Force fields, Coarse graining, Machine Learning Nanofluidics – Force Fields, Coarse-Graining, Machine Learning: H. Oliaei, N. R. Aluru, “IR Spectra for the EMIM-TFSI Ion Pair Using Deep Potentials”, Journal of Chemical Theory and Computation, Vol. 21, No. 13, pp. 6622-6632, July 2025. DOI: 10.1021/acs.jctc.5c00187 (link) I. Nadkarni, J. P. Martínez Cordeiro, N. R. Aluru, “Molecular Denoising Using Diffusion Models with Physics-Informed Priors”, The Journal of Physical Chemistry Letters, Vol. 16, No. 12, pp. 3078-3085, March 2025. DOI: 10.1021/acs.jpclett.5c00274 (link) J. P. Martínez Cordeiro, N. R. Aluru, “Thermostatting nonequilibrium systems: A thermal energy constraint for systems under directive perturbations”, The Journal of Chemical Physics, Vol. 162, No. 12, Art. No. 124112, March 2025. DOI: 10.1063/5.0257970 (link) I. Nadkarni, J. Jeong, B. Yalcin, N. R. Aluru, “Modulating Coarse-Grained Dynamics by Perturbing Free Energy Landscapes”, The Journal of Physical Chemistry A, Vol. 128, No. 46, pp. 10029-10040, Nov 2024. DOI: 10.1021/acs.jpca.4c04530 (link) H. Wu, C. Liang, J. Jeong, N. R. Aluru, “From ab initio to continuum: Linking multiple scales using deep-learned forces”, The Journal of Chemical Physics, Vol. 159, No. 18, Art. No. 184108, Nov 2023. DOI: 10.1063/5.0166927 (link) I. Nadkarni, H. Wu, N. R. Aluru, “Data-Driven Approach to Coarse-Graining Simple Liquids in Confinement”, Journal of Chemical Theory and Computation, Vol. 19, No. 20, pp. 7358-7370, Oct 2023. DOI: 10.1021/acs.jctc.3c00633 (link) A. Moradzadeh, H. Oliaei, N. R. Aluru, “Topology-Based Phase Identification of Bulk, Interface, and Confined Water Using an Edge-Conditioned Convolutional Graph Neural Network”, The Journal of Physical Chemistry C, Vol. 127, No. 5, pp. 2612-2621, 2023. DOI: 10.1021/acs.jpcc.2c07423 (link) H. Wu, N. R. Aluru, “Deep learning-based quasi-continuum theory for structure of confined fluids”, The Journal of Chemical Physics, Vol. 157, No. 8, Art. No. 084121, 2022. DOI: 10.1063/5.0096481 (link) A. Moradzadeh, N. R. Aluru, “Many-Body Neural Network-Based Force Field for Structure-Based Coarse-Graining of Water”, The Journal of Physical Chemistry A, Vol. 126, No. 12, pp. 2031-2041, 2022. DOI: 10.1021/acs.jpca.1c09786 (link) J. Jeong, A, Moradzadeh, N. R. Aluru, “Extended DeepILST for Various Thermodynamic States and Applications in Coarse-Graining”, The Journal of Physical Chemistry A, Vol. 126, No. 9, pp. 1562-1570, 2022. DOI: 10.1021/acs.jpca.1c10865 (link) A. Moradzadeh, N. R. Aluru, “Understanding simple liquids through statistical and deep learning approaches”, Journal of Chemical Physics, Vol. 154, No. 20, Art. No. 204503, 2021. DOI: 10.1063/5.0046226 (link) S. Mashayak and N. R. Aluru, “A multiscale model for charge inversion in electric double layers”, Journal of Chemical Physics, Vol. 148, No. 21, Art. No. 214102, 2018. DOI: 10.1063/1.5026975 R. Bhadauria and N. R. Aluru, “A multiscale transport model for non-classical nanochannel electroosmosis”, Journal of Chemical Physics, Vol. 147, No. 21, Art. No. 214105, 2017. DOI: 10.1063/1.5005127 R. Bhadauria and N. R. Aluru, “Multiscale modeling of electroosmotic flow: Effects of discrete ion, enhanced viscosity, and surface friction”, Journal of Chemical Physics, Vol. 146, No. 18, Art. No. 184106, 2017. M. H. Motevaselian and N. R. Aluru, “An EQT-based cDFT approach for thermodynamic properties of confined fluid mixtures”, Journal of Chemical Physics, Vol. 146, No. 15, Art. No. 154102, 2017. S. Mashayak and N. R. Aluru, “Langevin-Poisson-EQT: A dipolar solvent based quasi-continuum approach for electric double layers”, Journal of Chemical Physics, Vol. 146, No. 4, Art. No. 044108, 2017. R. Bhadauria and N. R. Aluru, “A multiscale transport model for Lennard-Jones binary mixtures based on interfacial friction”, Journal of Chemical Physics, Vol. 145, No. 7, Art. No. 074115, 2016. R. Bhadauria, T. Sanghi and N. R. Aluru, “Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water”, Journal of Chemical Physics, Vol. 143, No. 17, Art. No. 174702, 2015. M. H. Motevaselian, S. Y. Mashayak and N. R. Aluru, “An EQT-based cDFT approach for a confined Lennard-Jones fluid mixture”, Journal of Chemical Physics, Vol. 143, No. 12, Art. No. 124106, 2015. S. Y. Mashayak, M. H. Motevaselian and N. R. Aluru, “An EQT-cDFT approach to determine thermodynamic properties of confined fluids”, Journal of Chemical Physics, Vol. 142, No. 24, Art. No. 244116, 2015. T. Sanghi and N. R. Aluru, “Thermal noise in confined fluids”, Journal of Chemical Physics, Vol. 141, No. 17, Art. No. 174707, 2014. R. Bhadauria and N. R. Aluru, “A quasi-continuum hydrodynamic model for slit shaped nanochannel flow”, Journal of Chemical Physics, Vol. 139, No. 7, Art. No. 074109, 2013. T. Sanghi and N. R. Aluru, “A combined quasi-continuum/Langevin equation approach to study the self-diffusion dynamics of confined fluids”, Journal of Chemical Physics, Vol. 138, No. 12, Art. No. 124109, 2013. A. V. Raghunathan, J. H. Park and N. R. Aluru, “Interatomic potential-based semiclassical theory for Lennard-Jones fluids”, Journal of Chemical Physics, Vol. 127, No. 17, Art. No. 174701, 2007. S. Joseph and N. R. Aluru, “Hierarchical multiscale simulation of electrokinetic transport in silica nanochannels at the point of zero charge”, Langmuir, Vol. 22, No. 21, pp. 9041-9051, 2006. R. Qiao and N. R. Aluru, “Multiscale simulation of electroosmotic transport using embedding techniques”, International Journal for Multiscale Computational Engineering, Vol. 2, No. 2, pp. 173-188, 2004.