• Skip to primary navigation
  • Skip to main content
  • Skip to footer
UT Shield
The University of Texas at Austin
  • Publications
  • Teaching
  • Bio
  • Research Group
  • Home

Some Recent Publications


Context-Free Synthetic Data Mitigates Forgetting

Parikshit Bansal, Sujay Sanghavi

Preprint


Understanding Self-Supervised Learning via Gaussian Mixture Models

Parikshit Bansal, Ali Kavis, Sujay Sanghavi

NeurIPS 2025


RARe: Retrieval Augmented Retrieval with In-Context Examples

Atula Tejaswi, Yoonsang Lee, Sujay Sanghavi, Eunsol Choi

Conference on Language Modeling (COLM) 2025


Retraining with Predicted Hard Labels Provably Increases Model Accuracy

Rudrajit Das, Inderjit S. Dhillon, Alessandro Epasto, Adel Javanmard, Jieming Mao, Vahab Mirrokni, Sujay Sanghavi, Peilin Zhong

ICML 2025


Upweighting Easy Samples in Fine-Tuning Mitigates Forgetting

Sunny Sanyal, Hayden Prairie, Rudrajit Das, Ali Kavis, Sujay Sanghavi

ICML 2025 (spotlight)


Learning Mixtures of Experts with EM: A Mirror Descent Perspective

Quentin Fruytier, Aryan Mokhtari, Sujay Sanghavi

ICML 2025


Geometric Median (GM) Matching for Robust -Subset Selection from Noisy Data

Anish Acharya, Inderjit S Dhillon, Sujay Sanghavi

ICML 2025


Enhancing Language Model Agents using Diversity of Thoughts

Vijay Lingam, Behrooz Omidvar Tehrani, Sujay Sanghavi, Gaurav Gupta, Sayan Ghosh, Linbo Liu, Jun Huan, Anoop Deoras

ICLR 2025


Infilling Score: A Pretraining Data Detection Algorithm for Large Language Models

Negin Raoof, Litu Rout, Giannis Daras, Sujay Sanghavi, Constantine Caramanis, Sanjay Shakkottai, Alex Dimakis

ICLR 2025


InfoPO: On Mutual Information Maximization for Large Language Model Alignment

Teng Xiao, Zhen Ge, Sujay Sanghavi, Tian Wang, Julian Katz-Samuels, Marc Versage, Qingjun Cui, Trishul Chilimbi

NAACL 2025 (long paper)


SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

Vijay Lingam, Atula Tejaswi, Aditya Vavre, Aneesh Shetty, Gautham Krishna Guduri, Joydeep Ghosh, Alex Dimakis, Eunsol Choi, Aleksandar Bojchevski, Sujay Sanghavi

NeurIPS 2024 ( Video )


 In-Context Learning with Transformers: Softmax Attention Adapts to Function Lipschitzness

Liam Collins, Advait Parulekar, Aryan Mokhtari, Sujay Sanghavi, Sanjay Shakkottai

NeurIPS 2024 (spotlight) ( Video )


Improving Computational Complexity in Statistical Models with Local Curvature Information

Pedram Akbarian, Tongzheng Ren, Jiacheng Zhuo, sujay sanghavi, Nhat Ho

ICML 2024


Time Weaver: A Conditional Time Series Generation Model

Sai Shankar Narasimhan, Shubhankar Agarwal, Oguzhan Akcin, Sujay Sanghavi, Sandeep Chinchali

ICML 2024


Understanding the Training Speedup from Sampling with Approximate Losses

Rudrajit Das, Xi Chen, Bertram Ieong, Parikshit Bansal, Sujay Sanghavi

ICML 2024


Early Weight Averaging meets High Learning Rates for LLM Pre-training

Sunny Sanyal, Atula Tejaswi Neerkaje, Jean Kaddour, Abhishek Kumar, sujay sanghavi

COLM 2024


Finite-Time Logarithmic Bayes Regret Upper Bounds

Alexia Atsidakou, Branislav Kveton, Sumeet Katariya, Constantine Caramanis, Sujay Sanghavi

NeurIPS 2023

Footer

FOOTER SECTION ONE

FOOTER SECTION TWO

FOOTER SECTION THREE

  • Email
  • Facebook
  • Instagram
  • Twitter

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025