Zahr N, Sullivan E, Pohl K, and Pfefferbaum A. “Age differences in brain structural and metabolic responses to binge ethanol exposure in fisher 344 rats.” Neuropsychopharmacology , 46, 2, Pp. 368-379. Publisher’s Version
Abstract
An overarching goal of our research has been to develop a valid animal model of alcoholism with similar imaging phenotypes as those observed in humans with the ultimate objective of assessing the effectiveness of pharmacological agents. In contrast to our findings in humans with alcohol use disorders (AUD), our animal model experiments have not demonstrated enduring brain pathology despite chronic, high ethanol (EtOH) exposure protocols. Relative to healthy controls, older individuals with AUD demonstrate accelerating brain tissue loss with advanced age. Thus, this longitudinally controlled study was conducted in 4-month old (equivalent to ~16-year-old humans) and 17-month old (equivalent to ~45-year-old humans) male and female Fisher 344 rats to test the hypothesis that following equivalent alcohol exposure protocols, older relative to younger animals would exhibit more brain changes as evaluated using in vivo structural magnetic resonance imaging (MRI) and MR spectroscopy (MRS). At baseline, total brain volume as well as the volumes of each of the three constituent tissue types (i.e., cerebral spinal fluid (CSF), gray matter, white matter) were greater in old relative to young rats. Baseline metabolite levels (except for glutathione) were higher in older than younger animals. Effects of binge EtOH exposure on brain volumes and neurometabolites replicated our previous findings in Wistar rats and included ventricular enlargement and reduced MRS-derived creatine levels. Brain changes in response to binge EtOH treatment were more pronounced in young relative to older animals, negating our hypothesis. Higher baseline glutathione levels in female than male rats suggest that female rats are perhaps protected against the more pronounced changes in CSF and gray matter volumes observed in male rats due to superior metabolic homeostasis mechanisms. Additional metabolite changes including low inositol levels in response to high blood alcohol levels support a mechanism of reversible osmolarity disturbances due to temporarily altered brain energy metabolism.
Mason BJ and Heyser CJ. “Alcohol use disorder: the role of medication in recovery.” Alcohol Research, 41, 1, Pp. 7. Publisher’s Version
Abstract
The misuse of alcohol in the United States continues to take a large toll on society, resulting in the deaths of about 88,000 Americans per year. Moreover, it is estimated that nearly 14.6 million Americans currently meet diagnostic criteria for current alcohol use disorder (AUD). However, very few individuals receive treatment, with an even smaller portion receiving medications approved by the U.S. Food and Drug Administration (FDA) for the treatment of AUD, despite scientifically rigorous evidence showing the benefits of combining medication approved for treating AUD with evidence-based behavioral therapy. These benefits include higher rates of abstinence and less risk of relapse to heavy drinking, with associated improvements in medical and mental health and in quality of life. This review provides an overview of FDA-approved medications and “off-label” drugs for the treatment of AUD. The article emphasizes that AUD medical advice and prescription recommendations should come from professionals with training in the treatment of AUD and that treatment plans should consider medication in conjunction with evidence-based behavioral therapy. Finally, this review notes the limited number of medications available and the continued need for the development of new pharmacotherapies to optimize AUD recovery goals
Rao X, Thapa KS, Chen AB, Lin H, Gao H, Reiter JL, Hargreaves KA, Ipe J, Lai D, Xuei X, Wang Y, Gu H, Kapoor M, Farris SP, Tischfield J, Foroud T, Goate AM, Skaar TC, Mayfield RD, Edenberg HJ, and Liu Y. “Allele-specific expression and high-throughput reporter assay reveal functional genetic variants associated with alcohol use disorders..” Molecular psychiatry, 26, 4. Publisher’s Version
Abstract
Genome-wide association studies (GWAS) of complex traits, such as alcohol use disorders (AUD), usually identify variants in non-coding regions and cannot by themselves distinguish whether the associated variants are functional or in linkage disequilibrium with the functional variants. Transcriptome studies can identify genes whose expression differs between alcoholics and controls. To test which variants associated with AUD may cause expression differences, we integrated data from deep RNA-seq and GWAS of four postmortem brain regions from 30 subjects with AUD and 30 controls to analyze allele-specific expression (ASE). We identified 88 genes with differential ASE in subjects with AUD compared to controls. Next, to test one potential mechanism contributing to the differential ASE, we analyzed single nucleotide polymorphisms (SNPs) in the 3′ untranslated regions (3’UTR) of these genes. Of the 88 genes with differential ASE, 61 genes contained 437 SNPs in the 3’UTR with at least one heterozygote among the subjects studied. Using a modified PASSPORT-seq (parallel assessment of polymorphisms in miRNA target-sites by sequencing) assay, we identified 25 SNPs that affected RNA levels in a consistent manner in two neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Many of these SNPs are in binding sites of miRNAs and RNA-binding proteins, indicating that these SNPs are likely causal variants of AUD-associated differential ASE. In sum, we demonstrate that a combination of computational and experimental approaches provides a powerful strategy to uncover functionally relevant variants associated with the risk for AUD.
Sullivan E, Zhao Q, Pohl K, Zahr N, and Pfefferbaum A. “Attenuated cerebral blood flow in frontolimbic and insular cortices in alcohol use disorder: relation to working memory.” J Psychiatr Res , 136, Pp. 140-148. Publisher’s Version
Abstract
Chronic, excessive alcohol consumption is associated with cerebrovascular hypoperfusion, which has the potential to interfere with cognitive processes. Magnetic resonance pulsed continuous arterial spin labeling (PCASL) provides a noninvasive approach for measuring regional cerebral blood flow (CBF) and was used to study 24 men and women with Alcohol Use Disorder (AUD) and 20 age- and sex-matched controls. Two analysis approaches tested group differences: a data-driven, regionally-free method to test for group differences on a voxel-by-voxel basis and a region of interest (ROI) approach, which focused quantification on atlas-determined brain structures. Whole-brain, voxel-wise quantification identified low AUD-related cerebral perfusion in large volumes of medial frontal and cingulate cortices. The ROI analysis also identified lower CBF in the AUD group relative to the control group in medial frontal, anterior/middle cingulate, insular, and hippocampal/amygdala ROIs. Further, years of AUD diagnosis negatively correlated with temporal cortical CBF, and scores on an alcohol withdrawal scale negatively correlated with posterior cingulate and occipital gray matter CBF. Regional volume deficits did not account for AUD CBF deficits. Functional relevance of attenuated regional CBF in the AUD group emerged with positive correlations between episodic working memory test scores and anterior/middle cingulum, insula, and thalamus CBF. The frontolimbic and insular cortical neuroconstellation with dampened perfusion suggests a mechanism of dysfunction associated with these brain regions in AUD.
Keywords: ASL; Alcohol; Cerebral blood flow; Perfusion; Working memory.
Coles C and Lasek AW. “Binge-like ethanol drinking increases Otx2, Wnt1, and Mdk gene expression in the ventral tegmental area of adult mice.” Neurosci Insights , 16. Publisher’s Version
Abstract
Alcohol use disorder is associated with pathophysiological changes in the dopaminergic system. Orthodenticle homeobox 2 (OTX2) is a transcription factor important for the development of dopaminergic neurons residing in the ventral tegmental area (VTA), a critical region of the brain involved in drug reinforcement. Previous studies have demonstrated that ethanol exposure during embryonic development reduces Otx2 mRNA levels in the central nervous system. We hypothesized that levels of OTX2 would be altered by binge-like ethanol consumption in adult animals. To test this, Otx2 mRNA and protein levels in the mouse VTA were measured by quantitative real-time PCR and western blotting, respectively, after mice drank ethanol for 4 days in a procedure that elicits binge levels of ethanol consumption (drinking in the dark). Expression of known and putative OTX2 transcriptional target genes (Sema3c, Wnt1, and Mdk) were also measured in the VTA after ethanol drinking. Otx2 mRNA and protein levels were elevated in the VTA 24 hours after the fourth drinking session and there was a corresponding increase in the expression of Mdk transcript. Interestingly, Wnt1 transcript was elevated in the VTA immediately after the fourth drinking session but returned to control levels 24 hours later. We next investigated if viral-mediated reduction of Otx2 in the mouse VTA would alter ethanol or sucrose intake. Lentiviral vectors expressing a shRNA targeting Otx2 or a control shRNA were injected into the VTA and mice were tested in the drinking in the dark protocol for ethanol and sucrose drinking. Reducing levels of OTX2 in the VTA did not alter ethanol or sucrose consumption. One limitation is that the extent of OTX2 reduction may not have been sufficient. Although OTX2 in the VTA may not play a role in binge-like drinking in adult mice, OTX2 could contribute to ethanol-induced transcriptional changes in this region.
Erickson EK, Da Costa AJ, Mason SC, Blednov YA, Mayfield RD, and Harris RA. “Cortical astrocytes regulate ethanol consumption and intoxication in mice. Neuropsychopharmacology..” Neuropsychopharmacology. Publisher’s Version
Abstract
Astrocytes are fundamental building blocks of the central nervous system. Their dysfunction has been implicated in many psychiatric disorders, including alcohol use disorder, yet our understanding of their functional role in ethanol intoxication and consumption is very limited. Astrocytes regulate behavior through multiple intracellular signaling pathways, including G-protein coupled-receptor (GPCR)-mediated calcium signals. To test the hypothesis that GPCR-induced calcium signaling is also involved in the behavioral effects of ethanol, we expressed astrocyte-specific excitatory DREADDs in the prefrontal cortex (PFC) of mice. Activating Gq-GPCR signaling in PFC astrocytes increased drinking in ethanol-naïve mice, but not in mice with a history of ethanol drinking. In contrast, reducing calcium signaling with an astrocyte-specific calcium extruder reduced ethanol intake. Cortical astrocyte calcium signaling also altered the acute stimulatory and sedative-hypnotic effects of ethanol. Astrocyte-specific Gq-DREADD activation increased both the locomotor-activating effects of low dose ethanol and the sedative-hypnotic effects of a high dose, while reduced astrocyte calcium signaling diminished sensitivity to the hypnotic effects. In addition, we found that adenosine A1 receptors were required for astrocyte calcium activation to increase ethanol sedation. These results support integral roles for PFC astrocytes in the behavioral actions of ethanol that are due, at least in part, to adenosine receptor activation.
Blednov YA, Da Costa A, Mayfield J, Harris RA, and Messing RO. “Deletion of Tlr3 reduces acute tolerance to alcohol and alcohol consumption in the intermittent access procedure in male mice..” Addict Biology, 30, Pp. e12932. Publisher’s Version
Abstract
Pharmacological studies implicate toll‐like receptor 3 (TLR3) signaling in alcohol drinking. We examined the role of TLR3 in behavioral responses to alcohol and GABAergic drugs by studying Tlr3 −/− mice. Because of opposing signaling between TLR3 and MyD88 pathways, we also evaluated Myd88 −/− mice. Ethanol consumption and preference decreased in male but not in female Tlr3 −/− mice during two‐bottle choice every‐other‐day (2BC‐EOD) drinking. There were no genotype differences in either sex during continuous or limited‐access drinking. Null mutations in Tlr3 or Myd88 did not alter conditioned taste aversion to alcohol and had small or no effects on conditioned place preference. The Tlr3 null mutation did not alter acute alcohol withdrawal. Male, but not female, Tlr3 −/− mice took longer than wild‐type littermates to recover from ataxia by ethanol or diazepam and longer to recover from sedative‐hypnotic effects of ethanol or gaboxadol, indicating regulation of GABAergic signaling by TLR3. Acute functional tolerance (AFT) to alcohol‐induced ataxia was decreased in Tlr3 −/− mice but was increased in Myd88 −/− mice. Thus, MyD88 and TLR3 pathways coordinately regulate alcohol consumption and tolerance to intoxicating doses of alcohol and GABAergic drugs. Despite similar alcohol metabolism and similar amounts of total alcohol consumed during 2BC and 2BC‐EOD procedures in C57BL/6J mice, only 2BC‐EOD drinking induced tolerance to alcohol‐induced ataxia. Ataxia recovery was inversely correlated with level of drinking in wild‐type and Tlr3 −/− littermates. Thus, deleting Tlr3 reduces alcohol consumption by reducing AFT to alcohol and not by altering tolerance induced by 2BC‐EOD drinking.
Blednov YA, Da Costa A, Mayfield J, Harris RA, and Messing RO. “Deletion of Tlr3 reduces acute tolerance to alcohol and alcohol consumption in the intermittent access procedure in male mice.” Addict Biol, 26, 2. Publisher’s Version
Abstract
Pharmacological studies implicate toll-like receptor 3 (TLR3) signaling in alcohol drinking. We examined the role of TLR3 in behavioral responses to alcohol and GABAergic drugs by studying Tlr3 -/- mice. Because of opposing signaling between TLR3 and MyD88 pathways, we also evaluated Myd88 -/- mice. Ethanol consumption and preference decreased in male but not in female Tlr3 -/- mice during two-bottle choice every-other-day (2BC-EOD) drinking. There were no genotype differences in either sex during continuous or limited-access drinking. Null mutations in Tlr3 or Myd88 did not alter conditioned taste aversion to alcohol and had small or no effects on conditioned place preference. The Tlr3 null mutation did not alter acute alcohol withdrawal. Male, but not female, Tlr3 -/- mice took longer than wild-type littermates to recover from ataxia by ethanol or diazepam and longer to recover from sedative-hypnotic effects of ethanol or gaboxadol, indicating regulation of GABAergic signaling by TLR3. Acute functional tolerance (AFT) to alcohol-induced ataxia was decreased in Tlr3 -/- mice but was increased in Myd88 -/- mice. Thus, MyD88 and TLR3 pathways coordinately regulate alcohol consumption and tolerance to intoxicating doses of alcohol and GABAergic drugs. Despite similar alcohol metabolism and similar amounts of total alcohol consumed during 2BC and 2BC-EOD procedures in C57BL/6J mice, only 2BC-EOD drinking induced tolerance to alcohol-induced ataxia. Ataxia recovery was inversely correlated with level of drinking in wild-type and Tlr3 -/- littermates. Thus, deleting Tlr3 reduces alcohol consumption by reducing AFT to alcohol and not by altering tolerance induced by 2BC-EOD drinking.
Keywords: MyD88; TLR3; acute tolerance; ethanol consumption; knockout mice; rotarod ataxia.
Walter N, Cervera-Juanes R, Zheng C, Darakjian P, Lockwood D, Cuzon-Carlson V, Ray K, Fei S, Conrad D, Searles R, Grant K, and Hitzemann R. “Effect of chronic ethanol consumption in rhesus macaques on the nucleus accumbens core transcriptome.” Addiction Biology, 26, 5, Pp. e13021. Publisher’s Version
Abstract
The nucleus accumbens core (NAcc) has been repeatedly demonstrated to be a key component of the circuitry associated with excessive ethanol consumption. Previous studies have illustrated that in a nonhuman primate (NHP) model of chronic ethanol consumption, there is significant epigenetic remodeling of the NAcc. In the current study, RNA-Seq was used to examine genome-wide gene expression in eight each of control, low/binge (LD*), and high/very high (HD*) rhesus macaque drinkers. Using an FDR < 0.05, zero genes were significantly differentially expressed (DE) between LD* and controls, six genes between HD* and LD*, and 734 genes between HD* and controls. Focusing on HD* versus control DE genes, the upregulated genes (N = 366) were enriched in genes with annotations associated with signal recognition particle (SRP)-dependent co-translational protein targeting to membrane (FDR < 3 × 10−59), structural constituent of ribosome (FDR < 3 × 10−47), and ribosomal subunit (FDR < 5 × 10−48). Downregulated genes (N = 363) were enriched in annotations associated with behavior (FDR < 2 × 10−4), membrane organization (FDR < 1 × 10−4), inorganic cation transmembrane transporter activity (FDR < 2 × 10−3), synapse part (FDR < 4 × 10−10), glutamatergic synapse (FDR < 1 × 10−6), and GABAergic synapse (FDR < 6 × 10−4). Ingenuity Pathway Analysis (IPA) revealed that EIF2 signaling and mTOR pathways were significantly upregulated in HD* animals (FDR < 3 × 10−33 and <2 × 10−16, respectively). Overall, the data supported our working hypothesis; excessive consumption would be associated with transcriptional differences in GABA/glutamate-related genes.
Benvenuti F, Cannella N, Stopponi S, Soverchia L, Ubaldi M, Lunerti V, Vozella V, Cruz B, Roberto M, and Ciccocioppo R. “Effect of Glucocorticoid Receptor Antagonism on Alcohol Self-Administration in Genetically-Selected Marchigian Sardinian Alcohol-Preferring and Non-Preferring Wistar Rats.” Int J Mol Sci, 22, 8, Pp. 4184. Publisher’s Version
Abstract
Alcoholism is a chronically relapsing disorder characterized by high alcohol intake and a negative emotional state during abstinence, which contributes to excessive drinking and susceptibility to relapse. Stress, dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and alterations in glucocorticoid receptor (GR) function have been linked to transition from recreational consumption to alcohol use disorder (AUD). Here, we investigated the effect of pharmacological antagonisms of GR on alcohol self-administration (SA) using male and female Wistar and Marchigian Sardinian alcohol-preferring (msP) rats, a rodent line genetically selected for excessive alcohol drinking and highly sensitive to stress. Animals were trained to self-administer 10% (v/v) alcohol. Once a stable alcohol SA baseline was reached, we tested the effect of the GR antagonists mifepristone (0.0, 10, 30 and 60 mg/kg; i.p.) and CORT113176 (0.0, 10, 30 and 60 mg/kg) on alcohol SA. To evaluate whether the effects of the two compounds were specific for alcohol, the two drugs were tested on a similar saccharin SA regimen. Finally, basal blood corticosterone (CORT) levels before and after alcohol SA were determined. Systemic injection with mifepristone dose-dependently reduced alcohol SA in male and female Wistars but not in msPs. Administration of CORT113176 decreased alcohol SA in male and female Wistars as well as in female msPs but not in male msP rats. At the highest dose, mifepristone also reduced saccharin SA in male Wistars and female msPs, suggesting the occurrence of some nonspecific effects at 60 mg/kg of the drug. Similarly, the highest dose of CORT113176 (60 mg/kg) decreased saccharin intake in male Wistars. Analysis of CORT levels revealed that females of both rat lines had higher blood levels of CORT compared to males. Alcohol consumption reduced CORT in females but not in males. Overall, these findings indicate that selective blockade of GR selectively reduces alcohol SA, and genetically selected msP rats are less sensitive to this pharmacological manipulation compared to heterogeneous Wistars. Moreover, results suggest sex differences in response to GR antagonism and the ability of alcohol to regulate GR transmission.
Keywords: alcohol preferring rats; alcohol self-administration; alcohol use disorder; glucocorticoids; mifepristone; stress.
Farris SP and Mayfield RD. “Epigenetic and non-coding regulation of alcohol abuse and addiction..” International review of neurobiology, 156. Publisher’s Version
Abstract
Alcohol use disorder is a chronic debilitated condition adversely affecting the lives of millions of individuals throughout the modern world. Individuals suffering from an alcohol use disorder diagnosis frequently have serious cooccurring conditions, which often further exacerbates problematic drinking behavior. Comprehending the biochemical processes underlying the progression and perpetuation of disease is essential for mitigating maladaptive behavior in order to restore both physiological and psychological health. The range of cellular and biological systems contributing to, and affected by, alcohol use disorder and other comorbid disorders necessitates a fundamental grasp of intricate functional relationships that govern molecular biology. Epigenetic factors are recognized as essential mediators of cellular behavior, orchestrating a symphony of gene expression changes within multicellular environments that are ultimately responsible for directing human behavior. Understanding the epigenetic and transcriptional regulatory mechanisms involved in the pathogenesis of disease is important for improving available pharmacotherapies and reducing the incidence of alcohol abuse and cooccurring conditions.
Keywords: Addiction; Alcohol abuse; Epigenetics; Gene expression; Non-coding RNA.
Martins de Carvalho L, Chen WY, and Lasek AW Satta R, Hilderbrand ER. “Epigenetic mechanisms underlying stress-induced depression.” Int Rev Neurobiol , 156, Pp. 87-126. Publisher’s Version
Abstract
Stressful life events are a major contributor to the development of major depressive disorder. Environmental perturbations like stress change gene expression in the brain, leading to altered behavior. Gene expression is ultimately regulated by chromatin structure and the epigenetic modifications of DNA and the histone proteins that make up chromatin. Studies over the past two decades have demonstrated that stress alters the epigenetic landscape in several brain regions relevant for depressive-like behavior in rodents. This chapter will discuss epigenetic mechanisms of brain histone acetylation, histone methylation, and DNA methylation that contribute to adult stress-induced depressive-like behavior in rodents. Several biological themes have emerged from the examination of the brain transcriptome after stress such as alterations in the neuroimmune response, neurotrophic factors, and synaptic structure. The epigenetic mechanisms regulating these processes will be highlighted. Finally, pharmacological and genetic manipulations of epigenetic enzymes in rodent models of depression will be discussed as these approaches have demonstrated the ability to reverse stress-induced depressive-like behaviors and provide
Zamudio PA, Gioia DA, Lopez M, Homanics GE, and Woodward JJ. “The escalation in ethanol consumption following chronic intermittent ethanol exposure is blunted in mice expressing ethanol-resistant GluN1 or GluN2A NMDA receptor subunits..” Psychopharmacology , 238, 1, Pp. 271-279. Publisher’s Version
Abstract
N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels essential for glutamatergic transmission and plasticity. NMDARs are inhibited by acute ethanol and undergo brain region-specific adaptations after chronic alcohol exposure. In previous studies, we reported that knock-in mice expressing ethanol-insensitive GluN1 or GluN2A NMDAR subunits display altered behavioral responses to acute ethanol and genotype-dependent changes in drinking using protocols that do not produce dependence. A key unanswered question is whether the intrinsic ethanol sensitivity of NMDARs also plays a role in determining behavioral adaptations that accompany the development of dependence. To test this, we exposed mice to repeated cycles of chronic intermittent ethanol (CIE) vapor known to produce a robust escalation in ethanol consumption and preference. As expected, wild-type mice showed a significant increase from baseline in ethanol consumption and preference after each of the four weekly CIE cycles. In contrast, ethanol consumption in male GluN2A(A825W) mice was unchanged following cycles 1, 2, and 4 of CIE with a modest increase appearing after cycle 3. Wild-type and GluN2A(A825W) female mice did not show a clear or consistent escalation in ethanol consumption or preference following CIE treatment. In male GluN1(F639A) mice, the increase in ethanol consumption observed with their wild-type littermates was delayed until later cycles of exposure. These results suggest that the acute ethanol sensitivity of NMDARs especially those containing the GluN2A subunit may be a critical factor in the escalation of ethanol intake in alcohol dependence.
Jensen BE, Townsley KG, Grigsby KB, Metten P, Chand M, Uzoekwe M, Tran A, and Firsick E. “Ethanol-related behaviors in mouse lines selectively bred for drinking to intoxication.” Brain Sciences, 11, 2, Pp. 189. Publisher’s Version
Abstract
Alcohol use disorder (AUD) is a devastating psychiatric disorder that has significant wide-reaching effects on individuals and society. Selectively bred mouse lines are an effective means of exploring the genetic and neuronal mechanisms underlying AUD and such studies are translationally important for identifying treatment options. Here, we report on behavioral characterization of two replicate lines of mice that drink to intoxication, the High Drinking in the Dark (HDID)-1 and -2 mice, which have been selectively bred (20+ generations) for the primary phenotype of reaching high blood alcohol levels (BALs) during the drinking in the dark (DID) task, a binge-like drinking assay. Along with their genetically heterogenous progenitor line, Hs/Npt, we tested these mice on: DID and drinking in the light (DIL); temporal drinking patterns; ethanol sensitivity, through loss of righting reflex (LORR); and operant self-administration, including fixed ratio (FR1), fixed ratio 3:1 (FR3), extinction/reinstatement, and progressive ratio (PR). All mice consumed more ethanol during the dark than the light and both HDID lines consumed more ethanol than Hs/Npt during DIL and DID. In the dark, we found that the HDID lines achieved high blood alcohol levels early into a drinking session, suggesting that they exhibit front loading like drinking behavior in the absence of the chronicity usually required for such behavior. Surprisingly, HDID-1 (female and male) and HDID-2 (male) mice were more sensitive to the intoxicating effects of ethanol during the dark (as determined by LORR), while Hs/Npt (female and male) and HDID-2 (female) mice appeared less sensitive. We observed lower HDID-1 ethanol intake compared to either HDID-2 or Hs/Npt during operant ethanol self-administration. There were no genotype differences for either progressive ratio responding, or cue-induced ethanol reinstatement, though the latter is complicated by a lack of extinguished responding behavior. Taken together, these findings suggest that genes affecting one AUD-related behavior do not necessarily affect other AUD-related behaviors. Moreover, these findings highlight that alcohol-related behaviors can also differ between lines selectively bred for the same phenotype, and even between sexes within those same line.
Keywords: drinking in the dark; ethanol; mice; operant self-administration; selected lines; sensitivity to ethanol.
Baratta AM, Rathod RS, Plasil SL, Seth A, and Homanics GE. “Exposure to drugs of abuse induce effects that persist across generations.” Int Rev Neurobiol , 156, Pp. 217-277. Publisher’s Version
Abstract
Substance use disorders are highly prevalent and continue to be one of the leading causes of disability in the world. Notably, not all people who use addictive drugs develop a substance use disorder. Although substance use disorders are highly heritable, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Vulnerability to developing drug addiction depends on the interplay between genetics and environment. Additionally, evidence from the past decade has pointed to the role of epigenetic inheritance in drug addiction. This emerging field focuses on how environmental perturbations, including exposure to addictive drugs, induce epigenetic modifications that are transmitted to the embryo at fertilization and modify developmental gene expression programs to ultimately impact subsequent generations. This chapter highlights intergenerational and transgenerational phenotypes in offspring following a history of parental drug exposure. Special attention is paid to parental preconception exposure studies of five drugs of abuse (alcohol, cocaine, nicotine, cannabinoids, and opiates) and associated behavioral and physiological outcomes in offspring. The highlighted studies demonstrate that parental exposure to drugs of abuse has enduring effects that persist into subsequent generations. Understanding the contribution of epigenetic inheritance in drug addiction may provide clues for better treatments and therapies for substance use disorders
Vozella V, Cruz B, Natividad LA, Benvenuti F, Cannella N, Edwards S, Zorrilla EP, Ciccocioppo R, and Roberto M. “Glucocorticoid receptor antagonist mifepristone does not alter innate anxiety-like behavior in genetically-selected Marchigian Sardinian (msP) rats.” International Journal of Molecular Sciences, 22, 6, Pp. 3095. Publisher’s Version
Abstract
Marchigian Sardinian alcohol-preferring (msP) rats serve as a unique model of heightened alcohol preference and anxiety disorders. Their innate enhanced stress and poor stress-coping strategies are driven by a genetic polymorphism of the corticotropin-releasing factor receptor 1 (CRF1) in brain areas involved in glucocorticoid signaling. The activation of glucocorticoid receptors (GRs) regulates the stress response, making GRs a candidate target to treat stress and anxiety. Here, we examined whether mifepristone, a GR antagonist known to reduce alcohol drinking in dependent rats, decreases innate symptoms of anxiety in msPs. Male and female msPs were compared to non-selected Wistar counterparts across three separate behavioral tests. We assessed anxiety-like behavior via the novelty-induced hypophagia (NIH) assay. Since sleep disturbances and hyperarousal are common features of stress-related disorders, we measured sleeping patterns using the comprehensive lab monitoring system (CLAMS) and stress sensitivity using acoustic startle measures. Rats received an acute administration of vehicle or mifepristone (60 mg/kg) 90 min prior to testing on NIH, acoustic startle response, and CLAMS. Our results revealed that both male and female msPs display greater anxiety-like behaviors as well as enhanced acoustic startle responses compared to Wistar counterparts. Male msPs also displayed reduced sleeping bout duration versus Wistars, and female msPs displayed greater acoustic startle responses versus male msPs. Importantly, the enhanced anxiety-like behavior and startle responses were not reduced by mifepristone. Together, these findings suggest that increased expression of stress-related behaviors in msPs are not solely mediated by acute activation of GRs.
Figueroa AG, Benkwitz C, Surges G, Kunz N, Homanics GE, and Pearce RA. “Hippocampal β2-GABAA receptors mediate LTP suppression by etomidate and contribute to long-lasting feedback but not feedforward inhibition of pyramidal neurons..” J Neurophysiol , 126, 4, Pp. 1090-1100. Publisher’s Version
Abstract
The general anesthetic etomidate, which acts through γ-aminobutyric acid type A (GABAA) receptors, impairs the formation of new memories under anesthesia. This study addresses the molecular and cellular mechanisms by which this occurs. Here, using a new line of genetically engineered mice carrying the GABAA receptor (GABAAR) β2-N265M mutation, we tested the roles of receptors that incorporate GABAA receptor β2 versus β3 subunits to suppression of long-term potentiation (LTP), a cellular model of learning and memory. We found that brain slices from β2-N265M mice resisted etomidate suppression of LTP, indicating that the β2-GABAARs are an essential target in this model. As these receptors are most heavily expressed by interneurons in the hippocampus, this finding supports a role for interneuron modulation in etomidate control of synaptic plasticity. Nevertheless, β2 subunits are also expressed by pyramidal neurons, so they might also contribute. Therefore, using a previously established line of β3-N265M mice, we also examined the contributions of β2- versus β3-GABAARs to GABAA,slow dendritic inhibition, because dendritic inhibition is particularly well suited to controlling synaptic plasticity. We also examined their roles in long-lasting suppression of population activity through feedforward and feedback inhibition. We found that both β2- and β3-GABAARs contribute to GABAA,slow inhibition and that both β2- and β3-GABAARs contribute to feedback inhibition, whereas only β3-GABAARs contribute to feedforward inhibition. We conclude that modulation of β2-GABAARs is essential to etomidate suppression of LTP. Furthermore, to the extent that this occurs through GABAARs on pyramidal neurons, it is through modulation of feedback inhibition.
NEW & NOTEWORTHY Etomidate exerts its anesthetic actions through GABAA receptors. However, the mechanism remains unknown. Here, using a hippocampal brain slice model, we show that β2-GABAARs are essential to this effect. We also show that these receptors contribute to long-lasting dendritic inhibition in feedback but not feedforward inhibition of pyramidal neurons. These findings hold implications for understanding how anesthetics block memory formation and, more generally, how inhibitory circuits control learning and memory.
Keywords: GABAA receptors; etomidate; general anesthesia; learning and memory.
Patel RR, Wolfe SA, Bajo M, Abeynaike S, Pahng A, Borgonetti V, D’Ambrosio S, Nikzad R, Edwards S, Paust S, Roberts AJ, and Roberto M. “IL-10 normalizes aberrant amygdala GABA transmission and reverses anxiety-like behavior and dependence-induced escalation of alcohol intake.” Prog Neurobiol , 199, Pp. 101952. Publisher’s Version
Abstract
Alcohol elicits a neuroimmune response in the brain contributing to the development and maintenance of alcohol use disorder (AUD). While pro-inflammatory mediators initiate and drive the neuroimmune response, anti-inflammatory mediators provide an important homeostatic mechanism to limit inflammation and prevent pathological damage. However, our understanding of the role of anti-inflammatory signaling on neuronal physiology in critical addiction-related brain regions and pathological alcohol-dependence induced behaviors is limited, precluding our ability to identify promising therapeutic targets. Here, we hypothesized that chronic alcohol exposure compromises anti-inflammatory signaling in the central amygdala, a brain region implicated in anxiety and addiction, consequently perpetuating a pro-inflammatory state driving aberrant neuronal activity underlying pathological behaviors. We found that alcohol dependence alters the global brain immune landscape increasing IL-10 producing microglia and T-regulatory cells but decreasing local amygdala IL-10 levels. Amygdala IL-10 overexpression decreases anxiety-like behaviors, suggesting its local role in regulating amygdala-mediated behaviors. Mechanistically, amygdala IL-10 signaling through PI3K and p38 MAPK modulates GABA transmission directly at presynaptic terminals and indirectly through alterations in spontaneous firing. Alcohol dependence-induces neuroadaptations in IL-10 signaling leading to an overall IL-10-induced decrease in GABA transmission, which normalizes dependence-induced elevated amygdala GABA transmission. Notably, amygdala IL-10 overexpression abolishes escalation of alcohol intake, a diagnostic criterion of AUD, in dependent mice. This highlights the importance of amygdala IL-10 signaling in modulating neuronal activity and underlying anxiety-like behavior and aberrant alcohol intake, providing a new framework for therapeutic intervention.
Savarese AM, Ozburn AR, Barkley-Levenson AM, Metten P, and Crabbe JC. “The impact of Drinking in the Dark (DID) procedural manipulations on ethanol intake in High Drinking in the Dark (HDID) mice.” Alcohol, 93, Pp. 45-46. Publisher’s Version
Abstract
The High Drinking in the Dark mouse lines (HDID-1 and HDID-2) were selectively bred to achieve high blood ethanol concentrations (BECs) in the Drinking in the Dark (DID) task, a widely used model of binge-like intake of 20% ethanol. There are several components that differentiate DID from other animal models of ethanol intake: time of day of testing, length of ethanol access, single-bottle access, and individual housing. Here, we sought to determine how some of these individual factors contribute to the high ethanol intake observed in HDID mice. HDID-1, HDID-2, and non-selected HS/NPT mice were tested in a series of DID experiments where one of the following factors was manipulated: length of ethanol access, fluid choice, number of ethanol bottles, and housing condition. We observed that (1) HDID mice achieve intoxicating BECs in DID, even when they are group-housed; (2) HDID mice continue to show elevated ethanol intake relative to HS/NPT mice during an extended access session, but this is most apparent during the first four hours of access; and (3) offering a water choice during DID prevents elevated intake in the HDID-1 mice, but not necessarily in HDID-2 mice. Together, these results suggest that the lack of choice in the DID paradigm, together with the length of ethanol access, are important factors contributing to elevated ethanol intake in the HDID mice. These results further suggest important differences between the HDID lines in response to procedural manipulations of housing condition and ethanol bottle number in the DID paradigm, highlighting the distinct characteristics that each of these lines possess, despite being selectively bred for the same phenotype.
Natividad LA, Steinman MQ, McGinn MA, Sureshchandra S, Kerr TM, Ciccocioppo R, Messaoudi I, Edwards S, and Roberto M. “Impaired hypothalamic feedback dysregulates brain glucocorticoid signaling in genetically-selected Marchigian Sardinian alcohol-preferring rats..” Addict Biology, 26, 3, Pp. e12978. Publisher’s Version
Abstract
Genetically‐selected Marchigian Sardinian alcohol‐preferring (msP) rats display comorbid symptoms of increased alcohol preference and elevated anxiety‐like behavior. Heightened stress sensitivity in msPs is influenced by genetic polymorphisms of the corticotropin‐releasing factor receptor in the central nucleus of the amygdala (CeA), as well as reduced influence of anti‐stress mechanisms that normally constrain the stress response. Given this propensity for stress dysregulation, in this study, we expand on the possibility that msPs may display differences in neuroendocrine processes that normally terminate the stress response. We utilized behavioral, biochemical, and molecular assays to compare basal and restraint stress‐induced changes in the hypothalamic–pituitary–adrenal (HPA) axis of male and female msPs relative to their nonselected Wistar counterparts. The results showed that msPs display deficits in marble‐burying behavior influenced by environmental factors and procedures that modulate arousal states in a sex‐dependent manner. Whereas male msPs display evidence of dysregulated neuroendocrine function (higher adrenocorticotropic hormone levels and subthreshold reductions in corticosterone), females display restraint‐induced elevations in corticosterone levels that were persistently higher in msPs. A dexamethasone challenge reduced the circulation of these stress hormones, although the reduction in corticosterone was generally attenuated in msP versus Wistar rats. Finally, we found evidence of diminished stress‐induced glucocorticoid receptor (GR) phosphorylation in the hypothalamic paraventricular nucleus of msPs, as well as innate increases in phosphorylated GR levels in the CeA of male msPs. Collectively, these findings suggest that negative feedback processes regulating HPA responsiveness are diminished in msP rats, possibly underlying differences in the expression of anxiety‐like behaviors.
Zhao Q, Pohl KM, Sullivan E, Pfefferbaum A, and Zahr NM. “Jacobian mapping reveals converging brain substrates of disruption and repair in response to ethanol exposure and abstinence in 2 strains of rats.” Alcohol Clin Exp Res , 45, 1, Pp. 92-104. Publisher’s Version
Abstract
Background: In a previous study using Jacobian mapping to evaluate the morphological effects on the brain of binge (4-day) intragastric ethanol (EtOH) on wild-type Wistar rats, we reported reversible thalamic shrinkage and lateral ventricular enlargement, but persistent superior and inferior colliculi shrinkage in response to binge EtOH treatment.
Methods: Herein, we used similar voxel-based comparisons of Magnetic Resonance Images collected in EtOH-exposed relative to control animals to test the hypothesis that regardless of the intoxication protocol or the rat strain, the hippocampi, thalami, and colliculi would be affected.
Results: Two experiments [binge (4-day) intragastric EtOH in Fisher 344 rats and chronic (1-month) vaporized EtOH in Wistar rats] showed similarly affected brain regions including retrosplenial and cingulate cortices, dorsal hippocampi, central and ventroposterior thalami, superior and inferior colliculi, periaqueductal gray, and corpus callosum. While most of these regions showed significant recovery, volumes of the colliculi and periaqueductal gray continued to show response to each proximal EtOH exposure but at diminished levels with repeated cycles.
Conclusions: Given the high metabolic rate of these enduringly affected regions, the current findings suggest that EtOH per se may affect cellular respiration leading to brain volume deficits. Further, responsivity greatly diminished likely reflecting neuroadaptation to repeated alcohol exposure. In summary, this unbiased, in vivo-based approach demonstrating convergent brain systems responsive to 2 EtOH exposure protocols in 2 rat strains highlights regions that warrant further investigation in both animal models of alcoholism and in humans with alcohol use disorder.
Zhao Q, Pohl KM, Sullivan EV, Pfefferbaum A, and Zahr NM. “Jacobian Mapping Reveals Converging Substrates of Disruption and Repair in Response to Ethanol Exposure and Abstinence in Two Strains of Rats..” Alcoholism: Clinical and Experimental Research, 45, 1, Pp. 92-104. Publisher’s Version
Abstract
Background
In a previous study using Jacobian mapping to evaluate the morphological effects on the brain of binge (4‐day) intragastric ethanol (EtOH) on wild‐type Wistar rats, we reported reversible thalamic shrinkage and lateral ventricular enlargement, but persistent superior and inferior colliculi shrinkage in response to binge EtOH treatment.
Methods
Herein, we used similar voxel‐based comparisons of Magnetic Resonance Images collected in EtOH‐exposed relative to control animals to test the hypothesis that regardless of the intoxication protocol or the rat strain, the hippocampi, thalami, and colliculi would be affected.
Results
Two experiments [binge (4‐day) intragastric EtOH in Fisher 344 rats and chronic (1‐month) vaporized EtOH in Wistar rats] showed similarly affected brain regions including retrosplenial and cingulate cortices, dorsal hippocampi, central and ventroposterior thalami, superior and inferior colliculi, periaqueductal gray, and corpus callosum. While most of these regions showed significant recovery, volumes of the colliculi and periaqueductal gray continued to show response to each proximal EtOH exposure but at diminished levels with repeated cycles.
Conclusions
Given the high metabolic rate of these enduringly affected regions, the current findings suggest that EtOH per se may affect cellular respiration leading to brain volume deficits. Further, responsivity greatly diminished likely reflecting neuroadaptation to repeated alcohol exposure. In summary, this unbiased, in vivo‐based approach demonstrating convergent brain systems responsive to 2 EtOH exposure protocols in 2 rat strains highlights regions that warrant further investigation in both animal models of alcoholism and in humans with alcohol use disorder.
Grubisha MJ, Sun T, Eisenman L, Erickson SL, Chou SY, Helmer CD, Trudgen MT, Ding Y, Homanics GE, Penzes P, Wills ZP, and Sweet RA. “A Kalirin missense mutation enhances dendritic RhoA signaling and leads to regression of cortical dendritic arbors across development.” Proc Natl Acad Sci U S A, 118, 49. Publisher’s Version
Abstract
Normally, dendritic size is established prior to adolescence and then remains relatively constant into adulthood due to a homeostatic balance between growth and retraction pathways. However, schizophrenia is characterized by accelerated reductions of cerebral cortex gray matter volume and onset of clinical symptoms during adolescence, with reductions in layer 3 pyramidal neuron dendritic length, complexity, and spine density identified in multiple cortical regions postmortem. Nogo receptor 1 (NGR1) activation of the GTPase RhoA is a major pathway restricting dendritic growth in the cerebral cortex. We show that the NGR1 pathway is stimulated by OMGp and requires the Rho guanine nucleotide exchange factor Kalirin-9 (KAL9). Using a genetically encoded RhoA sensor, we demonstrate that a naturally occurring missense mutation in Kalrn, KAL-PT, that was identified in a schizophrenia cohort, confers enhanced RhoA activitation in neuronal dendrites compared to wild-type KAL. In mice containing this missense mutation at the endogenous locus, there is an adolescent-onset reduction in dendritic length and complexity of layer 3 pyramidal neurons in the primary auditory cortex. Spine density per unit length of dendrite is unaffected. Early adult mice with these structural deficits exhibited impaired detection of short gap durations. These findings provide a neuropsychiatric model of disease capturing how a mild genetic vulnerability may interact with normal developmental processes such that pathology only emerges around adolescence. This interplay between genetic susceptibility and normal adolescent development, both of which possess inherent individual variability, may contribute to heterogeneity seen in phenotypes in human neuropsychiatric disease.
Keywords: Kalirin; NGR1; adolescence; dendrite.
Saba LM, Hoffman PL, Homanics GE, Mahaffey S, Daulatabad SV, Janga SC, and Tabakoff B. “A long non-coding RNA (Lrap) modulates brain gene expression and levels of alcohol consumption in rats..” Genes, Brain and Behavior, 20, 2, Pp. e12698. Publisher’s Version
Abstract
LncRNAs are important regulators of quantitative and qualitative features of the transcriptome. We have used QTL and other statistical analyses to identify a gene coexpression module associated with alcohol consumption. The “hub gene” of this module, Lrap (Long non‐coding RNA for alcohol preference), was an unannotated transcript resembling a lncRNA. We used partial correlation analyses to establish that Lrap is a major contributor to the integrity of the coexpression module. Using CRISPR/Cas9 technology, we disrupted an exon of Lrap in Wistar rats. Measures of alcohol consumption in wild type, heterozygous and knockout rats showed that disruption of Lrap produced increases in alcohol consumption/alcohol preference. The disruption of Lrap also produced changes in expression of over 700 other transcripts. Furthermore, it became apparent that Lrap may have a function in alternative splicing of the affected transcripts. The GO category of “Response to Ethanol” emerged as one of the top candidates in an enrichment analysis of the differentially expressed transcripts. We validate the role of Lrap as a mediator of alcohol consumption by rats, and also implicate Lrap as a modifier of the expression and splicing of a large number of brain transcripts. A defined subset of these transcripts significantly impacts alcohol consumption by rats (and possibly humans). Our work shows the pleiotropic nature of non‐coding elements of the genome, the power of network analysis in identifying the critical elements influencing phenotypes, and the fact that not all changes produced by genetic editing are critical for the concomitant changes in phenotype.
Karatas M, Noblet V, Nasseef MT, Bienert T, Reisert M, Hennig J, Yalcin I, Kieffer BL, von Elverfeldt D, and Harsan LA. “Mapping the living mouse brain neural architecture: strain-specific patterns of brain structural and functional connectivity.” Brain Struct Funct , 226, 3, Pp. 647-669. Publisher’s Version
Abstract
Mapping the structural and functional brain connectivity fingerprints became an essential approach in neurology and experimental neuroscience because network properties can underlie behavioral phenotypes. In mouse models, revealing strain related patterns of brain wiring have a tremendous importance, since these animals are used to answer questions related to neurological or neuropsychiatric disorders. C57BL/6 and BALB/cJ inbred strains are primary “genetic backgrounds” for brain disease modelling and for testing therapeutic approaches. Nevertheless, extensive literature describes basal differences in the behavioral, neuroanatomical and neurochemical profiles of the two strains, which raises the question whether the observed effects are pathology specific or depend on the genetic background. Here we performed a systematic comparative exploration of brain structure and function of C57BL/6 and BALB/cJ mice via Magnetic Resonance Imaging (MRI). We combined voxel-based morphometry (VBM), diffusion MRI and high resolution fiber mapping (hrFM) and resting state functional MRI (rs-fMRI) and depicted brain-wide dissimilarities in the morphology and “connectome” features in the two strains. Particularly C57BL/6 animals show bigger and denser frontal cortical areas, cortico-striatal tracts and thalamic and midbrain pathways, and higher density of fibers in the genu and splenium of the corpus callosum. These features are fairly reflected in the functional connectograms that emphasize differences in “hubness”, frontal cortical and basal forbrain connectivity. We demonstrate strongly divergent reward-aversion circuitry patterns and some variations of the default mode network features. Inter-hemispherical functional connectivity showed flexibility and adjustment regarding the structural patterns in a strain specific manner. We further provide high-resolution tractograms illustrating also inter-individual variability across inter-hemispherical callosal pathways in the BALB/cJ strain.
Fama R, Le Berre AP, Sassoon SA, Zahr NM, Pohl KM, Pfefferbaum A, and Sullivan EV. “Memory impairment in alcohol use disorder is associated with regional frontal brain volumes.” Drug Alcohol Depend . Publisher’s Version
Abstract
Background: Episodic memory deficits occur in alcohol use disorder (AUD), but their anatomical substrates remain in question. Although persistent memory impairment is classically associated with limbic circuitry disruption, learning and retrieval of new information also relies on frontal systems. Despite AUD vulnerability of frontal lobe integrity, relations between frontal regions and memory processes have been under-appreciated.
Methods: Participants included 91 AUD (49 with a drug diagnosis history) and 36 controls. Verbal and visual episodic memory scores were age- and education-corrected. Structural magnetic resonance imaging (MRI) data yielded regional frontal lobe (precentral, superior, orbital, middle, inferior, supplemental motor, and medial) and total hippocampal volumes.
Results: AUD were impaired on all memory scores and had smaller precentral frontal and hippocampal volumes than controls. Orbital, superior, and inferior frontal volumes and lifetime alcohol consumption were independent predictors of episodic memory in AUD. Selectivity was established with a double dissociation, where orbital frontal volume predicted verbal but not visual memory, whereas inferior frontal volumes predicted visual but not verbal memory. Further, superior frontal volumes predicted verbal memory in AUD alone, whereas orbital frontal volumes predicted verbal memory in AUD+drug abuse history.
Conclusions: Selective relations among frontal subregions and episodic memory processes highlight the relevance of extra-limbic regions in mnemonic processes in AUD. Memory deficits resulting from frontal dysfunction, unlike the episodic memory impairment associated with limbic dysfunction, may be more amenable to recovery with cessation or reduction of alcohol misuse and may partially explain the heterogeneity in episodic memory abilities in AUD.
Keywords: Alcohol; Drug abuse; Episodic memory; Frontal volumes; MRI; Orbitofrontal.
Copyright © 2021 Elsevier B.V. All rights reserved.
Warden AS, Triplett TA, Lyu A, Grantham EK, Azzam MM, Da Costa A, Mason S, Blednov YA, Ehrlich LIR, Mayfield RD, and Harris RA. “Microglia depletion and alcohol: Transcriptome and behavioral profiles..” Addict Biology, 26, 2, Pp. e12889. Publisher’s Version
Abstract
Alcohol abuse induces changes in microglia morphology and immune function, but whether microglia initiate or simply amplify the harmful effects of alcohol exposure is still a matter of debate. Here, we determine microglia function in acute and voluntary drinking behaviors using a colony‐stimulating factor 1 receptor inhibitor (PLX5622). We show that microglia depletion does not alter the sedative or hypnotic effects of acute intoxication. Microglia depletion also does not change the escalation or maintenance of chronic voluntary alcohol consumption. Transcriptomic analysis revealed that although many immune genes have been implicated in alcohol abuse, downregulation of microglia genes does not necessitate changes in alcohol intake. Instead, microglia depletion and chronic alcohol result in compensatory upregulation of alcohol‐responsive, reactive astrocyte genes, indicating astrocytes may play a role in regulation of these alcohol behaviors. Taken together, our behavioral and transcriptional data indicate that microglia are not the primary effector cell responsible for regulation of acute and voluntary alcohol behaviors. Because microglia depletion did not regulate acute or voluntary alcohol behaviors, we hypothesized that these doses were insufficient to activate microglia and recruit them to an effector phenotype. Therefore, we used a model of repeated immune activation using polyinosinic:polycytidylic acid (poly(I:C)) to activate microglia. Microglia depletion blocked poly(I:C)‐induced escalations in alcohol intake, indicating microglia regulate drinking behaviors with sufficient immune activation. By testing the functional role of microglia in alcohol behaviors, we provide insight into when microglia are causal and when they are consequential for the transition from alcohol use to dependence.
Zahr NM, Pohl KM, Kwong AJ, Sullivan EV, and Pfefferbaum A. “Preliminary evidence for a relationship between elevated plasma TNFα and smaller subcortical white matter volume in HCV infection irrespective of HIV or AUD comorbidity.” Int J Mol Sci , 22, 9, Pp. 4953. Publisher’s Version
Abstract
Classical inflammation in response to bacterial, parasitic, or viral infections such as HIV includes local recruitment of neutrophils and macrophages and the production of proinflammatory cytokines and chemokines. Proposed biomarkers of organ integrity in Alcohol Use Disorders (AUD) include elevations in peripheral plasma levels of proinflammatory proteins. In testing this proposal, previous work included a group of human immunodeficiency virus (HIV)-infected individuals as positive controls and identified elevations in the soluble proteins TNFα and IP10; these cytokines were only elevated in AUD individuals seropositive for hepatitis C infection (HCV). The current observational, cross-sectional study evaluated whether higher levels of these proinflammatory cytokines would be associated with compromised brain integrity. Soluble protein levels were quantified in 86 healthy controls, 132 individuals with AUD, 54 individuals seropositive for HIV, and 49 individuals with AUD and HIV. Among the patient groups, HCV was present in 24 of the individuals with AUD, 13 individuals with HIV, and 20 of the individuals in the comorbid AUD and HIV group. Soluble protein levels were correlated to regional brain volumes as quantified with structural magnetic resonance imaging (MRI). In addition to higher levels of TNFα and IP10 in the 2 HIV groups and the HCV-seropositive AUD group, this study identified lower levels of IL1β in the 3 patient groups relative to the control group. Only TNFα, however, showed a relationship with brain integrity: in HCV or HIV infection, higher peripheral levels of TNFα correlated with smaller subcortical white matter volume. These preliminary results highlight the privileged status of TNFα on brain integrity in the context of infection.
Gallegos S, San Martin L, Araya A, Lovinger DM, Homanics GE, and Aguayo LG. “Reduced sedation and increased ethanol consumption in knock-in mice expressing an ethanol insensitive alpha 2 subunit of the glycine receptor..” Neuropsychopharmacology. Publisher’s Version
Abstract
Previous studies have shown the presence of several subunits of the inhibitory glycine receptor (GlyR) in the reward system, specifically in medium spiny neurons (MSNs) of the nucleus Accumbens (nAc). It was suggested that GlyR α1 subunits regulate nAc excitability and ethanol consumption. However, little is known about the role of the α2 subunit in the adult brain since it is a subunit highly expressed during early brain development. In this study, we used genetically modified mice with a mutation (KR389–390AA) in the intracellular loop of the GlyR α2 subunit which results in a heteromeric α2β receptor that is insensitive to ethanol. Using this mouse model denoted knock-in α2 (KI α2), our electrophysiological studies showed that neurons in the adult nAc expressed functional KI GlyRs that were rather insensitive to ethanol when compared with WT GlyRs. In behavioral tests, the KI α2 mice did not show any difference in basal motor coordination, locomotor activity, or conditioned place preference compared with WT littermate controls. In terms of ethanol response, KI α2 male mice recovered faster from the administration of ataxic and sedative doses of ethanol. Furthermore, KI α2 mice consumed higher amounts of ethanol in the first days of the drinking in the dark protocol, as compared with WT mice. These results show that the α2 subunit is important for the potentiation of GlyRs in the adult brain and this might result in reduced sedation and increased ethanol consumption.
Roberto M, Kirson D, and Khom S. “The Role of the Central Amygdala in Alcohol Dependence..” Cold Spring Harb Perspect Med. Publisher’s Version
Abstract
Alcohol dependence is a chronically relapsing disorder characterized by compulsive drug-seeking and drug-taking, loss of control in limiting intake, and the emergence of a withdrawal syndrome in the absence of the drug. Accumulating evidence suggests an important role for synaptic transmission in the central nucleus of the amygdala (CeA) in mediating alcohol-related behaviors and neuroadaptive mechanisms associated with alcohol dependence. Acute alcohol facilitates γ-aminobutyric acid (GABA)ergic transmission in the CeA via both pre- and postsynaptic mechanisms, and chronic alcohol increases baseline GABAergic transmission. Acute alcohol inhibits glutamatergic transmission via effects at N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the CeA, whereas chronic alcohol up-regulates NMDA receptor (NMDAR)-mediated transmission. Pro- (e.g., corticotropin-releasing factor [CRF]) and antistress (e.g., nociceptin/orphanin FQ, oxytocin) neuropeptides affect alcohol- and anxiety-related behaviors, and also alter the alcohol-induced effects on CeA neurotransmission. Alcohol dependence produces plasticity in these neuropeptide systems, reflecting a recruitment of those systems during the transition to alcohol dependence.
Kirson D, Steinman MQ, Wolfe SA, Spierling Bagsic SR, Bajo M, Sureshchandra S, Oleata CS, Messaoudi I, Zorrilla EP, and Roberto M. “Sex and context differences in the effects of trauma on comorbid alcohol use and post-traumatic stress phenotypes in actively drinking rats.” J Neurosci Res , 99, 12, Pp. 3354-3372. Publisher’s Version
Abstract
Alcohol use disorder (AUD) and affective disorders are frequently comorbid and share underlying mechanisms that could be targets for comprehensive treatment. Post-traumatic stress disorder (PTSD) has high comorbidity with AUD, but comprehensive models of this overlap are nascent. We recently characterized a model of comorbid AUD and PTSD-like symptoms, wherein stressed rats receive an inhibitory avoidance (IA)-related footshock on two occasions followed by two-bottle choice (2BC) voluntary alcohol drinking. Stressed rats received the second footshock in a familiar (FAM, same IA box as the first footshock) or novel context (NOV, single-chambered apparatus); the FAM paradigm more effectively increased alcohol drinking in males and the NOV paradigm in females. During abstinence, stressed males displayed avoidance-like PTSD symptoms, and females showed hyperarousal-like PTSD symptoms. Rats in the model had altered spontaneous action potential-independent GABAergic transmission in the central amygdala (CeA), a brain region key in alcohol dependence and stress-related signaling. However, PTSD sufferers may have alcohol experience prior to their trauma. Here, we therefore modified our AUD/PTSD comorbidity model to provide 3 weeks of intermittent extended alcohol access before footshock and then studied the effects of NOV and FAM stress on drinking and PTSD phenotypes. NOV stress suppressed the escalation of alcohol intake and preference seen in male controls, but no stress effects were seen on drinking in females. Additionally, NOV males had decreased action potential-independent presynaptic GABA release and delayed postsynaptic GABAA receptor kinetics in the CeA compared to control and FAM males. Despite these changes to alcohol intake and CeA GABA signaling, stressed rats showed broadly similar anxiogenic-like behaviors to our previous comorbid model, suggesting decoupling of the PTSD symptoms from the AUD vulnerability for some of these animals. The collective results show the importance of alcohol history and trauma context in vulnerability to comorbid AUD/PTSD-like symptoms.
Keywords: GABA; alcohol use disorder (AUD); central amygdala; post-traumatic stress disorder (PTSD); sex differences; stress; trauma.
Kirson D, Khom S, Rodriguez L, Wolfe SA, Varodayan FP, Gandhi PJ, Patel RR, Vlkolinsky R, Bajo M, and Roberto M. “Sex Differences in Acute Alcohol Sensitivity of Naïve and Alcohol Dependent Central Amygdala GABA Synapses.” Alcohol Alcohol , 56, 5, Pp. 581-588. Publisher’s Version
Abstract
Aims: Alcohol use disorder (AUD) is linked to hyperactivity of brain stress systems, leading to withdrawal states which drive relapse. AUD differs among the sexes, as men are more likely to have AUD than women, but women progress from casual use to binge and heavy alcohol use more quickly and are more likely to relapse into repetitive episodes of heavy drinking. In alcohol dependence animal models of AUD, the central amygdala (CeA) functions as a hub of stress and anxiety processing and gamma-Aminobutyric acid (GABA)ergic signaling within the CeA is involved in dependence-induced increases in alcohol consumption. We have shown dysregulation of CeA GABAergic synaptic signaling in alcohol dependence animal models, but previous studies have exclusively used males.
Methods: Here, we used whole-cell patch clamp electrophysiology to examine basal CeA GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) and the effects of acute alcohol in both naïve and alcohol dependent rats of both sexes.
Results: We found that sIPSC kinetics differ between females and males, as well as between naïve and alcohol-dependent animals, with naïve females having the fastest current kinetics. Additionally, we find differences in baseline current kinetics across estrous cycle stages. In contrast to the increase in sIPSC frequency routinely found in males, acute alcohol (11-88 mM) had no effect on sIPSCs in naïve females, however the highest concentration of alcohol increased sIPSC frequency in dependent females.
Conclusion: These results provide important insight into sex differences in CeA neuronal function and dysregulation with alcohol dependence and highlight the need for sex-specific considerations in the development of effective AUD treatment.
© The Author(s) 2021. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Chen WY, Chen H, Hamada K, Gatta E, Chen Y, Zhang H, Drnevich J, Krishnan HR, Maienschein-Cline M, Grayson DR, Pandey SC, and Lasek AW. “Transcriptomics identifies STAT3 as a key regulator of hippocampal gene expression and anhedonia during withdrawal from chronic alcohol exposure.” Translational Psychiatry, 11, Pp. 298. Publisher’s Version
Abstract
Alcohol use disorder (AUD) is highly comorbid with depression. Withdrawal from chronic alcohol drinking results in depression and understanding brain molecular mechanisms that drive withdrawal-related depression is important for finding new drug targets to treat these comorbid conditions. Here, we performed RNA sequencing of the rat hippocampus during withdrawal from chronic alcohol drinking to discover key signaling pathways involved in alcohol withdrawal-related depressive-like behavior. Data were analyzed by weighted gene co-expression network analysis to identify several modules of co-expressed genes that could have a common underlying regulatory mechanism. One of the hub, or highly interconnected, genes in module 1 that increased during alcohol withdrawal was the transcription factor, signal transducer and activator of transcription 3 (Stat3), a known regulator of immune gene expression. Total and phosphorylated (p)STAT3 protein levels were also increased in the hippocampus during withdrawal after chronic alcohol exposure. Further, pSTAT3 binding was enriched at the module 1 genes Gfap, Tnfrsf1a, and Socs3 during alcohol withdrawal. Notably, pSTAT3 and its target genes were elevated in the postmortem hippocampus of human subjects with AUD when compared with control subjects. To determine the behavioral relevance of STAT3 activation during alcohol withdrawal, we treated rats with the STAT3 inhibitor stattic and tested for sucrose preference as a measure of anhedonia. STAT3 inhibition alleviated alcohol withdrawal-induced anhedonia. These results demonstrate activation of STAT3 signaling in the hippocampus during alcohol withdrawal in rats and in human AUD subjects, and suggest that STAT3 could be a therapeutic target for reducing comorbid AUD and depression.
Hamada K, Ferguson LB, Mayfield RD, Krishnan HR, Maienschein-Cline M, and Lasek AW. “Binge-Like Ethanol Drinking Activates ALK Signaling and Increases the Expression of STAT3 Target Genes in the Mouse Hippocampus and Prefrontal Cortex.” Genes Brain Behav, 28, Pp. e12729. Publisher’s Version
Abstract
Alcohol use disorder (AUD) has a complex pathogenesis, making it a difficult disorder to treat. Identifying relevant signaling pathways in the brain may be useful for finding new pharmacological targets to treat AUD. The receptor tyrosine kinase anaplastic lymphoma kinase (ALK) activates the transcription factor STAT3 in response to ethanol in cell lines. Here, we show ALK activation and upregulation of known STAT3 target genes (Socs3, Gfap and Tnfrsf1a) in the prefrontal cortex (PFC) and ventral hippocampus (HPC) of mice after 4 days of binge‐like ethanol drinking. Mice treated with the STAT3 inhibitor stattic drank less ethanol than vehicle‐treated mice, demonstrating the behavioral importance of STAT3. To identify novel ethanol‐induced target genes downstream of the ALK and STAT3 pathway, we analyzed the NIH LINCS L1000 database for gene signature overlap between ALK inhibitor (alectinib and NVP‐TAE684) and STAT3 inhibitor (niclosamide) treatments on cell lines. These genes were then compared with differentially expressed genes in the PFC of mice after binge‐like drinking. We found 95 unique gene candidates, out of which 57 had STAT3 binding motifs in their promoters. We further showed by qPCR that expression of the putative STAT3 genes Nr1h2, Smarcc1, Smarca4 and Gpnmb were increased in either the PFC or HPC after binge‐like drinking. Together, these results indicate activation of the ALK‐STAT3 signaling pathway in the brain after binge‐like ethanol consumption, identify putative novel ethanol‐responsive STAT3 target genes, and suggest that STAT3 inhibition may be a potential method to reduce binge drinking in humans.
Steinman MQ, Kirson D, Wolfe SA, Khom S, D’Ambrosio SR, Spierling Bagsic SR, Bajo M, Vlkolinský R, Hoang NK, Singhal A, Sureshchandra S, Oleata CS, Messaoudi I, Zorrilla EP, and Roberto M. “Importance of sex and trauma context on circulating cytokines and amygdalar GABAergic signaling in a comorbid model of posttraumatic stress and alcohol use disorders.” Molecular Psychiatry, 26, 7, Pp. 3093-3107. Publisher’s Version
Abstract
Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share mechanisms that could be therapeutic targets. To facilitate mechanistic studies, we adapted an inhibitory avoidance-based “2-hit” rat model of posttraumatic stress disorder (PTSD) and identified predictors and biomarkers of comorbid alcohol (ethanol)/PTSD-like symptoms in these animals. Stressed Wistar rats received a single footshock on two occasions. The first footshock occurred when rats crossed into the dark chamber of a shuttle box. Forty-eight hours later, rats received the second footshock in a familiar (FAM) or novel (NOV) context. Rats then received 4 weeks of two-bottle choice (2BC) ethanol access. During subsequent abstinence, PTSD-like behavior responses, GABAergic synaptic transmission in the central amygdala (CeA), and circulating cytokine levels were measured. FAM and NOV stress more effectively increased 2BC drinking in males and females, respectively. Stressed male rats, especially drinking-vulnerable individuals (≥0.8 g/kg average 2-h ethanol intake with >50% ethanol preference), showed higher fear overgeneralization in novel contexts, increased GABAergic transmission in the CeA, and a profile of increased G-CSF, GM-CSF, IL-13, IL-6, IL-17a, leptin, and IL-4 that discriminated between stress context (NOV > FAM > Control). However, drinking-resilient males showed the highest G-CSF, IL-13, and leptin levels. Stressed females showed increased acoustic startle and decreased sleep maintenance, indicative of hyperarousal, with increased CeA GABAergic transmission in NOV females. This paradigm promotes key features of PTSD, including hyperarousal, fear generalization, avoidance, and sleep disturbance, with comorbid ethanol intake, in a sex-specific fashion that approximates clinical comorbidities better than existing models, and identifies increased CeA GABAergic signaling and a distinct pro-hematopoietic, proinflammatory, and pro-atopic cytokine profile that may aid in treatment.