Publications

Journal Publications

2024

Li, D., Gabriel, A.-A., Linking 3D long-term slow-slip cycle models with rupture dynamics: the nucleation of the 2014 Mw 7.3 Guerrero, Mexico earthquake, 2024, AGU Advances, in press, preprint: https://eartharxiv.org/repository/view/5415/.

Kutschera, F., Gabriel, A.-A., Wirp, S.A., Li, B., Ulrich, T., Abril, C., Halldórsson, B., 2024, Linked and fully-coupled 3D earthquake dynamic rupture and tsunami modeling for the Húsavík-Flatey Fault Zone in North Iceland, Solid Earth, 15, 251–280, https://doi.org/10.5194/se-15-251-2024.

Niu, Z., Gabriel, A.-A. , Seelinger, L., Igel, H., 2024, Modeling and Quantifying Parameter Uncertainty of Co-seismic Non-classical Nonlinearity in Rocks, J. Geophys. R., 129, e2023JB027149, https://doi.org/10.1029/2023JB027149.

Palgunadi, K., Gabriel, A.-A., Garagash, D., Ulrich, T. , Mai, P. M., 2024, Rupture Dynamics of Cascading Earth- quakes in a Multiscale Fracture Network, J. Geophys. R, in press, preprint: https://arxiv.org/abs/2307.14229.

2023

Abrahams, L. S., Krenz, L., Dunham, E. M., Gabriel, A. A., and Saito, T., 2023, Comparison of methods for coupled earthquake and tsunami modeling, Geophysical Journal International, 234(1), 404-426, https://doi.org/10.1093/gji/ggad053.

Biemiller, J., Gabriel, A. A., and Ulrich, T., 2023. Dueling dynamics of low-angle normal fault rupture with splay faulting and off-fault damage, Nature Communications, 14(1), 2352, https://doi.org/10.1038/s41467-023-37063-1.

Bolton, D.C., Marone, C., Saffer, D, and Trugman, D.T., 2023, Foreshock properties illuminate nucleation processes of slow and fast laboratory earthquakes, Nature Communications, 14:3859, https://doi.org/10.1038/s41467-023-39399-0.

Erickson, B. A., Jiang, J., Lambert, V., Barbot, S. D., Abdelmeguid, M., Almquist, M., … and Yang, Y., 2023. Incorporating full elastodynamic effects and dipping fault geometries in community code verification exercises for simulations of earthquake sequences and aseismic slip (SEAS). Bulletin of the Seismological Society of America, 113(2), 499-523, https://doi.org/10.1785/0120220066.

Gabriel, A.-A., Ulrich, T., Marchandon, M., Biemiller, J., Rekoske, J., 2023, 3D dynamic rupture modeling of the February 6, 2023, Kahramanmaraş, Turkey, MW 7.8 and MW 7.7 earthquake doublet using early observations, The Seismic Record, 3 (4), 342–356, https://doi.org/10.1785/0320230028.

Gerstenberger, M. C., Rhoades, D. A., Litchfield, N., Abbott, E., Goded, T., Christophersen, A., … & Wallace, L., 2023, A time-dependent seismic hazard model following the Kaikōura M7. 8 earthquake. New Zealand Journal of Geology and Geophysics, 66(2), 192-216, https://doi.org/10.1080/00288306.2022.2158881.

Jin, Z., Jin, Z.,  Marchandon, M., Ulrich, T., Gabriel, A.-A., Fan, W., Shearer, P., Zou, X., Rekoske, J., Bulut, F., Garagon, A., Fialko, A., 2023, The complex dynamics of the 2023 Kahramanmaraş, Turkey, Mw 7.8-7.7 earthquake doublet, Science, https://www.science.org/doi/10.1126/science.adi0685.

Krenz, L., Wolf, S., Hillers, G., Gabriel, A. A., and Bader, M., 2023. Numerical Simulations of Seismoacoustic Nuisance Patterns from an Induced M 1.8 Earthquake in the Helsinki, Southern Finland, Metropolitan Area. Bulletin of the Seismological Society of America, 113(4), 1596-1615, https://doi.org/10.1785/0120220225.

Li, B., Gabriel, A. A., Ulrich, T., Abril, C., and Halldorsson, B., 2023. Dynamic rupture models, fault interaction and ground motion simulations for the segmented Húsavík‐Flatey Fault Zone, Northern Iceland. Journal of Geophysical Research: Solid Earth, e2022JB025886, https://doi.org/10.1029/2022JB025886.

Li, Y., Pusok, A.E., Davis, T., May, D.A. and Katz, R.F., 2023. Continuum approximation of dyking with a theory for poro-viscoelastic–viscoplastic deformation. Geophysical Journal International, 234(3), pp.2007-2031, https://doi.org/10.1093/gji/ggad173.

Perez‐Silva, A., Kaneko, Y., Savage, M., Wallace, L. and Warren‐Smith, E., 2023. Characteristics of slow slip events explained by rate‐strengthening faults subject to periodic pore fluid pressure changes. Journal of Geophysical Research: Solid Earth, p.e2022JB026332, https://doi.org/10.1029/2022JB026332.

Rekoske, J. M., Gabriel, A.-A., and May, D. A., 2023, Instantaneous physics-based ground motion maps using reduced-order modeling. Journal of Geophysical Research: Solid Earth, 128, e2023JB026975, https://doi.org/10.1029/2023JB0269.

Schliwa, N., Gabriel, A.-A., 2023, Equivalent Near-Field Corner-Frequency Analysis of 3D Dynamic Rupture Simulations Reveals Dynamic Source Effects, Seism. Res. Let., https://doi.org/10.1785/0220230225.

Taufiqurrahman, T., Gabriel, AA., Li, D., Ulrich, T., Li, B., Carena, S., Verdecchia, A., and Gallovic, F., 2023, Dynamics, interactions and delays of the 2019 Ridgecrest rupture sequence, Nature, 618, 308–315, https://doi.org/10.1038/s41586-023-05985-x.

Taufiqurrahman, T., Gabriel, A. A., Ulrich, T., Valentová, L., and Gallovič, F., 2023, “Broadband dynamic rupture modeling with fractal fault roughness, frictional heterogeneity, viscoelasticity and topography: The 2016 Mw 6.2 Amatrice, Italy earthquake”, Geophys. Res. Let., 127, e2022JB024300, https://doi.org/10.1038/s41586-023-05985-x.

Uphoff, Carsten, Dave A. May, and Alice-Agnes Gabriel, 2023, A discontinuous Galerkin method for sequences of earthquakes and aseismic slip on multiple faults using unstructured curvilinear grids, Geophysical Journal International, Volume 233, Issue 1, 586–626, https://doi.org/10.1093/gji/ggac467.

Vyas, J. C., A.-A. Gabriel, T. Ulrich, P. M. Mai, and J.-P. Ampuero, 2023. How Does Thermal Pressurization of Pore Fluids Affect 3D Strike-Slip Earthquake Dynamics and Ground Motions? Bull. Seismol. Soc. Am. XX, 1–17, https://doi.org/10.1785/0120220205.

Xu, X., Liu, D., & Lavier, L., 2023. Constraining fault damage zone properties from geodesy: A case study near the 2019 Ridgecrest earthquake sequence. Geophysical Research Letters, 50, e2022GL101692, https://doi.org/10.1029/2022GL101692.

2022

Behboudi, E., D.D. McNamara, I. Lokmer, L.M. Wallace, D. Saffer, 2022, Spatial Variation of Shallow Stress Orientation Along the Hikurangi Subduction Margin: Insights from In‐Situ Borehole Image Logging, Journal of Geophysical Research: Solid Earth, e2021JB023641, https://doi.org/10.1029/2021JB023641.

Jiang, J., Erickson, B. A., Lambert, V. R., Ampuero, J.-P., Ando, R., Barbot, S. D.,
et al., 2022, Community-driven code comparisons for three-dimensional dynamic
modeling of sequences of earthquakes and aseismic slip, Journal of Geophysical
Research: Solid Earth, 127, e2021JB023519, https://doi.org/10.1029/2021JB023519.

Jourdon, A. and May, D. A., 2022, An efficient parallel method to compute
lithostatic pressure in thermo-mechanical geodynamic models, Solid Earth
Discussions
, 1-20. https://doi.org/10.5194/se-13-1107-2022.

Li, B., Wu, B., Bao, H., Oglesby, D., Ghosh, A., Gabriel, A.-A., Meng, L., and Chu, R., 2022, Rupture heterogeneity and directivity effects in back-projection analysis, Journal of Geophysical Research: Solid Earth, 127, e2021JB022663. doi:10.1029/2021JB02266. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021JB022663.

Madden, E.H., Ulrich, T., Gabriel, A.-A., 2022, The state of pore fluid pressure and
3D megathrust earthquake dynamics, Journal of Geophysical Research, 127. https://doi.org/10.1029/2021JB023382.

Puel, S., Khattatov, E., Villa, U., Liu, D., U., Ghattas, O., Becker, T. W., 2022, A mixed, unified forward/inverse framework for earthquake problems: fault implementation and coseismic slip estimate, Geophysics Journal International, 230(2), 733–758, https://doi.org/10.1093/gji/ggac050.

Trugman, D. T., 2022, Resolving differences in the rupture properties of M5 earthquakes in California using Bayesian source spectral analysis, Journal of Geophysical Research: Solid Earth, 127, e2021JB023526, https://doi.org/10.1029/2021JB023526.

Van Zelst, I., Rannabauer, L., Gabriel, A.-A., van Dinther, Y., 2022, Earthquake
rupture on multiple splay faults and its effect on tsunamis, Journal of Geophysical
Research: Solid Earth, 127, e2022JB024300, https://doi.org/10.1029/2022JB024300.

Wirth, E.A., Sahakian, V.J., Wallace, L.M., Melnick, D., 2022, The occurrence and hazards of great subduction earthquakes, Nature Reviews Earth and Environment, 3, 125-149, https://www.nature.com/articles/s43017-021-00245-w.

2021

Bassett, D., A. Arnulf, S. Henrys, D. Barker, H. van Avendonk, N. Bangs, S. Kodaira, H. Seebeck, L. Wallace, A. Gase, T. Luckie, K. Jacobs, B. Tozer, R. Arai, D. Okaya, K. Mochizuki, G. Fujiie, Y. Yamamoto, 2021, Crustal structure of the Hikurangi margin from SHIRE seismic data and the relationship between forearc structure and shallow megathrust slip behaviour, Geophysical Research Letters, e2021GL096960, https://doi.org/10.1029/2021GL096960.

Perez-Silva, A., Kaneko, Y., Savage, M., Wallace, L., Li, D., Williams, C., 2021, Segmentation of shallow slow slip events at the Hikurangi subduction zone explained by along-strike changes in fault geometry and plate convergence rates, Journal of Geophysical Research, e2021JB022913, https://doi.org/10.1029/2021JB022913.

Shreedharan, S., Ikari, M., Wood, C., Saffer, D., Wallace, L., Marone, C., 2021, Frictional and lithological controls on shallow slow slip at the northern Hikurangi margin. Geochemistry, Geophysics, Geosystems, 23, 2021GC010107, https://doi.org/10.1029/2021GC010107.

Related Publications

Gerstenberger, M.C., et al., 2022, New Zealand National Seismic Hazard Model 2022 revision: model, hazard, and process overview, GNS Science report 2022/57, doi:10.21420/TB83-7X19.

Johnson, K.M., Wallace, L.M., Maurer, J., Hamling I.J., Williams, C.A., Rollins, C., Gerstenberger, M.C., Van Dissen, R.J., 2022. Geodetic deformation model for the 2022 update of the New Zealand National Seismic Hazard Model. Lower Hutt (NZ): GNS Science. 62 p. (GNS Science report; 2021/37), doi:10.21420/P93X-8293.

Van Dissen, R.J., Seebeck, H., Wallace, L.M., Rollins, C., Gerstenberger, M.C., Howell, A., DiCaprio, C., Williams, C.A., 2022, New Zealand National Seismic Hazard Model 2022: geologic and subduction interface deformation models. Lower Hutt (NZ): GNS Science. 23 p. (GNS Science report; 2022/31), doi:10.21420/CEXY-AB93.