• Skip to primary navigation
  • Skip to main content
UT Shield
Urban Information Lab at UT Austin
  • About
    • The Director
    • Mission
  • News & Events
  • Projects
    • Deserts
      • Austin Housing Analysis
      • Austin AI Housing Analysis
      • Transit Deserts
      • Hospital Deserts
      • Community Hub for Smart Mobility (CHSM)
    • Health
      • Urban Health Risk Mapping
      • [COVID-19] VMT Impacts
      • [COVID-19] Epidemic Risk Index
      • Texas Entrepreneurship
      • Optimizing Ambulance Allocation and Routing During Extreme Events
    • Digital twin
      • Smart City Data Integration
      • National Housing Data Portal
      • Active Fire Incident Map
    • Miscellaneous
      • AI Image Generation for Architecture Design
      • Convergent, Responsible, and Ethical AI Training Experience (CREATE Roboticists)
  • Team
  • Contact Us

January 28, 2024, Filed Under: Projects

Evaluating the effects of heat vulnerability on heat-related emergency medical service incidents: Lessons from Austin, Texas

Abstract
Extreme heat exposure and sensitivity have been a growing concern in urban regions as the effects of extreme heat pose a threat to public health, the water supply, and the infrastructure. Heatrelated illnesses demand an immediate Emergency Medical Service (EMS) response since they might result in death or serious disability if not treated quickly. Despite increased concerns about urban heat waves and relevant health issues, a limited amount of research has investigated the effects of heat vulnerability on heat-related illnesses. This study explores the geographical distribution of heat vulnerability in the city of Austin and Travis County areas of Texas and identifies neighborhoods with a high degree of heat vulnerability and restricted EMS accessibility. We conducted negative binomial regressions to investigate the effects of heat vulnerability on heat-related EMS incidents. Heat-related EMS calls have increased in neighborhoods with more impervious surfaces, Hispanics, those receiving social benefits, people living alone, and the elderly. Higher urban capacity, including efficient road networks, water areas, and green spaces, is likely to reduce heat-related EMS incidents. This study provides data-driven evidence to help planners prioritize vulnerable locations and concentrate local efforts on addressing heat-related health concerns.
For more information, please visit : https://journals.sagepub.com/doi/abs/10.1177/23998083221129618
Share this:

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025