UT Shield

Dan Wasserman

The University of Texas at Austin

Mid-IR Photonics Lab

  • Mid-IR Photonics Home
  • Recent News
  • Publications
  • Group Members
  • Research
  • Teaching
  • Outreach

Publications

– Raw data, experimental set-up details, fabrication procedures, etc. available upon reasonable request.

2023

128. “All-Epitaxial Resonant Cavity Enhanced Long-Wave Infrared Detectors for Focal Plane Arrays“, P. Petluru, A. J. Muhowski, A. Kamboj, N. C. Mansfield, M. Bergthold, E. A. Shaner, J. F. Klem, and D. Wasserman, Appl. Phys. Lett. 122, 021101 (2023);

2022

127. “Mid-infrared rainbow light-emitting diodes“, A. J. Muhowski, A. Kamboj, N.C. Mansfield, and D. Wasserman, Appl. Phys. Lett. 121, 261105 (2022);
126. “Photoluminescence from InSb1−xBix alloys at extended wavelengths on InSb“, R. C. White, L. J. Nordin, A. J. Muhowski, D. Wasserman, and S. R. Bank, Appl. Phys. Lett. 121, 191901 (2022);
125.  “Microstructural analysis and electro-optic properties of thick epitaxial BaTiO3 films integrated on silicon (001)“, Marc Reynaud, Zuoming Dong, Hyoju Park, Wente Li, Agham B. Posadas, Jamie H. Warner, Daniel Wasserman, and Alexander A. Demkov, Phys. Rev. Materials 6, 095201 (2022).
124. “Plasmon-enhanced distributed Bragg reflectors“, Morgan Bergthold, Daniel Wasserman, and Aaron J. Muhowski, Infrared Physics & Technology, 125, 104236 (2022).
123. “Epitaxial Mid-IR Nanophotonic Optoelectronics“, Leland Nordin and Daniel Wasserman, Applied Physics Letters, 120, 220501 (2022).
122. “Room-Temperature Mid-Wave Infrared Guided-Mode Resonance Detectors“, Abhilasha Kamboj, Leland Nordin, Aaron J. Muhowski, David Woolf, and Daniel Wasserman, IEEE Photonics Technology Letters, 34, 615 (2022).
121. “Coherent Light Filter“, Morgan Bergthold, Keith Stewart Jr., Nicholas Duggar, Aaron J. Muhowski, and Daniel Wasserman, Optics Letters, 47, 2646 (2022).
120. “All-epitaxial, laterally structured plasmonic materials“,  Alec M. Skipper,  Priyanka Petluru,  Daniel J. Ironside,  Ashlee M. García,  Aaron J. Muhowski,  Daniel Wasserman, and Seth R. Bank, Appl. Phys. Lett. 120, 161103 (2022).

119. “High operating temperature plasmonic infrared detectors“, Leland Nordin, Aaron J. Muhowski, and Daniel Wasserman, Applied Physics Letters, 120, 101103 (2022).

118. “Extending plasmonic response to the mid-wave infrared with all-epitaxial composites“, Aaron J. Muhowski, Evan Simmons, Kun Li, Evgenii E. Narimanov, Viktor A. Podolskiy, and Daniel Wasserman, Opt. Lett. 47(4), 973-976 (2022).

 

 

 

 

 

117. “Cascaded InGaSb quantum dot LEDs“, A. J. Muhowski, A. Kamboj, A.F. Briggs, L. Nordin, S. R. Bank, and D. Wasserman, J. Appl. Phys. 131, 043105 (2022).

2021

116. “Minority carrier lifetimes in digitally-grown, narrow-gap, AlInAsSb alloys“, A. J. Muhowski, S. D. March, S. J. Maddox, D. Wasserman, and S. R. Bank, Appl. Phys. Lett. 119, 251102 (2021).

115. “Ultra-thin plasmonic detectors“, Leland Nordin, Priyanka Petluru, Abhilasha Kamboj, Aaron J. Muhowski, and Daniel Wasserman, Optica, 8, 1545 (2021).

114. “Bright mid-infrared photoluminescence from high dislocation density epitaxial PbSe films on GaAs“, Jarod Meyer, Aaron J. Muhowski, Leland Nordin, Eamonn Hughes, Brian Haidet, Daniel Wasserman, and Kunal Mukherjee, APL Materials 9, 111112 (2021).

113. “Low-threshold InP quantum dot and InGaP quantum well visible lasers on silicon (001)“, Pankul Dhingra, Patrick Su, Brian D. Li, Ryan D. Hool, Aaron J. Muhowski, Mijung Kim, Daniel Wasserman, John Dallesasse, and Minjoo Larry Lee, Optica, 8, 2334 (2021).

112. “Measuring Molecular Diffusion Through Thin Polymer Films with Dual-Band Plasmonic Antennas“, Hao Chen, Gaurav Singhal, Frank Neubrech, Runyu Liu, Joshua S. Katz, Scott Matteucci, Steven G. Arturo, Daniel Wasserman, Harald Giessen, and Paul V. Braun, ACS Nano (2021).

111. “All-epitaxial guided-mode resonance mid-wave infrared detectors”, A. Kamboj, L. Nordin, P. Petluru, A. J. Muhowski, D. N. Woolf, and D. Wasserman, Appl. Phys. Lett. 118, 201102 (2021).

110.  “All-epitaxial long-range surface plasmon polariton structures with integrated active materials“,  L. Nordin*, P. Petluru*, A.J. Muhowski, E.A. Shaner, and Daniel Wasserman, J. Appl. Phys., 129, 113102 (2021).
*Authors contributed equally

109.  “Reflecting Metagrating-Enhanced Thin-Film Organic Light Emitting Devices“,  Xin Xu, Hoyeong Kwon, Stanley Finch, Jae Young Lee, Leland Nordin, Daniel Wasserman, Andrea Alù, and Ananth Dodabalapur, Appl. Phys. Lett., 118, 053302 (2021).

108.  “Interface structure and luminescence properties of epitaxial PbSe films on InAs(111)A“,  Brian B. Haidet, Leland Nordin, Aaron J. Muhowski, Kevin D. Vallejo, Eamonn T. Hughes, Jarod Meyer, Paul J. Simmonds, Daniel Wasserman, and Kunal Mukherjee, J. Vac. Sci. Technol. A, 39, 023404 (2021).

2020

107. “Ballistic Metamaterials“, Kun Li, Evan Simmons, Andrew F. Briggs, Seth R. Bank, Daniel Wasserman, Viktor A. Podolskiy, and Evgenii E. Narimanov, Optica, 7, 1773-1780 (2020).

106. “Subdiffraction Limited Photonic Funneling of Light“, K. Li, E. Simmons, A.F. Briggs, L. Nordin, J. Xu, V. Podolskiy and D. Wasserman, Advanced Optical Materials, 2001321 (2020)

105.  “Enhanced room temperature infrared LEDs using monolithically integrated plasmonic materials“, A.F. Briggs, L. Nordin, A.J. Muhowski, E. Simmons, P. Dhingra, M.L. Lee, V.A. Podolskiy, D. Wasserman, and S.R. Bank, Optica 7, 1355-1358 (2020)

Fig. 1.

104. “Engineering the Berreman mode in mid-infrared polar materials“, Irfan Khan, Zhaoyuan Fang, Milan Palei, Junchi Lu, Leland Nordin, Evan L. Simmons, Owen Dominguez, S. M. Islam, Huili Grace Xing, Debdeep Jena, Viktor A. Podolskiy, Daniel Wasserman, and Anthony J. Hoffman, Optics Express, 28, 28590 (2020).

103. “Minority carrier lifetime and photoluminescence of mid-wave infrared InAsSbBi“, Priyanka Petluru, Perry C. Grant, Aaron J. Muhowski, Isabella M. Obermeier, Marko S. Milosavljevic, Shane R. Johnson, Daniel Wasserman, Elizabeth H. Steenbergen, and Preston T. Webster, Appl. Phys. Lett., 117, 061103 (2020). https://doi.org/10.1063/5.0007275

102. “All-Epitaxial Integration of Long-wavelength Infrared Plasmonic Materials and Detectors for Enhanced Responsivity“, Leland Nordin, Abhilasha Kamboj, Priyanka Petluru, Eric Shaner, and Daniel Wasserman, ACS Photonics 7, 1950–1956 (2020). https://doi.org/10.1021/acsphotonics.0c00659

101. “Insb Pixel-Loaded InSb pixel loaded microwave resonator for high-speed mid-wave infrared detection”
Y. Wang, S. Dev,  F. Yang, L. Nordin, Y. Wang, A. Briggs, M. Allen, J. Allen, E. Tutuc, and D. Wasserman, Infr. Phys. Tech., 109, 103390 (2020).

100. “Plasmonic electro-optic modulator based on degenerate semiconductor interfaces“, R.K. Vinnakota, Z. Dong, A.F. Briggs, S.R. Bank, D. Wasserman, and D.A. Genov, Nanophotonics (2020)

Figure 1: Basic schematic of the surface plasmon polariton diode (SPPD).The SPPD consists of a lattice-matched indium gallium arsenide (In0.53Ga0.47As) pn++ junction grown epitaxially on an indium phosphide (InP) substrate. A grating with period Λ=2.4 μm is used to couple mid-IR incident light to the surface plasmon polariton (SPP) modes propagating the junction interface. The relevant device sizes are as follows; d1=0.75 μm, d2=1 μm, w1=100 μm, and w2=50 μm.

99. “Room Temperature Mid Infrared Detection via Resonant Microwave Circuits“, Sukrith Dev, Yinan Wang, Yimeng Wang, Monica Allen, Jeffery Allen, Emanuel Tutuc, and Daniel Wasserman, IEEE Trans. Electron. Dev., 67(4), 1632-1638, (2020)

98.  “Mid-infrared electroluminescence from type-II In(Ga)Sb quantum dots“, Andrew F. Briggs, Leland J. Nordin, Aaron J. Muhowski, Priyanka Petluru, David Silva, Daniel Wasserman, and Seth R. Bank, Appl. Phys. Lett., 116, 061103 (2020).

97. “Enhanced emission from ultra-thin long wavelength infrared superlattices on epitaxial plasmonic materials“, L. Nordin, K. Li, A. Briggs, E. Simmons, S. R. Bank, V. A. Podolskiy, and D. Wasserman, Appl. Phys. Lett., 116, 021102 (2020)

2019

96. “Phonon-polaritonics: enabling powerful capabilities for infrared photonics“, Stavroula Foteinopoulou, Ganga Chinna Rao Devarapu, Ganapathi S. Subramania, Sanjay Krishna, and Daniel Wasserman, Nanophotonics, 8(12) 2129-2175 (2019)

95. News and Views: “Nanosecond modulation of thermal emission“, Daniel Wasserman , Light: Science & Applications, 8, 68 (2019).

  • Discussing recent work from the group of M. Kats at UWisconsin

94. “Electrical modulation of degenerate semiconductor plasmonic interfaces“, Z. Dong, R.K. Vinnakota, A.F. Briggs, L. Nordin, S.R. Bank, D.A. Genov, and D. Wasserman, J. Appl. Phys., 126, 043101 (2019).

93. “Probing polaritons in the mid- to far-infrared“, T.G. Folland, L. Nordin, D. Wasserman, and J.D. Caldwell, Journal of Applied Physics 125, 191102 (2019) Featured

92. “Measurement of carrier lifetime in micron-scaled materials using resonant microwave circuits“, Sukrith Dev, Yinan Wang, Kyounghwan Kim, Marziyeh Zamiri, Clark Kadlec, Michael Goldflam, Samuel Hawkins, Eric Shaner, Jin Kim, Sanjay Krishna, Monica Allen, Jeffery Allen, Emanuel Tutuc, Daniel Wasserman,  Nat. Commun., 10, (2019).

91. “Monochromatic Multimode Antennas on Epsilon‐Near‐Zero Materials“, Owen Dominguez, Leland Nordin, Junchi Lu, Kaijun Feng, Daniel Wasserman, and Anthony J. Hoffman, Adv. Opt. Mater. 1800826 (2019).

90. “Design and growth of multi-functional InAsP metamorphic buffers for mid-infrared quantum well lasers on InP“, D. Jung, L. Yu, S. Dev, D. Wasserman, M.L. Lee, J. Appl. Phys. 125, 082537 (2019)

Figure

2018

89. “Metal germanides for practical on-chip plasmonics in the mid infrared“, E.M. Smith, W.H. Streyer, N. Nader, S. Vangala, G. Grzybowski, R. Soref, D. Wasserman, and J.W. Cleary, Opt. Mater. Express, 8, 968 (2018)

88. “Ultra-thin enhanced-absorption long-wave infrared detectors“, Shaohua Wang, Narae Yoon,  Abhilasha Kamboj, Priyanka Petluru, Wanhua Zheng, and Daniel Wasserman, Appl. Phys. Lett., 112, 091104 (2018).

87.  “Optical Mapping of RF Field Profiles in Resonant Microwave Circuits”, Sukrith Dev, Runyu Liu, Jeffery W. Allen, Monica S. Allen, Brett R. Wenner and Daniel Wasserman, IEEE Photon. Technol. Lett., 30, 331 (2018).

2017

86. “Next Generation Mid Infrared Sources” D. Jung, S. Bank, M.L. Lee, D. Wasserman, J. Opt., 19 123001 (2017)

85. “Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching“, L. Kong, Y. Song, J.D. Kim, L. Yu, D. Wasserman, W. K. Chim, S.Y. Chiam, and X. Li, ACS Nano, 10.1021/acsnano.7b04752

84. “Mid-infrared epsilon-near-zero modes in ultra-thin phononic films“, L. Nordin, O. Dominguez, C. M. Roberts, W. Streyer, K. Feng, Z. Fang, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, Appl. Phys. Lett. 111, 091105 (2017).

83. “Modified electron beam induced current technique for in(Ga)As/InAsSb superlattice infrared detectors“,  N. Yoon, C. J. Reyner, G. Ariyawansa, J. M. Duran, J. E. Scheihing, J. Mabon, and D. Wasserman, J. Appl. Phys.,  122, 074503 (2017).

82.  “Palladium Germanides for Mid- and Long-Wave Infrared Plasmonics“, E. Smith, W. Streyer, N. Nader, S. Vangala, R. Soref, D. Wasserman, & J. Cleary, MRS Advances, 1-6 (2017).

81. “Mid-wave infrared narrow bandwidth guided mode resonance notch filter“, Y. Zhong, Z. Goldenfeld, K. Li, W. Streyer, L. Yu, L. Nordin, N. Murphy, and D. Wasserman
Opt. Lett. 42(2), 223-226 (2017).

thumbnail

80. “Engineering carrier lifetimes in type-II In(Ga)Sb/InAs mid-IR emitters“, Lan Yu, Yujun Zhong, Sukrith Dev and Daniel Wasserman, Journal of Vacuum Science and Technology B, 35, 02B101 (2017).

figure7_rev2

2016

79. “Room-temperature mid-infrared quantum well lasers on multi-functional metamorphic buffers“, D. Jung, L. Yu, S. Dev, D. Wasserman and M.L. Lee, Applied Physics Letters, 109, 211101 (2016).

YaleLaser

78. “Enhanced responsivity resonant RF photodetectors“, R. Liu, S. Dev, Y. Zhong, R. Lu, W. Streyer, J.W. Allen, M.S. Allen, B. R. Wenner, S. Gong, and D. Wasserman, Optics Express, 24, 26044-26054 (2016) DOI: 10.1364/OE.24.026044

Thumbnail

77. “Epsilon-Near-Zero Photonic Wires“, R. Liu, C. Roberts, Y. Zhong, V.A. Podolskiy, D. Wasserman, ACS Photonics, 3 (6), pp 1045–1052 (2016) DOI: 10.1021/acsphotonics.6b00120

TOC_fig

76. “Multiplexed infrared photodetection using resonant radio-frequency circuits” R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, Appl. Phys. Lett., 108, 061101 (2016).

SRR_APL_fig3

75. Enhanced Optical Transmission through MacEtch-Fabricated Buried Metal Gratings”, R. Liu, X. Zhao, C. Roberts, L. Yu, P.K. Mohseni, X. Li, V. Podolskiy, and D. Wasserman, Adv. Mater., 28, 1441 (2016).

AdvMatTOC

2015

74. “Engineering the Reststrahlen band with hybrid plasmon/phonon excitations“, W. Streyer, K. Feng, Y. Zhong, A.J. Hoffman, and D. Wasserman, MRS Communications, 2015

Figure4_revised

73    ” Mid-infrared electroluminescence from InAs type-I quantum wells grown on InAsP/InP metamorphic buffers “, D. Jung, L. Yu, D. Wasserman and M.L. Lee, J. Appl. Phys., 118, 183101 (2015)

LarryJAP

72. “Photonic materials, structures and devices for Reststrahlen optics“, K. Feng, W. Streyer, Y. Zhong, A.J. Hoffman, and D. Wasserman, Opt. Express,23, A1418 (2015)

OpExFarIR

71. “Localized surface phonon polariton resonances in polar gallium nitride” , K. Feng, W. Streyer, S.M. Islam, J. Verma, D. Jena, D. Wasserman and A.J. Hoffman, Appl. Phys. Lett., 107, 081108 (2015)

GaNAPL

70. “Selective absorbers and thermal emitters for far-infrared wavelengths “, W. Streyer, K. Feng, Y. Zhong,A.J. Hoffman, and D. Wasserman, Appl. Phys. Lett., 107, 081105 (2015)

 AlN

69. “Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors“, D. Zuo, R. Liu, D. Wasserman, J. Mabon, Z.-Y. He, Y.-H. Zhong, E.A. Kadlec, B.V. Olsen, and E.A. Shaner, Appl. Phys. Lett., 106, 071107 (2015)

DZAPL2

68. “Review of mid-infrared plasmonic materials“, Y. Zhong, S. Devi Malagari, T. Hamilton, and D. Wasserman, J. Nanophoton. 9, 093791 (2015).

JNanoPhotReview

67. “Platinum germanides for mid- and long-wave infrared plasmonics”, J.W. Cleary, W.H. Streyer, N. Nader, S. Vangala, I. Avrutsky, B. Claflin, J. Hendrickson, D. Wasserman, R.E. Peale, W. Buchwald, R. Soref, Optics Express, 23, 3316-3326 (2015).

ClearyPtGe

2014

66. “Design, Fabrication, and Characterization of Near-IR Gold Bowtie Nanoantenna Arrays”, H. Chen, A.M. Bhuiya, R. Liu, D. Wasserman, and K.C. Touissant, Jr., J. Phys. Chem. C, 118, 20553 (2014).

 Kimani

65. “Mid-infrared emission from In(Ga)Sb layers on InAs(Sb)”, R. Liu, Y. Zhong, L. Yu, H. Kim, S. Law, J.-M. Zuo, and D. Wasserman, Optics Express, 22, 24466 (2014).

OpExInSb

64. Editorial for Special Issue on mid-infrared and THz photonics, D. Wasserman, R. Singh, and T. Akalin, J. Opt., 16, 090201 (2014).

JOptEd

63. “Flat mid-infrared composite plasmonic materials using lateral doping-patterned semiconductors ”, A. Rosenberg, J. Surya, R. Liu, W. Streyer, S. Law, L. Suzanne Leslie, R. Bhargava, D. Wasserman, J. Opt., 16, 094012 (2014).

JOpt

62. “Controlling quantum dot energies using submonolayer bandstructure engineering”, L. Yu, D. Jung, S. Law, J. Shen, J.J. Cha, M.L. Lee, D. Wasserman, Appl. Phys. Lett., 105, 081103 (2014).

SMLQDs

61. “Doped semiconductors with Band-Edge Plasma Frequencies”, S. Law, R. Liu, D. Wasserman, J. Vac. Sci. Technol. B, 32, 05260 1-7 (2014).

DopedInSb

60. “Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide“, W. Streyer, S. Law, A. Rosenberg, C. Roberts, V.A. Podolskiy, A.J. Hoffman, and D. Wasserman, Appl. Phys. Lett., 104, 131105 (2014).

GAPL

59. “Epsilon-near-zero enhanced light transmission through a subwavelength slit“, S. Inampudi, D. C. Adams, T. Ribaudo, D. Slocum, S. Vangala, W.D. Goodhue, D. Wasserman, and V. A. Podolskiy, Phys. Rev. B, 89, 125119 (2014).

PRB

58. “All-Semiconductor Negative Index Plasmonic Absorbers”   S Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E.A. Shaner, V.A. Podolskiy, D Wasserman, Phys. Rev. Lett., 112, 017401 (2014).

PRLPAs

2013

57. “Selective thermal emission from thin-film metasurfaces”, W Streyer, S Law, J Mason, DC Adams, T Jacobs, G Rooney, D Wasserman, SPIE NanoScience+ Engineering, Proc. SPIE 8808, p. 88080V-88080V-12, 20132013

KirchoffSPIE

56. “All-Semiconductor Plasmonic Nanoantennas for Infrared Sensing “, S. Law, L. Yu, A. Rosenberg, and D. Wasserman, Nano Lett., 13, 4560 (2013).

nl-2013-02766t_0006

55. “Degenerately doped InGaBi:As as a highly conductive and transparent contact material in the infrared range”, Optics Materials Express, 3, 1197 (2013).

Zide

54. “Wafer-Scale Production of Uniform InAsyP1–y Nanowire Array on Silicon for Heterogeneous Integration“, J.C. Shin, A. Lee, P.K. Mohseni, D.Y. Kim, L. Yu, J.H. Kim, H.J. Kim, W.J. Choi, D. Wasserman, K.J. Choi, and X. Li,, ACS Nano, (2013)

XLiACSNano

53. “Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy“, J.R. Felts, S. Law, C.M. Roberts, V. Podolskiy, D. Wasserman, and W.P. King, Appl. Phys. Lett., 102, 152110 (2013)

KingAPL

52. “Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control“, D. Zuo, P. Qiao, D. Wasserman, and S.L. Chuang, Appl. Phys. Lett., 102, 141107 (2013)

DZuo_APL1

51. “Strong absorption and selective emission from engineered metals with dielectric coatings”, W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, Optics Express, 21, 9113 (2013)

EmissionFigGeOpEx

50. “Epitaxial growth of engineered metals for mid-infrared plasmonics”, S. Law, L. Yu, D. Wasserman, J. Vac. Sci. Technol. B, 31, 03C121 (2013).

JVSTBInAs
49. “Making the mid-infrared nano with designer plasmonic materials“, S. Law, J. Felts, C. Roberts, V.A. Podolskiy, W.P. King, D. Wasserman, Proc. SPIE 8555 (2013).

DesignerMetalsSPIE

48. “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics”, S. Law, V. Podolskiy, and D. Wasserman, Nanophotonics,(2013)

NanophotonicsFig

2012

47. “2.8 um emission from type-I quantum wells grown on InAsxP12x/InP metamorphic graded buffers“, D. Jung, Y. Song, L. Yu, D. Wasserman, and M.L. Lee, Appl. Phys. Lett., 101, 251107 (2012).2012

LarryAPL1

46. “Electroluminescence from Nanosphere Lithography Fabricated Quantum Dots“, L. Yu, S. Law, D. Wasserman, Appl. Phys. Lett., 101, 103105 (2012)

ELNSL

45.  “Mid-infrared designer metals”, S. Law, D.C. Adams, A.M. Taylor, and D. Wasserman, Optics Express, 20, 12155 (2012)

DesignerMetals

44. “Strong coupling of molecular and mid-infrared perfect absorber resonances”, J.A. Mason, G. Allen, V. podolskiy, and D. Wasserman, IEEE Photonics Technology Letters, 24, 31 (2012)

IEEEPTL

2011

43. “Enhanced Light Funneling Through Subwavelength Apertures Using Epsilon Near Zero Metamaterials”, D.C. Adams, N. Inampudi, T. Ribaudo, D. Slocum, N. Kuhta, S. Vangala, W. Goodhue, V.A. Podolskiy, and D. Wasserman, Phys. Rev. Lett., 107, 133901 (2011).2011

ENZPRL

42. “Voltage-controlled active mid-infrared plasmonic devices” K. Anglin, T. Ribaudo, D.C. Adams, X. Qian, W.D. Goodhue, S. Dooley, E.A. Shaner and D. Wasserman, J. Appl. Phys., 109, 123103 (2011).

figure1hftuning

41. “Strong absorption and selective thermal emission from a midinfrared metamaterial” J.A. Mason, S. Smith, and D.Wasserman, Appl. Phys. Lett., 98, 241105 (2011).

Angulard

40. “Multiscale beam evolution and shaping in corrugated plasmonic systems” S. Thongrattanasiri, D. C. Adams, D.Wasserman, and V. A. Podolskiy, Optics Express, 19, 9269 (2011).

figFocusAv

39.  “Observation of Rabi-Splitting from Surface Plasmon Coupled Conduction-State Transitions in Electrically-Excited InAs Quantum Dots”, B.S. Passmore, W.W. Chow, D.C. Adams, T. Ribaudo, S.A. Lyon, D. Wasserman, and E.A. Shaner, Nano-Letters, Jan (2011).

EOTQDNL

2010

38.  “Selective Thermal Emission from Patterned Steel ”, J. Mason, D.C. Adams, Z. Johnson, S. Smith, A.W. Davis, and D. Wasserman, Optics Express, 18, 25912 (2010)thermalimage

37.  “Plasmonic mid-infrared beam steering”, D.C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, Appl. Phys. Lett., 96, 201112 (2010).

36.  “Active Mid-Infrared Plasmonic Beam Steering Devices”,  D.C. Adams, T. Ribaudo, S. Thongrattanasiri, E.A. Shaner, V. Podolskiy, and D. Wasserman, Proc. SPIE, 7756-41 (2010).

BeamSteering

35.  “High-optical-quality nanosphere lithographically formed InGaAs quantum dots using molecular beam epitaxy assisted GaAs mass transport and overgrowth”, X. Qian, S. Vangala, D. Wasserman, and W.D. Goodhue., J. Vac. Sci. Technol. B, 28(3), C3C9 (2010).

JVSTBXifeng

2009

34.  “Spectral and spatial investigation of mid-infrared surface waves on a plasmonic grating”, T. Ribaudo, D.C. Adams, B. Passmore, E.A. Shaner and D. Wasserman, Appl. Phys. Lett., 94 201109 (2009).

 DaylightEOT
33.  “Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb”, B.S. Passmore, D.G. Allen, S. R. Vangala, W.D. Goodhue, D. Wasserman, and E.A. Shaner, Opt. Express, 17 10223 (2009).

InSbEOT

32.  “Active Control and Spatial Mapping of Mid-Infrared Propagating Surface Plasmons”, T. Ribaudo, E.A. Shaner, S.S. Howard, C. Gmachl, X. Wang, F.-S. Choa, and D. Wasserman, Opt. Express, 17, 7019 (2009).

31.  “Active Control of Propagating Waves on Plasmonic Surfaces”, T. Ribaudo, E.A. Shaner, S.S. Howard, C. Gmachl, X.J. Wang, F.-S. Choa, and D. Wasserman, Proc. SPIE 7221-24, 2 (2009).

Fig1OESPPcoupling

30.  “Room temperature midinfrared electroluminescence from InAs quantum dots“, D. Wasserman, T. Ribaudo, S.A. Lyon, S.K. Lyo, E.A. Shaner, Appl. Phys. Lett., 94, 061101 (2009).

RTQDs_000

29.  “Loss mechanisms in mid-infrared extraordinary optical transmission gratings”, T. Ribaudo, K. Freitas, E.A. Shaner, J.G. Cederberg, D. Wasserman, Opt. Express 17 666 (2009).

 OElossesfig5

28.  “High k-space lasing in a dual-wavelength quantum cascade laser”, K.J. Franz, S. Menzel, A.J. Hoffman, D. Wasserman, J.W. Cockburn and C. Gmachl, Nature Photonics, 3, 50 (2009).

KaleNatPhot_000

Publications (1998-2008)

27.  “Active Surface Plasmons: Tuning of Surface Plasmons leads to new optoelectronic devices”, Laser Focus World, January 2008.Publications (1998-2008)

26.  “Uniform InGaAs quantum dot arrays fabricated using nanosphere lithography”, X. Qian, J. Li, D. Wasserman, W.D. Goodhue, Appl. Phys. Lett., 93, 231907 (2008).

25.  “Current-tunable mid-infrared extraordinary transmission gratings”, E.A. Shaner, J. Cederberg, D. Wasserman, Appl. Phys. Lett., 91, 181110 (2007)

24.  Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings”, D. Wasserman, E.A. Shaner, and J.G. Cederberg, Appl. Phys. Lett., 90, 191102 (2007)

23.  “Negative Refraction in Semiconductor Metamaterials” A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, and C. Gmachl, Nature Materials, Published online Oct. 14th, 2007.

22.  “Narrow width, low-ridge configuration for high-power quantum cascade lasers”, A. Lyahk, P. Zory, D. Wasserman, G. Shu, C. Gmachl, D. Bour Appl. Phys. Lett., 90, 141107 (2007)

21.  “Evidence of cascaded emission in a dual-wavelength quantum cascade laser”, K.J. Franz, D. Wasserman, A.J. Hoffman, D.C. Jangraw, K.-T, Shiu, S.R. Forrest, and C. Gmachl, Appl. Phys. Lett., 90, 091104 (2007)

20.  “Multiple wavelength polarized mid-infrared emission from InAs quantum dots”, D. Wasserman, C. Gmachl, S.A. Lyon, and E.A. Shaner, Appl. Phys. Lett. Vol. 88, p.191118 (2006).

19.  ”High-Performance Quantum Cascade Lasers: Optimized Design through Waveguide and Thermal Modeling”, S. S. Howard, Z. J. Liu, D. Wasserman, A. Hoffman, T. Ko, C. F. Gmachl,IEEE J. Select. Topics Quantum Electron., 13, 1054 (2007).

18.  “Room Temperature Continuous-wave Quantum Cascade Lasers Grown by MOCVD without Lateral Regrowth”, Z. Liu, D. Wasserman, S.S. Howard, A.J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and Fow-Sen Choa, IEEE Photonics Technology Letters, vol. 18, p.1347 (2006).

17.  “Anomalous spin polarization of GaAs two-dimensional hole systems”, R. Winkler, E. Tutuc, S.J. Papadakis, S. Melinte, M. Shayegan, D. Wasserman, and S.A. Lyon, Phys. Rev. B, vol. 72, p.195321 (2005).

16.  “Electronic anti-Stokes–Raman emission in quantum-cascade lasers”, A. A Gomez-Iglesias, D. Wasserman, C. Gmachl, A. Belyanin, and D.L. Sivco, Appl. Phys. Lett., vol. 87, p. 261113 (2005).

15.  “6 nm half-pitch lines and 0.04μm2 static random access memory patterns by nanoimprint lithography”, M.D. Austin, W. Zhang, H.X. Ge. D. Wasserman, S.A. Lyon, and S.Y. Chou, Nanotech., Vol 8, p.1058 (2005).

14.  “Cleaved-edge overgrowth of aligned quantum dots on strained layers of InGaAs”, D. Wasserman and S. A. Lyon, Appl. Phys.Lett., Vol 85, p.5352 (2004).

13.  “Scanning near-field photoluminescence mapping of (110) InAs-GaAs self-assembled quantum dots”, M. Hadjipanayi, A.C. Maciel, J.F. Ryan, D. Wasserman, and S.A. Lyon, Appl. Phys. Lett., Vol.85, p.2535 (2004).

12.  “Fabrication of 5nm linewidth and 14 nm pitch features by nanoimprint lithography”, Michael D. Austin, Haixiong Ge, Wei Wu, Mingtao Li, Zhaoning Yu, D. Wasserman, S.A. Lyon, and Stephen Y. Chou, Appl. Phys. Lett., Vol 84, p.5299 (2004).

11.  “Formation of self-assembled quantum dots on (110) GaAs Substrates”, D. Wasserman, S.A. Lyon, M. Hadjipanayi, A. Maciel, and .F. Ryan, Appl. Phys. Lett.. Vol. 83, p.5050 (2003).

10.  “Negative differential Rashba effect in two-dimensional hole systems”, B. Habib, E. Tutuc, S. Melinte, M. Shayegan, D. Wasserman, S.A. Lyon, and R. Winkler, Appl. Phys. Lett., Vol. 85, p.3151 (2004).

9.  “Characterization of GaAs grown by molecular beam epitaxy on vicinal Ge(100) substrates”, A. Wan, V. Menon, S.R. Forrest, D. Wasserman, S. A. Lyon, and A. Kahn, J. Vac. Sci. Technol. B, Vol.22, p.1893 (2004).

8.  “Spin splitting in GaAs (100) two-dimensional holes”, B. Habib, E. Tutuc, S. Melinte, M. Shayegan, D. Wasserman, S. A. Lyon, and R. Winkler, Phys. Rev. B, Vol.69, p.113311 (2004).

7.  “Mid-infrared luminescence from InAs quantum dots in unipolar devices”, D. Wasserman and S.A. Lyon, Appl. Phys. Lett., Vol. 81, p.2848 (2002).

6.  “Doping Tunable Enhanced Extraordinary Optical Transmission Gratings”, D. Wasserman, J. Cederberg, and E.A. Shaner, Proc. SPIE 6760, 67600A (2007).

5.  “MOCVD growth and regrowth of quantum cascade lasers”, F.-S. Choa, L. Cheng, X. Ji, Z. Liu, D. Wasserman, S.S. Howard, C.F. Gmachl, X. Wang, J. Fan, and J. Khurgin, Proc. SPIE 6485, 64850N (2007).

4.  “Mid-infrared electroluminescence from InAs quantum dots”, D. Wasserman, S.A. Lyon, C. Gmachl, J. Cederberg, and E.A. Shaner, Proc. SPIE Vol. 6386, 63860E (2006)

3.  “Mid-infrared electroluminescence from InAs quantum dots in p-n junctions and unipolar tunneling structures” D. Wasserman and S.A. Lyon, Physica Status Solidi B, Vol. 224, p.585 (2001).

2.  “Electroluminescence from III-V self-assembled quantum dots”, D. Wasserman and S.A. Lyon, Book Chapter for “The Handbook of Electroluminescent Materials”, edited by Prof. D.R. Vij, Department of Physics, Kurukshetra University, India, Institute of Physics Publishing, Bristol, U.K (2004).

1.  “110 InAs Quantum Dots: Growth, Single-Dot Luminescence and Cleaved Edge Alignment”, D. Wasserman, E.A. Shaner, S.A. Lyon, M. Hadjipanayi, A.C. Maciel, and J.F. Ryan, MRS Fall 2004 Meeting Proc. “Progress in Compound Semiconductor Materials IV–Electronic and Optoelectronic Applications”, Vol. 829, (2005).

YEAR

  • 2022 Publications
  • 2021 Publications
  • 2020 Publications
  • 2019 Publications
  • 2018 Publications
  • 2017 Publications
  • 2016 Publications
  • 2015 Publications
  • 2014 Publications
  • 2013 Publications
  • 2012 Publications
  • 2011 Publications
  • 2010 Publications
  • 2009 Publications
  • 1998-2008 Publications

Categories

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2023

  • UT Austin
  • UT Blogs
  • Log in
  • Mid-IR Photonics Home
  • Recent News
  • Publications
  • Group Members
  • Research
  • Teaching
  • Outreach