This video shows various experiments of the control of UT Austin’s humanoid Meka robot. We demonstrate prioritized torque control strategies, addressing hand position tasks and dynamically compensated posture optimization. In particular, the main contribution of the experiments is the ability to optimize posture performance by dynamically compensating the postural mass matrix with the task’s null space matrix.
Compliant Control Experiments on the Meka Robot
Collaborative implementation of compliant control with Stanford Univ. and Willow Garage. Three experiments are shown: (a) gravity effort compensation to validate the robot’s dynamic and kinematic model, (b) dynamically weighted posture control to demonstrate the validity of the mass/inertia matrix, and (c) operational space compliant control in the vertical and Sagittal directions to demostrate the ability to respond to the environment using the tool.
Testing of Fluidic Muscles
A series of experiments to validate the capabilities of a high force compliant fluidic actuator in terms of tracking bandwidth, stiffness regulation, gravity compensation, and torque control.