Our team receives the NASA JSC Ellite Team Award for contributions on the design of Valkyrie
N Steps with Phase Space Planning and Whole-Body Operational Space Control
IHMC Gets Valkyrie to Walk and Perform One Leg Balance. Valkyrie was designed by NASA JSC in collaboration with our lab at UT Austin
The Valkyrie robot at IHMC taking some steps and doing one legged balance routine. The robot is designed and built by NASA JSC in collaboration with the University of Texas at Austin. Control algorithms by IHMC. Funding for IHMC and UT Austin provided through the NSF/NASA National Robotics Initiative.
Towards Attractor Based Dynamic Stepping
In this video we show improvements on phase-space dynamic walking based on using an absolute return frame and the addition of Coriolis/centrifugal effects. The description of the planner can be found on Arxiv Preprint
IHMC NASA JSC X1 Exoskeleton Powered with UT-SEA Ankles
The Human Centered Robotics laboratory at UT Austin has collaborated with IHMC and NASA to integrate the high performance UT-SEA actuator in the X1 Exoskeleton assistive exoskeleton. The high power to weight ratio of the UT-SEA actuator provides a practical lightweight solution for wearable exoskeletons while fulfilling the demands on delivering high torques needed for walking assistance and rehabilitation.
Full-Body Collision Detection and Reaction with Omnidirectional Mobile Platforms: A Step Towards Safe Human-Robot Interaction
Arxiv Preprint. In the video below, we develop estimation and control methods for quickly reacting to collisions between omnidirectional mobile platforms and their environment. To enable the full-body detection of external forces, we use torque sensors located in the robot’s drivetrain. Using model based techniques we estimate the location, direction, and magnitude of collision forces, and we develop an admittance controller that achieves a low effective mass in reaction to them. For experimental testing, we use a facility containing a calibrated collision dummy and our holonomic mobile platform.
Hume Biped Robot Performing Balance on Split Terrain and Undirected Walking
Arxiv Preprint. The first experiment, shows the Hume biped robot balancing on a high pitch split terrain with and without push disturbances. We implement a Whole-Body Operational Space Controller to compute joint torques consistent with a desired set of operational space accelerations, known contact constraints, and desired internal forces. The internal forces, during multi- contact, correspond to the linear subspace of joint torques that do not cause accelerations of the robot. For undirected walking, Hume continuously steps forward and backward to remain balance. To accomplish this capability, we feed foot trajectories from an algorithm called Continuous Time to Velocity Reversal Online Planner. The planner continuously calculates new trajectories for the feet in an online fashion to recover from disturbances.