dx.doi.org/10.1016/0167-2738(93)90376-E

  1023. J. B. Goodenough, A. Manthiram, and J-F. Kuo, “Oxygen Diffusion in Perovskite-Related Oxides,” Materials Chemistry and Physics 35, 221-224 (1993). dx.doi.org/10.1016/0254-0584(93)90135-9

  1024. K. S. Nanjundaswamy, A. Manthiram, and J. B. Goodenough, “Factors Influencing the Stabilization and Tc of Tl2-yBa2Ca2Cu3O10-x,” Physica C 207, 339-346 (1993). dx.doi.org/10.1016/0921-4534(93)90316-I

  1025. J. B. Goodenough, A. Manthiram, and B. Wnetrzewski, “Electrodes for Lithium Batteries,” Journal of Power Sources 43, 269-275 (1993). dx.doi.org/10.1016/0378-7753(93)80124-8

  1026. 1992

  1027. A. Manthiram, “Critical Covalence and Superconductivity in Ln2-xCexCuO4,” Journal of Solid State Chemistry 100, 383-387 (1992). dx.doi.org/10.1016/0022-4596(92)90114-B

  1028. D. R. Riley, A. Manthiram, and J. T. McDevitt, “Electrochemical Investigations of Various High Temperature Superconductor Phases,” Chemistry of Materials 4, 1176-1180 (1992). dx.doi.org/10.1021/cm00024a014

  1029. M. G. Smith, J. B. Goodenough, A. Manthiram, R. D. Taylor, and H. Oesterreicher, “Effect of Annealing on the Local Microstructure and Tc in Y1-zCazBa2 (Cu0.90Co0.10)O6+y,” Physical Review B 46, 3041-3049 (1992). dx.doi.org/10.1103/PhysRevB.46.3041

  1030. M. G. Smith, J. B. Goodenough, A. Manthiram, R. D. Taylor, and H. Oesterreicher, “Co Cluster Formation at Reduced Temperatures in Microdoped Y1-zCazBa2Cu3O6+y(57Co),” Journal of Solid State Chemistry 99, 140-148 (1992). dx.doi.org/10.1016/0022-4596(92)90298-A

  1031. C. L. Wooten, O. Beom-hoan, J. T. Markert, M. G. Smith, A. Manthiram, J. Zhou, and J. B. Goodenough, “The Pressure Dependence of Tcin the Infinite-Layer Electron Doped Compound Sr0.84Nd0.16CuO2,” Physica C 192, 13-17 (1992). dx.doi.org/10.1016/0921-4534(92)90736-V

  1032. M. G. Smith, J. B. Goodenough, A. Manthiram, R. D. Taylor, Weimin Peng, and C. W. Kimball, “Tin and Antimony Valence States in BaSn0.85Sb0.15O3-δ,” Journal of Solid State Chemistry 98, 181-186 (1992). dx.doi.org/10.1016/0022-4596(92)90084-9

  1033. M. Paranthaman, A. Manthiram, and J. B. Goodenough, “Hole Concentration and Critical Temperature in Tl2-yBa2-zLazCuO6-x,” Journal of Materials Chemistry 2, 317-321 (1992). dx.doi.org/10.1039/JM9920200317

  1034. M. Paranthaman, A. Manthiram, and J. B. Goodenough, “Hole Concentration and Tc in Tl2-yBa2Ca1-zCazCu2O8-x,” Journal of Solid State Chemistry 98, 343-349 (1992). dx.doi.org/10.1016/S0022-4596(05)80244-0

  1035. A. Manthiram, M. Paranthaman, and J. B. Goodenough, “On the Determination of Hole Concentration in Thallium Cuprate Superconductors,” Journal of Solid State Chemistry 96, 464-467 (1992). dx.doi.org/10.1016/S0022-4596(05)80284-1

  1036. G. Dutta, A. Manthiram, and J. B. Goodenough, “Chemical Synthesis and Properties of Li1-δ-xNi1+δO2and Li[Ni2]O4,” Journal of Solid State Chemistry 96, 123-131 (1992). dx.doi.org/10.1016/S0022-4596(05)80304-4

  1037. J. B. Goodenough, A. Manthiram, M. Paranthaman, and Y. S. Zhen, “Oxide Ion Electrolytes,” Materials Science and Engineering B 12, 357-364 (1992). dx.doi.org/10.1016/0921-5107(92)90006-U

  1038. J. B. Goodenough, A. Manthiram, M. Paranthaman, and Y. S. Zhen, “Fast Oxide-ion Conduction in Intergrowth Structures,” Solid State Ionics 52, 105-109 (1992). dx.doi.org/10.1016/0167-2738(92)90096-8

  1039. 1991

  1040. M. G. Smith, A. Manthiram, J. Zhou, J. B. Goodenough, and J. T. Markert, “Electron-doped Superconductivity at 40 K in the Infinite-Layer Compound Sr1-yNdyCuO2,” Nature 351, 549-551 (1991). dx.doi.org/10.1038/351549a0

  1041. J. B. Goodenough, A. Manthiram, and G. Dutta, “Lattice Instabilities in Some Vanadium Oxides,” European Journal of Solid State and Inorganic Chemistry 28, 1125-1137 (1991).

  1042. A. Manthiram and J. B. Goodenough, “Thermal-Expansion Mismatch and Intergrowth Types in the System La2-yNdyCuO4,” Journal of Solid State Chemistry 92, 231-236 (1991). dx.doi.org/10.1016/0022-4596(91)90262-G

  1043. J. B. Goodenough, G. Dutta, and A. Manthiram, “Lattice Instabilities Near the Critical V-V Separation for Localized versus Itinerant Electrons in LiV1-yMyO2 (M = Cr or Ti) and Li1-xVO2,” Physical Review B 43, 10170-10178 (1991). dx.doi.org/10.1103/PhysRevB.43.10170

  1044. 1990

  1045. J. B. Goodenough and A. Manthiram, “Crystal Chemistry and Superconductivity of the Copper Oxides,” Journal of Solid State Chemistry 88, 115-139 (1990). dx.doi.org/10.1016/0022-4596(90)90209-G

  1046. P. Lightfoot, Shiyou Pei, J. D. Jorgensen, X. X. Tang, A. Manthiram, and J. B. Goodenough, “Oxygen-Defect Structure of Non-superconducting La1.85Sr1.15Cu2O6.25: Excess Oxygen in the Interlayer Site,” Physica C 169, 464-468 (1990). dx.doi.org/10.1016/0921-4534(90)90593-4

  1047. A. Manthiram, M. Paranthaman, and J. B. Goodenough, “Properties of the Chemically Characterized Thallium Cuprate Superconductors,” Physica C 171, 135-146 (1990). dx.doi.org/10.1016/0921-4534(90)90466-R

  1048. P. Lightfoot, Shiyou Pei, J. D. Jorgensen, X. X. Tang, A. Manthiram, and J. B. Goodenough, “Interstitial Anions in the T*Structure,” Physica C 169, 15-22 (1990). dx.doi.org/10.1016/0921-4534(90)90283-K

  1049. M. Paranthaman, A. Manthiram, and J. B. Goodenough, “Chemical Methods to Identify the Origin of Oxidation in the Thallium Cuprate Superconductors,” Journal of Solid State Chemistry 87, 479-482 (1990). dx.doi.org/10.1016/0022-4596(90)90054-2

  1050. A. Manthiram and J. B. Goodenough, “Crystal Chemistry of the La2-yLnyCuO4 (Ln = Pr, Nd) Systems,” Journal of Solid State Chemistry 87, 402-407 (1990). dx.doi.org/10.1016/0022-4596(90)90042-V

  1051. A. Manthiram, X. X. Tang, and J. B. Goodenough, “c-Axis Oxygen in Copper Oxide Superconductors,” Physical Review B 42, 138-149 (1990). dx.doi.org/10.1103/PhysRevB.42.138

  1052. F. Devaux, A. Manthiram, and J. B. Goodenough, “Thermoelectric Power of High-Tc Superconductors,” Physical Review B 41, 8723-8731 (1990). dx.doi.org/10.1103/PhysRevB.41.8723

  1053. J. S. Kim, X. X. Tang, A. Manthiram, J. S. Swinnea, and H. Steinfink, “A New Phase in the Sr-Pb-Cu-Oxide System: The Crystal Structure of Sr5-xPb3+xCuyO12-δ,” Journal of Solid State Chemistry 85, 44-50 (1990). dx.doi.org/10.1016/S0022-4596(05)80058-1

  1054. C. J. Hou, A. Manthiram, L. Rabenberg, and J. B. Goodenough, “Electron Diffraction and Microscopy Study of Oxygen Ordering in YBa2Cu3O7-δ,” Journal of Materials Research 5, 9-16 (1990). dx.doi.org/10.1557/JMR.1990.0009

  1055. 1989

  1056. X. X. Tang, A. Manthiram, and J. B. Goodenough, “Role of Internal Electric Field on Suppression of Superconductivity by Pr in Copper Oxides,” Physica C 161, 574-580 (1989). dx.doi.org/10.1016/0921-4534(89)90392-4

  1057. X. X. Tang, A. Manthiram, and J. B. Goodenough, “NiMn2O4 Revisited,” Journal of the Less Common Metals 156, 357-363 (1989). dx.doi.org/10.1016/0022-5088(89)90431-1

  1058. A. Manthiram and J. B. Goodenough, “Chemical Probes of Tc vs p in p-type Copper-Oxide Superconductors,” Physica C 162-164, 69-70 (1989). dx.doi.org/10.1016/0921-4534(89)90921-0

  1059. A. Manthiram and J. B. Goodenough, “Factors Influencing Tc in 123 Copper Oxide Superconductors,” Physica C 159, 760-768 (1989). dx.doi.org/10.1016/0921-4534(89)90146-9

  1060. X. X. Tang, A. Manthiram, and J. B. Goodenough, “Copper Ferrite Revisited,” Journal of Solid State Chemistry 79, 250-262 (1989). dx.doi.org/10.1016/0022-4596(89)90272-7

  1061. J. B. Goodenough and A. Manthiram, “Evidence for Some Suppression of Magnetic Moments in Superconductive Copper Oxides,” Physica C 157, 439-445 (1989). dx.doi.org/10.1016/0921-4534(89)90268-2

  1062. A. Manthiram and J. B. Goodenough, “Lithium Insertion into Fe2(SO4)3 Frameworks,” Journal of Power Sources 26, 403-406 (1989). dx.doi.org/10.1016/0378-7753(89)80153-3

  1063. 1988

  1064. A. Manthiram and J. B. Goodenough, “Vanishing of Superconductivity at a Transition from Itinerant-electron to Small-polaron Conduction in Nominal Bi4-xPbx(Sr3Ca)Ca2-xYxCu4O16,” Applied Physics Letters 53, 2695-2697 (1988). dx.doi.org/10.1063/1.100548

  1065. J. B. Goodenough, A. Manthiram, Y. Dai, and A. Campion, “Oxygen Clustering in 123 Copper Oxides Having Disordered or Excess (> 7.0) Oxygen,” Superconductor Science and Technology 1, 187-193 (1988). dx.doi.org/10.1088/0953-2048/1/4/007

  1066. J. B. Goodenough and A. Manthiram, “The Role of Oxygen in YBa2Cu3O7-δ,” International Journal of Modern Physics B 2, 379-391 (1988). dx.doi.org/10.1142/S0217979288000251

  1067. A. Manthiram and J. B. Goodenough, “Dependence of Tcon Hole Concentration in the Superconductors Bi4Sr3Ca3-xYxCu4O16+δ,” Applied Physics Letters 53, 420-422 (1988). dx.doi.org/10.1063/1.100608

  1068. Y. Dai, A. Manthiram, J. B. Goodenough, and A. Campion, “X-ray-photoelectron-spectroscopy Evidence for Peroxide in 1:2:3 Copper Oxides Containing Disordered or Excess Oxygen,” Physical Review B 38, 5091-5094 (1988). dx.doi.org/10.1103/PhysRevB.38.5091

  1069. J. S. Kim, J. S. Swinnea, A. Manthiram, and H. Steinfink, “Fluorine Substitution in YBa2Cu3O7-x,” Solid State Communications 66, 287-290 (1988). dx.doi.org/10.1016/0038-1098(88)90564-9

  1070. Y. K. Tao, J. S. Swinnea, A. Manthiram, J. S. Kim, J. B. Goodenough, and H. Steinfink, “Co and Fe Substitution in YBa2Cu3O7-δ,” Journal of Materials Research 3, 248-256 (1988). dx.doi.org/10.1557/JMR.1988.0248

  1071. A. Manthiram, X. X. Tang, and J. B. Goodenough, “Evidence for Peroxide Formation in the Superconducting YBa2-xLaxCu3O7±δ,” Physical Review B 37, 3734-3737 (1988). dx.doi.org/10.1103/PhysRevB.37.3734

  1072. A. Manthiram, S. J. Lee, and J. B. Goodenough, “Influence of Ca on the Superconductivity of Y1-xCaxBa2Cu3O7-δ,” Journal of Solid State Chemistry 73, 278-282 (1988). dx.doi.org/10.1016/0022-4596(88)90080-1

  1073. 1987

  1074. A. Manthiram and J. B. Goodenough, “Synthesis of High-Tc Superconductor YBa2Cu3O7-δ in Small Particle Size,” Nature 329, 701-703 (1987). dx.doi.org/10.1038/329701a0

  1075. A. Manthiram, J. S. Swinnea, Z. T. Sui, H. Steinfink, and J. B. Goodenough, “The Influence of Oxygen Variation on the Crystal Structure and Phase Composition of the Superconductor YBa2Cu3O7-x,” Journal of the American Chemical Society 109, 6667-6669 (1987). dx.doi.org/10.1021/ja00256a019

  1076. A. Manthiram and J. B. Goodenough, “Lithium Insertion into Fe2(MO4) 3 Frameworks: Comparison of M = W with M = Mo,” Journal of Solid State Chemistry 71, 349-360 (1987). dx.doi.org/10.1016/0022-4596(87)90242-8

  1077. A. Manthiram and J. B. Goodenough, “Refinement of the Critical V-V Separation for Spontaneous Magnetism in Oxides,” Canadian Journal of Physics 65, 1309-1317 (1987). dx.doi.org/10.1139/p87-206

  1078. 1985

  1079. A. Manthiram, “New Cation-deficient Spinel Oxides, Mn1-x□xV2-2xMo2xO4 (0 ≤ x ≤ 0.33),” Materials Research Bulletin 20, 955-959 (1985). dx.doi.org/10.1016/0025-5408(85)90079-0

  1080. A. Manthiram, “Synthesis of Vanadium Spinels by Hydrogen Reduction of Oxide Precursors,” Polyhedron 4, 967-970 (1985). dx.doi.org/10.1016/S0277-5387(00)84065-6

  1081. 1984

  1082. A. Manthiram and J. Gopalakrishnan, “Lower-Valence Molybdenum Oxides: Crystal Chemistry and Electronics Properties,” Reviews in Inorganic Chemistry 6, 1-68 (1984).

  1083. A. Manthiram and J. Gopalakrishnan, “On the Valence State of Molybdenum in Ce2MoO6,” Journal of the Less Common Metals 99, 107-111 (1984). dx.doi.org/10.1016/0022-5088(84)90339-4

  1084. 1981

  1085. J. Gopalakrishnan and A. Manthiram, “Topochemically Controlled Hydrogen Reduction of Scheelite-related Rare-earth Metal Molybdates,” Journal of Chemical Society – Dalton Transactions 668-672 (1981). dx.doi.org/ 10.1039/DT9810000668

  1086. 1980

  1087. A. Manthiram, P. R. Sarode, W. H. Madhusudan, J. Gopalakrishnan, and C. N. R. Rao, “X-ray Spectroscopic Study of Chromium, Nickel, and Molybdenum Compounds,” Journal of Physical Chemistry 84, 2200-2203 (1980). dx.doi.org/10.1021/j100454a018

  1088. A. Manthiram and J. Gopalakrishnan, “Fluorite-Related Ln2Mo2O7 Oxides in the Ln2O3-MoO2 System,” Indian Journal of Chemistry 19A, 1042-1045 (1980).

  1089. A. Manthiram and J. Gopalakrishnan, “New A2+Mo4+O3 Oxides with Defect Spinel Structure,” Materials Research Bulletin 15, 207-211 (1980). dx.doi.org/10.1016/0025-5408(80)90121-X

  1090. 1979

  1091. A. Manthiram and J. Gopalakrishnan, “Studies on Some Ln2MoO5 Oxides,” Journal of the Less Common Metals 68, 167-174 (1979). dx.doi.org/10.1016/0022-5088(79)90053-5

  1092. 1978

  1093. A. Manthiram and J. Gopalakrishnan, “Preparation and Structure of Some Ln2MoO5 Oxides,” Proceedings of Indian Academy of Sciences 87A, 267-273 (1978). dx.doi.org/10.1007/BF03182142

Primary Sidebar

Kameron Liao won the Best Presentation Award during The ECS – The Electrochemical Society 248th Meeting in Chicago.

Tuesday, 14 October 2025 Abstract  The development of next-generation energy storage technologies is crucial as the world shifts to renewable Read more 

Kameron Liao won 3rd place in the Procter & Gamble Poster Competition at UT Austin

Read more 

Dr. Arumugam Manthiram Receives the Prestigious 2025 Olin Palladium Award

Tuesday, October 14, 2025 The Triumph with Oxide Chemistry in Energy Storage (by Arumugam Manthiram, Ph.D) Arumugam Manthiram is currently the Read more 

Dr. Manthiram Receives the 2025 Olin Palladium Award

Professor Arumugam Manthiram has been selected as the recipient of the 2025 Olin Palladium Award, one of the highest honors awarded by The Read more 

A Path to Safer, High-Energy Electric Vehicle Batteries

A new study by Texas Engineers dives deep into nickel-based cathodes to improve electric vehicles. Here it Read more 

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2026