• Skip to primary navigation
  • Skip to main content
UT Shield
Urban Information Lab at UT Austin
  • About
    • The Director
    • Mission
  • News & Events
  • Projects
    • Deserts
      • Austin Housing Analysis
      • Austin AI Housing Analysis
      • Transit Deserts
      • Hospital Deserts
      • Community Hub for Smart Mobility (CHSM)
    • Health
      • Urban Health Risk Mapping
      • [COVID-19] VMT Impacts
      • [COVID-19] Epidemic Risk Index
      • Texas Entrepreneurship
      • Optimizing Ambulance Allocation and Routing During Extreme Events
    • Digital twin
      • Smart City Data Integration
      • National Housing Data Portal
      • Active Fire Incident Map
    • Miscellaneous
      • AI Image Generation for Architecture Design
      • Convergent, Responsible, and Ethical AI Training Experience (CREATE Roboticists)
  • Team
  • Contact Us

April 12, 2024, Filed Under: Projects

Prediction of “L” Train’s Daily Ridership in Downtown Chicago During the COVID-19 Pandemic

Abstract: In this study, we utilized a random forest model to predict the “L” train’s daily ridership in the Chicago downtown area during the pandemic based on environmental, transportation, and COVID-19-related factors. The results indicated that the model accurately predicts ridership one month in advance. However, its accuracy degraded over time. Moreover, average temperature, stay-at-home order status, and percentage of home renters were found to be the most important factors contributing to ridership.
The cover image is sourced from Pexels and is free of copyright issues.
For more information, please visit: https://doaj.org/article/99d1eb6087c548d9bbd655c9dbd11045
Share this:

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025