Journal Publications

  1. L.L. Raja, A. K. Sreekanth, S. Santhakumar, “Internal gas dynamics analysis of a compressed gas launcher”, Journal of Aeronautical Society of India 42, 305 (1990). [4 pages]
  2. Y.A. Hassan and L.L. Raja, “Simulation of Loss of RHR During Midloop Operations and the Role of Steam Generators in Decay Heat Removal Using the RELAP5/MOD3 code,” Nuclear Technology 103, 310 (1993). [10 pages]
  3. Y.A. Hassan and L.L. Raja, “Analysis of Experiments for Steam Condensation in the Presence of Noncondensable Gases Using the RELAP5/MOD3 Code,” Nuclear Technology 104, 76 (1993). [13 pages]
  4. L.L. Raja, P.L. Varghese, and D.E. Wilson, “Modeling of the Electrothermal Ignitor Metal Vapor Plasma for Electrothermal-Chemical Guns,” IEEE Transactions on Magnetics 33, 316 (1997). [6 pages]
  5. L.L. Raja, P.L. Varghese, and D.E. Wilson, “Modeling of the Electrogun Metal Vapor Plasma Discharge,” AIAA Journal of Thermophysics and Heat Transfer 11, 353 (1997). [8 pages]
  6. D.E. Wilson, K. Kim, and L.L. Raja, “Theoretical Analysis of an External Pulsed Plasma Jet,” IEEE Transactions on Magnetics 35, 228 (1999). [10 pages]
  7. L.L. Raja, R.J. Kee, and L.R. Petzold, “Simulation of Transient, Compressible, Gas-Dynamic, Behavior of Catalytic-Combustion Ignition in Stagnation Flows,” Proceedings of the Combustion Institute 27, 2249 (1998). [6 pages] (formerly titled Twenty-Seventh Symposium (International) on Combustion).
  8. L.L. Raja, R.J. Kee, O. Deutschmann, J. Warnatz, and L.D. Schmidt, “A Critical Evaluation of Navier-Stokes, Boundary-Layer, and Plug-Flow Models of the Flow and chemistry in a Catalytic Combustion Monolith,” Catalysis Today 59, 47 (2000). [14 pages]
  9. H.G. Im, L.L. Raja, R.J. Kee, and L.R. Petzold, “A Numerical Study of Transient Ignition in a Counterflow Nonpremixed Methane-Air Flame Using Adaptive Time Integration,” Combustion Science and Technology 158, 341 (2000). [24 pages]
  10. L.L. Raja, R.J. Kee, R. Serban, and L.R. Petzold, “Computational Algorithm for Dynamic Optimization of Chemical Vapor Deposition Processes in Stagnation Flow Reactors,” Journal of the Electrochemical Society 147, 2718 (2000). [9 pages]
  11. R.J. Kee, W.-H. Yang, L.L. Raja, and C.A. Wolden, “The Influence of Pressure, Fluid Flow, and Chemistry on the Combustion-Based Oxidation of Silicon,” Proceedings of the Combustion Institute 28, 1381 (2000). [8 pages]
  12. X. Yuan and L. L. Raja, “Role of Trace Impurities in Large-Volume Noble Gas Atmospheric-Pressure Glow Discharges,” Applied Physics Letters 81, 814 (2002). [3 pages]
  13. T.L. Vincent and L.L. Raja, “Approach for Control of High-Density Plasma Reactors Through Optimal Pulse Shaping,” Journal of Vacuum Science and Technology A 20, 1722 (2002). [11 pages].
  14. L.L. Raja and M. Linne, “Analytical Model for Ion Angular Distribution Functions at rf Biased Surfaces with Collisionless Plasma Sheaths,” Journal of Applied Physics 92, 7032 (2002). [9 pages]
  15. P.S. Kothnur, X. Yuan, and L. L. Raja, “Structure of Direct-Current Microdischarge Plasmas in Helium,” Applied Physics Letters 82, 529 (2003). [3 pages]
  16. X. Yuan and L. L. Raja, “Computational Study of Capacitively Coupled High-Pressure Glow Discharges in Helium,” IEEE Transactions on Plasma Science 31, 495 (2003). [9 pages]
  17. J. Shin and L. L. Raja, “Dynamics of Pulse Phenomena in Helium Dielectric-Barrier Atmospheric-Pressure Glow Discharges,” Journal of Applied Physics 94, 7408 (2003). [8 pages]
  18. T.L. Vincent and L. L. Raja, “Optimal Pulse Shaping for Plasma Processing,” IEEE Transactions on Control Systems Technology 12, 75 (2004). [12 pages]
  19. G. Chen and L. L. Raja, “Fluid Modeling of Electron Heating in Low-Pressure, High-Frequency Capacitively Coupled Plasma Discharges,” Journal of Applied Physics 96, 6073 (2004). [9 pages]
  20. P.S. Kothnur and L. L. Raja, “Two-Dimensional Simulation of a Direct-Current Microhollow Cathode Discharge,” Journal of Applied Physics 97, 043305 (2005). [12 pages]
  21. P.S. Kothnur, J. Shin, and L. L. Raja, “Experimental and Numerical Study of External Plume Characteristics in Microhollow Cathode Discharges,” IEEE Transactions on Plasma Science 23, 546 (2005). [2 pages] (4th Triennial Special Issue on Images in Plasma Science).
  22. J. Shin and L. L. Raja, “Microdischarge-assisted ignition of dielectric-barrier high-pressure glow discharges,” Applied Physics Letters 88, 021502 (2006). [3 pages]
  23. X. Yuan, J. Shin, and L. L. Raja, “One-dimensional simulations of multi pulse phenomena in dielectric-barrier atmospheric-pressure glow discharges,” Vacuum 80, 1199 (2006). [7 pages]
  24. G. Chen, A. V. Arefiev, R. D. Bengtson, B. N. Breizman, C. A. Lee, and L. L. Raja, “Resonant power absorption in helicon plasma sources,” Physics of Plasmas 13, 123507 (2006). [11 pages]
  25. P. S. Kothnur and L. L. Raja, “Simulation of Direct-Current Microdischarges for Application in Electro-Thermal Class of Small Satellite Propulsion Devices,” Contributions to Plasma Physics 47, 9 (2007). [10 pages]
  26. J. Shin and L. L. Raja, “Run-to-run variations, asymmetric pulses, and long time-scale transient phenomena in dielectric-barrier atmospheric pressure glow discharges,” Journal of Physics D: Applied Physics 40, 3145 (2007). [10 pages]
  27. J. Shin, V. Narayanaswamy, L. L. Raja, and N. T. Clemens, “Characterization of a Direct-Current Glow Discharge Plasma Actuator in Low-Pressure Supersonic Flow,” AIAA Journal 45, 1596 (2007). [10 pages]
  28. T. Deconinck, S. Mahadevan and L. L. Raja, “Simulation of Direct-Current Surface Plasma Discharge Phenomena in High-Speed Flow Actuation,” IEEE Transactions on Plasma Science 35, 1301 (2007). [11 pages]
  29. T. Deconinck, S. Mahadevan and L. L. Raja, “Simulation of a Direct-Current Microdischarge for the Micro Plasma Thrusters,” IEEE Transactions on Plasma Science 36, 1200 (2008). [2 pages] (5th Triennial Special Issue on Images in Plasma Science).
  30. J. Shin, N. T. Clemens, and L. L. Raja, “Schlieren Imaging of Flow Actuation Produced by Direct-Current Surface Glow Discharge in Supersonic Flows,’’ IEEE Transactions on Plasma Science 36, 1316 (2008). [2 pages] (5th Triennial Special Issue on Images in Plasma Science).
  31. D.F. Berisford, R. D. Bengtson, L. L. Raja, L. D. Cassady, and W. J. Chancery. “Heat flow diagnostics for helicon plasmas,” Review of Scientific Instruments 79, 10F515 (2008). [3 pages]
  32. T. Deconinck and L. L. Raja, “Modeling of Mode Transition Behavior in Argon Microhollow Cathode Discharges,” Plasma Processes and Polymers 6, 335 (2009). [12 pages] (Invited paper)
  33. T. Deconinck, S. Mahadevan, and L. L. Raja, “Discretization of the Joule heating term for plasma discharge fluid models in unstructured meshes,” Journal of Computational Physics 228, 4435 (2009). [9 pages]
  34. T. Deconinck, S. Mahadevan, and L. L. Raja, “Computational simulation of coupled nonequilibrium discharge and compressible flow phenomena in a microplasma thruster,” Journal of Applied Physics 106, 063305 (2009). [13 pages]
  35. V. Narayanaswamy, L. L. Raja, and N. T. Clemens, “Characterization of a High-Frequency Pulsed Plasma Jet Actuator,” AIAA Journal 48, 297 (2010). [9 pages]
  36. J. Shin and L. L. Raja, “Cathode-sheath driven low-speed aerodynamic flow actuation using direct-current surface glow discharges,” Journal of Electrostatics 68, 453 (2010). [5 pages]
  37. D.F. Berisford, R. D. Bengtson, and L. L. Raja, “Power balance and wall erosion measurements in a helicon plasma,” Physics of Plasmas 17, 33503 (2010). [11 pages]
  38. S. Mahadevan and L. L. Raja, “Simulations of direct-current air glow discharge at pressures ~ 1Torr: Discharge model validation,” Journal of Applied Physics 107, 093304 (2010). [11 pages]
  39. M. Albright, L. L. Raja, M. Manley, K. Ravi-Chandar, and S. Satapathy, “Studies of Asperity-Scale Plasma Discharge Phenomena,” IEEE Transactions on Plasma Science 39, 1560 (2011). [6 pages]
  40. H. Sitaraman and L. L. Raja, “Gas temperature effects in micrometer-scale dielectric barrier discharges,” Journal of Physics D: Applied Physics 44, 265201 (2011). [11 pages]
  41. H. Sitaraman and L. L. Raja, “Simulation of RF Microdischarges for Microthruster Applications,” IEEE Transactions on Plasma Science 39, 2930 (2011). [2 pages] (Special Issue on Images in Plasma Science).
  42. D. Breden and L. L. Raja, “Gas Heating Effects in a Pulse Nanosecond Streamer Discharge Interacting with a Supersonic O2-H2 Flow,” IEEE Transactions on Plasma Science 39, 2250 (2011). [2 pages] (Special Issue on Images in Plasma Science).
  43. S. Mahadevan and L. L. Raja, “Simulation of Direct-Current Surface Plasma Discharges in Air for Supersonic Flow Control,” AIAA Journal 50, 325 (2012). [13 pages]
  44. Narayanaswamy, N. T. Clemens, and L. L. Raja, “Method for acquiring pressure measurements in presence of plasma-induced interference for supersonic flow control applications,” Measurement Science and Technology 22, 125107 (2011). [11 pages]
  45. Breden and L. L. Raja, “Simulations of nanosecond pulsed plasmas in supersonic flows for combustion applications,” AIAA Journal 50, 647 (2012). [12 pages]
  46. V. Narayanaswamy, L. L. Raja, and N. T. Clemens, “Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator,”, Technical Note, AIAA Journal 50, 246 (2012). [4 pages]
  47. D. Breden, K. Miki, and L. L. Raja, “Computational study of cold atmospheric nanosecond pulsed helium plasma jet in air,” Applied Physics Letters 99, 111501 (2011). [3 pages]
  48. V. Narayanaswamy, L. L. Raja, and N. T. Clemens*, “Control of Unsteadiness of a Shock Wave / Turbulent Boundary Layer Interaction by using a Pulsed-Plasma Jet Actuator,” Physics of Fluids 24, 076101 (2012). [22 pages]
  49. H. Sitaraman and L. L. Raja, “Simulations studies of RF excited Micro Cavity Discharges for micro-propulsion applications,” Journal of Physics D: Applied Physics 45, 185201 (2012). [12 pages]
  50. D. Breden, K. Miki, and L. L. Raja, “Self-consistent two-dimensional modeling of cold atmospheric-pressure plasma jets/bullets,” Plasma Sources Science and Technology 21, 034011 (2012). [13 pages]
  51. L. L. Raja, S. Mahadevan, P. L. G. Ventzek, and J. Yoshikawa, “Computational modeling study of the radial line slot antenna microwave plasma source with comparison to experiments,” Journal of Vacuum Science and Technology A 31, 031304 (2013). [11 pages]
  52. D. Breden, L. L. Raja, C. A. Idicheria, P. M. Najt, and S. Mahadevan, “A numerical study of high-pressure non-equilibrium streamers for combustion ignition application,” Journal of Applied Physics 114, 08302 (2013). [14 pages]
  53. H. Sitaraman and L. L. Raja, “A matrix free implicit scheme for the resistive magneto-hydrodynamic equations on unstructured grids,” Journal of Computational Physics 251, 364 (2013). [19 pages]
  54. R. R. Upadhyay, I. Sawada, P. L. G. Ventzek, and L. L. Raja*, “Effect of electromagnetic waves and higher harmonics in capacitively coupled plasma phenomena,” Journal of Physics D: Applied Physics (Fast Track Communications) 46, 472001 (2013). [5 pages]
  55. B. Pafford, J. Sirohi, and L. L. Raja, “Propagating-Arc Magnetohydrodynamic Plasma Actuator for Directional High-Authority Flow Control in Atmospheric Air,” Journal of Physics D: Applied Physics 46, 4852208 (2013). [7 pages]
  56. Sitaraman and L. L. Raja, “Magneto-hydrodynamics simulation study of deflagration mode in coaxial plasma accelerators,” Physics of Plasmas 21, 012104 (2014). [12 pages]
  57. M.V. Pachuilo, F. Stefani, L. L. Raja, R. D. Bengtson, G. A. Henkelman, A. C. Tas, W. M. Kriven, S. K Sinha, “Development of a Gas-fed Plasma Source for Pulsed High-density Plasma/Material Interaction Studies,” IEEE Transactions on Plasma Science 42, 3245 (2014). [7 pages]
  58. I. Sawada, P. L. G. Ventzek, B. Lane, T. Ohshita, R. R. Upadhyay and L. L. Raja, “Relationship between center-peaked plasma density profiles and harmonic electromagnetic waves in very high frequency capacitively coupled plasma reactors,” Japanese Journal of Applied Physics 53, 03DB0 (2014). [6 pages]
  59. D. Breden and L. L. Raja, “Computational study of the interaction of cold atmospheric helium plasma jets with surfaces,” Plasma Sources Science and Technology 23, 065020 (2014). [15 pages]
  60. D. Levko and L. L. Raja, “Breakdown of atmospheric pressure microgaps at high excitation frequencies,” Journal of Applied Physics 117, 173303 (2015). [9 pages]
  61. S. Kar, H. Kousaka, and L. L. Raja, “Spatio-temporal behavior of microwave sheath-voltage combination plasma source,” Journal of Applied Physics 117, 183302 (2015). [7 pages]
  62. D. Levko and L. L. Raja, “Effect of frequency on microplasmas driven by microwave excitation,” Journal of Applied Physics 118, 043303 (2015). [6 pages]
  63. D. Levko and L. L. Raja, “Dynamics of a wire-to-cylinder atmospheric pressure high-voltage nanosecond discharge,” Physics of Plasmas 22, 083507 (2015). [6 pages]
  64. Y.-J. Choi, J. Sirohi, L. L. Raja, “Measurement of transient force produced by a propagating are magnetohydrodynamic plasma actuator in quiescent atmospheric air” Journal of Physics D: Applied Physics 48, 425204 (2015). [11 pages]
  65. M. Gray, Y.-J. Choi, J. Sirohi, and L. L. Raja, “Structure of Propagating Arc in a Magneto-Hydrodynamic Rail Plasma Actuator,” Journal of Physics D: Applied Physics 49, 015202 (2015). [10 pages]
  66. P.K. Panneer Chelvam and L. L. Raja, “Computational modeling of the effect of electron injection into a direct-current microdischarge,” Journal of Applied Physics 118, 243301 (2015). [11 pages]
  67. D. Levko and L. L. Raja, “Early stage time evolution of a dense nanosecond microdischarge used in fast optical switching applications,” Physics of Plasmas 22, 123518 (2016). [7 pages]
  68. D. Levko and L. L. Raja, “Influence of emitter temperature on the energy deposition in a low-pressure plasma,” Physics of Plasmas 23, 032107 (2016). [8 pages]
  69. D. Levko and L. L. Raja, “Response to “Comment on ‘Early stage time evolution of a dense nanosecond microdischarge used in fast optical switching applications’” [Phys. Plasmas 23, 034705 (2016)],” Physics of Plasmas 23, 034706 (2016). [2 pages]
  70. D. Levko and L. L. Raja “Particle-in-cell modeling of gas-confined barrier discharge, Physics of Plasmas 23, 043502 (2016). [6 pages]
  71. D. Levko and L. L. Raja, “Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen,” Journal of Applied Physics 119, 153301 (2016). [7 pages]
  72. D. Levko and L. L. Raja, “Influence of field emission on microwave microdischarges,” High Voltage 1, 57 (2016). [3 pages]
  73. D. Levko and L. L. Raja “Electron kinetics in atmospheric-pressure argon and nitrogen microwave microdischarge,” Journal of Applied Physics 119, 163303 (2016). [10 pages]
  74. D. Levko, A. Sharma, L. L. Raja, “Microwave plasmas generated in bubbles immersed in liquids for hydrocarbons reforming,” Journal of Physics D: Applied Physics 49, 22LT01 (2016). [7 pages]
  75. D. Levko, A. Sharma, L. L. Raja, “Plasmas generated in bubbles immersed in liquids: direct current streamers vs. microwave plasma,” Journal of Physics D: Applied Physics 49, 285205 (2016) [10 pages].
  76. D. Levko and L. L. Raja, “Fluid modeling of a high-voltage nanosecond pulsed xenon microdischarge,” Physics of Plasmas 23, 073513 (2016) [5 pages].
  77. P. Paneer Chelvam, L. L. Raja, and R. R. Upadhyay, “Computational modeling of a single microdischarge interactions with high frequency electromagnetic waves,” Journal of Physics D: Applied Physics 49, 345501 (2016). [11 pages].
  78. K. Kourtzanidis and L. L. Raja, “On the accuracy of the rate coefficients used in plasmas fluid models forbreakdown in air,” Physics of Plasmas 23, 074503 (2016). [4 pages]
  79. K. Kourtzanidis, D. Pederson, and L. L. Raja, “Active electromagnetic energy flow control with a tunable and reconfigurable coupled plasma split-ring resonator metamaterial: Influence of basic conditions and configurations,” Journal of Applied Physics 119, 204904 (2016). [10 pages]
  80. A. Sharma, D. Levko, L. L. Raja, and M.-S. Cha, “Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubbles suspended in distilled water under saturated vapor pressure conditions” Journal of Physics D: Applied Physics 49, 395205 (2016). [22 pages]
  81. A. Sharma, D. Levko, and L. L. Raja, “Effect of oxygen impurities on atmospheric-pressure surface streamer discharge in argon for large gap breakdown,” Physics of Plasmas 23, 103501 (2016). [11 pages]
  82. D. Levko and L. L. Raja, “Effect of negative gases admixture on the stability of beam-driven discharges,” Plasma Sources Science and Technology 25, 064003 (2016). [7 pages]
  83. D. Levko, A. Sharma, and L. L. Raja, “Non-thermal plasma ethanol reforming in bubbles immersed in liquids,” Journal of Physics D: Applied Physics 50, 085202 (2017). [15 pages]
  84. D. Levko and L. L. Raja, “Fluid vs. global model approach for the modeling of active species production by streamer discharge,” Plasma Sources Science and Technology 26, 035003 (2017). [16 pages]
  85. D. Levko and L. L. Raja, “Magnetized direct current microdischarge I: Effect of the gas pressure,” Journal of Applied Physics 121, 093302 (2017). [9 pages].
  86. D. Levko and L. L. Raja, “Magnetized direct current microdischarge II: Effect of magnetic field amplitude on the plasma,” Journal of Applied Physics 121, 093303 (2017). [6 pages]
  87. K. Kourtzanidis and L. L. Raja, “Analysis and characterization of microwave plasma generated with rectangular all-dielectric resonators,” Plasma Sources Science and Technology 26, 045007 (2017). [13 pages]
  88. K. Kourtzanidis and L. L. Raja, “Three-electrode sliding nanosecond dielectric barrier discharge actuator: modeling and physics,” AIAA Journal 55, 1393 (2017). [12 pages]
  89. D. Levko and L. L. Raja, “Kinetic effects during the interaction between high density microplasma and electromagnetic wave,” Physics of Plasmas 24, 043509 (2017). [7 pages]
  90. V. Subramaniam and L. L. Raja, “Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators,” Physics of Plasmas 24, 062507 (2017). [12 pages]
  91. M.V. Pachuilo, F. Stefani, R. D. Bengtson, D. Dipti, R. Srivastava, and L. L. Raja, “Dynamics of surface streamer plasmas at atmospheric pressure: Mixture of argon and methane, IEEE Transactions on Plasma Science 45, 1776 (2017). [12 pages]
  92. Y-J. Choi, M. Gray, J. Sirohi, and L. L. Raja, “Effect of electrode configuration and arc structure on a rail plasma actuator,” Journal of Physics D: Applied Physics 50, 355203 (2017). [15 pages]
  93. D. Levko and L. L. Raja, “Particle-in-cell modeling of streamer branching in CO2 gas,” Journal of Physics D: Applied Physics 50, 354004 (2017). [10 pages]
  94. D. Levko, M. Pachuilo, and L. L. Raja, “Population of vibrational levels of carbon dioxide by cylindrical fast ionization wave,” Physics of Plasmas 24, 093513 (2017). [9 pages]
  95. D. Levko and L. L. Raja, “The effect of electron processes on metal walls in the magnetized microdischarge,” Journal of Applied Physics 122, 163301 (2017). [7 pages]
  96. P. Panneer Chelvam and L. L. Raja, “Modeling of gas breakdown and early transients of plasma evolution in cylindrical all-dielectric resonators”, Journal of Physics D: Applied Physics 50, 474003 (2017). [11 pages]
  97. D. Levko and L. L. Raja, “On the production of energetic electrons at the negative streamer head at moderate overvoltage,” Physics of Plasmas 25, 124503 (2017). [4 pages]
  98. T. Iwao, P. L. G. Ventzek, R. Upadhyay, L. L. Raja, H. Ueda, and K. Ishibashi, “Measurements and modeling of the impact of radical recombination on silicon nitride growth in microwave plasma assisted atomic layer deposition,” Journal of Vacuum Science and Technology A 36, 01A111 (2018). [9 pages]
  99. D. Levko and L. L. Raja, “High-voltage microdischarge as a source of extreme density plasma,” Physics of Plasmas 25, 013509 (2018). [9 pages]
  100. V. Subramaniam, T. C. Underwood, L. L. Raja, and M. A. Cappelli, “Computational and experimental investigation of plasma deflagration jets and detonation shocks in coaxial plasma accelerators” Plasma Sources Science and Technology 27, 025016 (2018). [14 pages]
  101. D. Levko, A. Sharma, and L. L. Raja, “Kinetic modeling of streamer penetration into de-ionized water,” Physics of Plasmas 25, 033515 (2018). [7 pages]
  102. L.L. Raja, A. Bourdon, and P. L. G. Ventzek, “Editorial: Recent advances in the modeling and computer simulations of non-equilibrium plasma discharges,” Journal of Physics D: Applied Physics 51, 150202 (2018). [5 pages]
  103. V. Subramaniam, P. Paneerchelvam, and L. L. Raja, “Modeling of thermalization phenomena in coaxial plasma accelerators,” Journal of Physics D: Applied Physics 51, 215203 (2018). [17 pages]
  104. Y-J. Choi, M. Gray, J. Sirohi, and L. L. Raja, “Static stall alleviation using a rail plasma actuator,” Journal of Physics D: Applied Physics 51, 263201 (2018). [11 pages]
  105. V. Subramaniam and L. L. Raja, “A plasma-vacuum interface tracking algorithm for magnetohydrodynamic simulations of coaxial plasma accelerators,” Journal of Computational Physics 366, 207 (2018). [16 pages]
  106. M. Gray, Y-J. Choi, J. Sirohi, and L. L. Raja, “Study of the dynamic behavior of the rail plasma actuator arc,” Journal of Physics D: Applied Physics 51, 315203 (2018). [13 pages]
  107. D. Pederson, K. Kourtzanidis, L. L. Raja, “Nonlinear hydrodynamic effects in dense microplasmas interacting with microwaves,” Journal of Applied Physics 124, 043303 (2018). [9 pages]
  108. A. Zhang, R. Scarcelli, T. Wallner, D. Breden, A. Karpatne, L. L. Raja, I. Ekoto, and B. Wolk, “Numerical investigation of nanosecond pulsed discharge in air at above-atmospheric pressures,” Journal of Physics D: Applied Physics 51, 345201 (2018). [13 pages]
  109. R. Scarcelli, T. Wallner, S. Som, S. Biswas, I. Ekoto, D. Breden, A. Karpatne, and L. L. Raja, “Modeling non-equilibrium discharge and validating transient plasma characteristics at above-atmospheric pressure, Plasma Sources Science and Technology 27, 124006 (2018). [13 pages]
  110. A. Karpatne, D. Breden, L. L. Raja, “Simulation of arc quenching in hermetically sealed electric vehicle relays,” SAE International Journal of Passenger Cars 11, 150 (2018). [8 pages]
  111. D. Breden, C. A. Idicheria, S.-H. Keum, P. M. Najt, L. L. Raja, “Modeling of a dielectric-barrier discharge cold plasma combustion ignition system,” IEEE Transactions on Plasma Science 47, 410 (2019). [9 pages]
  112. D. Levko and L. L. Raja, “Microwave microplasma parameters at extremely high driving frequencies,” Physics of Plasmas 26, 014505 (2019). [5 pages]
  113. M. Gray, J. Sirohi, and L. L. Raja, “Effects of anode oxidation on dynamic behavior of a propagating arc magnetohydrodynamic actuator”, Plasma Research Express 1, 015014 (2019). [14 pages]
  114. A. Sharma, V. Subramaniam, E. Solmaz, and L. L. Raja, “Fully coupled modeling of nanosecond pulsed plasma assisted combustion,” Journal of Physics D: Applied Physics 52, 095204 (2019). [21 pages]
  115. T.C. Underwood, V. Subramaniam, W. M. Riedel, L. L. Raja, and M. A. Cappelli, “Effect of flow collisionality on ELM replication in plasma guns,” Fusion Engineering Design 144, 97 (2019). [10 pages]
  116. D.M. Pederson and L. L. Raja, “A stable finite-difference time-domain scheme for local time-stepping on an adaptive mesh,” Journal of Computational Physics 394, 456 (2019). [20 pages]
  117. Y. Kim and L. L. Raja, “Surface plasma discharge generated by spoof surface plasmon polariton excitation: a computational modeling study,” Journal of Physics D: Applied Physics 52, 445203 (2019). [18 pages]
  118. Y. Kim, D. Pederson, A Sharma, V. Subramaniam, and L. L. Raja, “Modeling of plasma combustion ignition on an electromagnetic wave driven metasurface,” Journal of Physics D: Applied Physics 53, 245202 (2020). [14 pages]
  119. D.M. Pederson and L. L. Raja, “The effect of strong oscillating magnetic fields on electron transport properties in high-frequency discharges,” Journal of Physics D: Applied Physics 53, 265203 (2020). [13 pages]
  120. D.M. Pederson, Y. Kim, and L. L. Raja, “Spoof plasmonic Brewster angle transmission for broadband electromagnetic energy squeezing in the microwave regime,” Journal of Applied Physics 128, 023101 (2020). [12 pages]
  121. E. Solmaz, S.-M. Ryu, J. Uh, and L. L. Raja, “Surface kinetics and feature scale particle model of SixNy atomic layer deposition using Si2Cl6 precursor,” Journal of Vacuum Science and Technology A 38, 052405 (2020). [14 pages]
  122. R.R. Upadhyay, K. Suzuki, L. L. Raja, P. L. G. Ventzek, and A. Ranjan, “Experimentally validated computations of simultaneous ion and fast neutral energy and angular distributions in a capacitively coupled plasma reactor,” Journal of Physics D: Applied Physics 53, 425209 (2020). [14 pages]
  123. V. Cruccolini, R. Scarcelli, M. Battistoni, C. N. Grimaldi, M. A. Dal Re, D. Breden, and L. L. Raja, “Multidimensional modeling of non-equilibrium plasma generated by a radio-frequency corona discharge,” Plasma Sources Science and Technology 29, 115013 (2020). [15 pages]
  124. D. Levko and L. L. Raja, “Computational analysis of gas breakdown modes in direct current micro-plasmas at elevated pressures,” Journal of Applied Physics 128, 233301 (2020). [10 pages]
  125. V. Gururanjan, R. Scarcelli, A. Karpatne, D. Breden, L. L. Raja, S. Biswas, and I. Ekoto, “A computational study of thermodynamic conditions leading to autoignition in nanosecond pulsed discharges, Journal of Engineering for Gas Turbines and Power 143, (2021).
  126. A. Karpatne, A. Sharma, J. Sirohi, and L. L. Raja, “Computational study of a novel microwave excited plasma sensor for aerodynamic flows,” Journal of Applied Physics 129, 084503 (2021). [16 pages]
  127. D. Levko and L. L. Raja, “Self-pulsing of direct current discharge in planar and curved geometries,” Journal of Physics D: Applied Physics 54, 235201 (2021). [11 pages]
  128. E. Solmaz, D. Levko, and L. L. Raja, “Particle-In-Cell Monte-Carlo collision modeling of non-ideal effects in wave-heated dense microplasmas”, Physics of Plasmas 28, 042706 (2021). [13 pages]
  129. D. Levko, R. R. Upadhyay, and L. L. Raja, “Operating modes of a magnetized direct-current high-pressure discharge in helium,” Journal of Applied Physics 129, 183307 (2021). [10 pages]
  130. D. Levko, R. R. Upadhyay, A. Karpatne, D. Breden, K. Suzuki, V. Topalian, C. Shukla, and L. L. Raja, “VizGrain: A new computational tool for particle simulation of reactive plasma discharges and rarefied flow physics,” Plasma Sources Science and Technology 30, 055012 (2021). [19 pages]
  131. B. Lane, R. C. Longo, L. L. Raja, A. Ranjan, P. L. G. Ventzek, “Atomic layer etching of organic polymers,” ACS Applied Polymer Materials 3, 3636-3648 (2021). [12 pages]
  132. D. Levko, C. Shukla, R. R. Upadhyay, and L. L. Raja, “Computational study of plasma dynamics and reactive chemistry in a low-pressure inductively coupled CF4/O2 plasma,” Journal of Vacuum Science and Technology B 39, 042202 (2021). [14 pages]
  133. S. Thirupathiraj, S.-M. Ryu, J. Uh, and L. L. Raja, “Direct-simulation Monte-Carlo modeling of reactor-scale gas-dynamic phenomena in a multi-wafer atomic-layer deposition batch reactor,” Journal of Vacuum Science and Technology A 39, 052404 (2021). [12 pages]
  134.  A. Sharma, R. R. Upadhyay, A. Karpatne, V. Subramaniam, D. Breden, and L. L. Raja, “Modeling of atmospheric gas-stream processing using a microwave excited all-dielectric resonant plasma discharge,” Journal of Physics D: Applied Physics 54, 434005 (2021).  [16 pages]
  135. D. Levko and L. L. Raja, “Fluid modeling of inductively coupled iodine plasma for electric propulsion conditions,” Journal of Applied Physics 130, 173302 (2021). [11 pages]
  136. D. Levko, C. Shukla, and L. L. Raja, “Modeling the effect of stochastic heating and surface chemistry in a pure CF4 inductively coupled plasma,” Journal of Vacuum Science and Technology B 39, 062204 (2021). [11 pages]
  137. D. Levko, C. Shukla, and K. Suzuki, and L. L. Raja, “Plasma kinetics of c-C4F8 inductively coupled plasma revisited,” Journal of Vacuum Science and Technology B 40, 022203 (2022). [19 pages]
  138. D. Levko, R. R. Upadhyay, L. L. Raja, A. Ranjan, and P. Ventzek, “Influence of electron energy distribution on fluid models of a low-pressure inductively coupled plasma discharge,” Physics of Plasmas 29, 043510 (2022). [8 pages]
  139. D. Levko and L. L. Raja, “Optimization of silicon etch rate in a CF4/Ar/O2 inductively coupled plasma,” Journal of Vacuum Science and Technology B 40, 032203 (2022). [11 pages]
  140. D. Levko, V. Subramaniam, and L. L. Raja, “Transient phenomena during dense argon micro-plasma formation,” Journal of Physics D: Applied Physics 55, 345204 (2022). [7 pages]
  141. Y. Kim, R. Scarcelli, A. Karpatne, V. Subramaniam, D. Breden, L. L. Raja, J. Zhai, and S.-Y. Lee, “Numerical investigation of the spark discharge process in a crossflow,” Journal of Physics D: Applied Physics 55, 495502 (2022).
  142. D. Levko and L. L. Raja, “Influence of the electron field emission on the magnetized direct current high-pressure discharge,” Journal of Applied Physics 132, 243301 (2022). [8 pages]
  143. D. Levko, R. R. Upadhyay, K. Suzuki, and L. L. Raja, “Limitations of the independent control of ion flux and energy distribution function in high-density inductively coupled chlorine plasmas,” Journal of Vacuum Science and Technology B 41, 012205 (2023). [10 pages]
  144. D. Levko and L. L. Raja, “Computational analysis of electrical breakdown of SF6/N2 mixtures, Journal of Applied Physics 133, 053301 (2023).  DOI10.1063/5.0131780 [  ]
  145. E. Solmaz, D. Levko, and L. L. Raja, “Investigation of the significance of excited species in wave-heated dense non-ideal microplasmas using particle-in-cell Monte Carlo-collision modeling,” AIP Advances 13, 065009 (2023). DOI10.1063/5.0152887 [ ]
  146. D. Levko and L. L. Raja, “Kinetics of the fast ionization waves with runaway electrons,” Physics of Plasmas 30, 073502 (2023). DOI10.1063/5.0155025 [ ].
  147. D. Levko and L. L. Raja, “Silicon etching by chlorine plasma: validation of surface reactions mechanism,” Journal of Vacuum Science and Technology B 41, 042205 (2023).  DOI10.1116/6.0002608 [ ].
  148. D. Levko and L. L. Raja, “Gas heating by inductively coupled low-pressure chlorine process plasmas,” Plasma Sources Science and Technology 32, 125008 (2023). https://doi.org/10.1088/1361-6595/ad12dd  [10 pages]
  149. J. P. Barbarena-Valencia and L. L. Raja, “3-D modeling study of remote microwave NH3/N2 plasma for wafer native oxide cleaning process,” Journal of Vacuum Science and Technology A 42, 033005 (2024). https://doi.org/10.1116/6.0003415  [19 pages]
  150. D. Levko and L. L. Raja, “Influence of the Dufour effect on striations formation in radio-frequency discharges,” Physics of Plasmas 31, 043504 (2024). https://doi.org/10.1063/5.0175188  [9 pages]
  151. J. Lee and L. L. Raja, “Computational study of a helium-propellant microwave electrothermal thruster,” Journal of Applied Physics 135, 173304 (2024).  doi: 10.1063/5.0190223 [18 pages]